tab connectors on the lcd panel brands

New: A brand-new, unused, unopened, undamaged item in its original packaging (where packaging is applicable). Packaging should be the same as what is found in a retail store, unless the item is handmade or was packaged by the manufacturer in non-retail packaging, such as an unprinted box or plastic bag. See the seller"s listing for full details.See all condition definitionsopens in a new window or tab

tab connectors on the lcd panel brands

New: A brand-new, unused, unopened, undamaged item in its original packaging (where packaging is applicable). Packaging should be the same as what is found in a retail store, unless the item is handmade or was packaged by the manufacturer in non-retail packaging, such as an unprinted box or plastic bag. See the seller"s listing for full details.See all condition definitionsopens in a new window or tab

tab connectors on the lcd panel brands

This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.

tab connectors on the lcd panel brands

Customers who expect to purchase over $10,000 per year may wish to work with a dedicated CTL Account Manager. An account manager can work with customers to secure discounted pricing, purchase with POs, and request net terms. If plan on purchasing in volume, please let us know and we"ll have an Account Manager get back to you.

CTL products are available from major distributors in the US, and globally. US distributors include: TD SYNNEX and Ingram Micro. Contact us for a full list of distributors around the world.

Customers wishing to purchase in volume may click on the floating "Request a Quote" button to request quantity discounts. After requesting a quote, a CTL Account Representative will respond within 1 business day.

tab connectors on the lcd panel brands

This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.

tab connectors on the lcd panel brands

It is expected that the shift of LCD transmission for notebook PCs to a CPU corresponding to eDP which is a more high-speed transmission standard will accelerate.

JAE has developed the board-to cable HJ1 Series, horizontal connector corresponding to eDP ver. 1.4(5.4Gbps) as a LCD interface for the next generation notebook PCs and tablet PCs.

To comply with the needs for power supply of LCD and backlight, the HJ1 Series is 0.4mm pitch with mating height of 1.0mm max. and achieves rated current of 1A per position (when using 34AWG) .

tab connectors on the lcd panel brands

In both LCD and OLED displays, producing these cells – which are highly complex – is by far the most difficult element of the production process. Indeed, the complexity of these cells, combined with the levels of investment needed to achieve expertise in their production, explains why there are less than 30 companies in the whole world that can produce them. China, for instance, has invested more than 300 billion yuan (approximately $45 billion USD) in just one of these companies – BOE – over the past 14 years.

Panox Display has been involved in the display industry for many years and has built strong and long-term partner relationships with many of the biggest OLED and LCD panel manufacturers. As a result, we are able to offer our clients guaranteed access to display products from the biggest manufacturers.

LG Display was, until 2021, the No. 1 display panel manufacturer in the world. Owned by LG Group and headquartered in Seoul, South Korea, it has R&D, production, and trade institutions in China, Japan, South Korea, the United States, and Europe.

Founded in 2001, AUO – or AU Optronics – is the world’s leading TFT-LCD panel manufacturer (with a 16% market share) that designs, develops, and manufactures the world’s top three liquid crystal displays. With panels ranging from as small as 1.5 inches to 46 inches, it boasts one of the world"s few large-, medium -and small-sized product lines.

AUO offers advanced display integration solutions with innovative technologies, including 4K2K ultra-high resolution, 3D, ultra-thin, narrow bezel, transparent display, LTPS, OLED, and touch solutions. AOU has the most complete generation production line, ranging from 3.5G to 8.5G, offering panel products for a variety of LCD applications in a range of sizes, from as small as 1.2 inches to 71 inches.

Now Sharp is still top 10 TV brands all over the world. Just like BOE, Sharp produce LCDs in all kinds of size. Including small LCD (3.5 inch~9.1 inch), medium LCD (10.1 ~27 inch), large LCD (31.5~110 inch). Sharp LCD has been used on Iphone series for a long time.

Beside those current LCDs, the industrial LCD of Sharp is also excellent and widely used in public facilities, factories, and vehicles. The Sharp industrial LCD, just means solid, high brightness, super long working time, highest stability.

Truly Semiconductors is a wholly owned subsidiary of the Hong Kong-listed company Truly International Holdings. Founded in 1991, and headquartered in Hong Kong, the company’s production base is located in the beautiful coastal city of Shanwei City in Guangdong Province, China.

Since its establishment, Truly Semiconductors has focused on researching, developing, and manufacturing liquid crystal flat panel displays. Now, after twenty years of development, it is the biggest small- and medium-sized flat panel display manufacturer in China.

Truly’s factory in Shanwei City is enormous, covering an area of 1 million square meters, with a net housing area of more than 100,000 square meters. It includes five LCD production lines, one OLED production line, three touch screen production lines, and several COG, LCM, MDS, CCM, TAB, and SMT production lines.

Its world-class production lines produce LCD displays, liquid crystal display modules (LCMs), OLED displays, resistive and capacitive touch screens (touch panels), micro camera modules (CCMs), and GPS receiving modules, with such products widely used in the smartphone, automobile, and medical industries. The LCD products it offers include TFT, TN, Color TN with Black Mark (TN type LCD display for onboard machines), STN, FSTN, 65K color, and 262K color or above CSTN, COG, COF, and TAB modules.

In its early days, Innolux attached great importance to researching and developing new products. Mobile phones, portable and mounted DVD players, digital cameras, games consoles, PDA LCDs, and other star products were put into mass production and quickly captured the market, winning the company considerable market share.

Looking forward to the future, the group of photoelectric will continue to deep LCD display field, is committed to the development of plane display core technology, make good use of global operations mechanism and depth of division of labor, promise customers high-quality products and services, become the world"s top display system suppliers, in 2006 in the global mobile phone color display market leader, become "Foxconn technology" future sustained rapid growth of the engine.

Founded in June 1998, Hannstar specializes in producing thin-film transistor liquid crystal display panels, mainly for use in monitors, notebook displays and televisions. It was the first company in Taiwan to adopt the world’s top ultra-wide perspective technology (AS-IPS).

The company has three LCD factories and one LCM factory. It has acquired state-of-the-art TFT-LCD manufacturing technology, which enables it to achieve the highest efficiency in the mass production of thin-film transistor liquid crystal display production technology. Its customers include many of the biggest and most well-known electronics companies and computer manufacturers in Taiwan and overseas.

In 2002, it signed an IPS patent authorization contract with Hitachi of Japan and started to plan a 5th-generation plant to make the product line more complete and meet the needs of different customers.

TCL CSOT – short for TCL China Star Optoelectronics Technology (TCL CSOT) – was founded in 2009 and is an innovative technology enterprise that focuses on the production of semiconductor displays. As one of the global leaders in semiconductor display market, it has bases in Shenzhen, Wuhan, Huizhou, Suzhou, Guangzhou, and India, with nine panel production lines and five large modules bases.

TCL CSOT actively produces Mini LED, Micro LED, flexible OLED, printing OLED, and other new display technologies. Its product range is vast – including large, medium, and small panels and touch modules, electronic whiteboards, splicing walls, automotive displays, gaming monitors, and other high-end display application fields – which has enabled it to become a leading player in the global panel industry.

In the first quarter of 2022, TCL CSOT’s TV panels ranked second in the market, 55 inches, 65 " and 75 inches second, 8K, 120Hz first, the first, interactive whiteboard and digital sign plate; LTPS flat panel, the second, LTPS and flexible OLED fourth.

EDO (also known as EverDisplay Optonics) was founded in October 2012 and focuses on the production of small- and medium-sized high-resolution AMOLED semiconductor display panels.

The company opened its first production line – a 4.5-generation low-temperature polysilicon (LTPS) AMOLED mass production line – in 2014, which started mass producing AMOLED displays in November 2014.

In order to ramp up production output, the company began construction of a 6th-generation AMOLED production line in December 2016, with a total investment of 27.3 billion yuan (almost $4 billion USD). The line, which has a production capacity of 30,000 glass substrates per month, produces flexible and rigid high-end AMOLED displays for use in smartphones, tablet pens, vehicle displays, and wearable devices.

Tianma Microelectronics was founded in 1983 and listed on the Shenzhen Stock Exchange in 1995. It is a high-tech enterprise specializing in the production of liquid crystal displays (LCD) and liquid crystal display modules (LCM).

After more than 30 years of development, it has grown into a large publicly listed company integrating LCD research and development, design, production, sales, and servicing. Over the years, it has expanded by investing in the construction of STN-LCD, CSTN-LCD, TFT-LCD and CF production lines and module factories across China (with locations in Shenzhen, Shanghai, Chengdu, Wuhan and Xiamen), as well R&D centers and offices in Europe, Japan, South Korea and the United States.

The company"s marketing network is all over the world, and its products are widely used in mobile phones, MP3/MP4 players, vehicle displays, instrumentation, household appliances, and other fields. In terms of technical level, product quality, product grade, and market share, it ranks at the forefront of the domestic industry and has become a leading enterprise in the field of small- and medium-sized displays.

JDI (Japan Display Inc.) was established on November 15, 2011, as a joint venture between the Industrial Innovation Corporation, Sony, Hitachi, and Toshiba. It is dedicated to the production and development of small-sized displays. It mainly produces small- and medium-sized LCD display panels for use in the automotive, medical, and industrial fields, as well as personal devices including smartphones, tablets, and wearables.

Although Sony’s TVs use display panels from TCL CSOT (VA panel), Samsung. Sony still produces the world’s best micro-OLED display panels. Sony has many micro OLED model such as 0.23 inch, 0.39 inch, 0.5 inch, 0.64 inch, 0.68 inch, 0.71 inch. Panox Display used to test and sell many of them, compare to other micro OLED manufacuturers, Sony`s micro OLEDs are with the best image quality and highest brightness (3000 nits max).

tab connectors on the lcd panel brands

This would be an extremely complex procedure. You are talking about reverse engineering which will require hours of diagnosing with an oscilloscope for example if you did manage to get the pinouts from both devices the 20 data lines for touch are not going to be called the same on both devices. Every make and model will have different signals and line names. You might be able to run the backlight from the tablet power supply but you will need the LCD power lines coming from the phone.

You might be able to add a few diodes and boost up the required power for the tablet screen with some mosfets, coils and capacitors but it will need to be done after the diodes. Once you get an image you can move on to all the touch lines.

tab connectors on the lcd panel brands

Pins20 pins for external connectors on desktops, notebooks, graphics cards, monitors, etc. and 30/20 pins for internal connections between graphics engines and built-in flat panels.

Bitrate1.62, 2.7, 5.4, 8.1, or 20Gbit/s data rate per lane; 1, 2, or 4 lanes; (effective total 5.184, 8.64, 17.28, 25.92, or 77.37Gbit/s for 4-lane link); 2 or 720Mbit/s (effectively 1 or 576Mbit/s) for the auxiliary channel.

This is the pinout for source-side connector, the sink-side connector pinout will have lanes 0–3 reversed in order; i.e., lane 3 will be on pin 1(n) and 3(p) while lane 0 will be on pin 10(n) and 12(p).

DisplayPort (DP) is a digital display interface developed by a consortium of PC and chip manufacturers and standardized by the Video Electronics Standards Association (VESA). It is primarily used to connect a video source to a display device such as a computer monitor. It can also carry audio, USB, and other forms of data.

DisplayPort was designed to replace VGA, FPD-Link, and Digital Visual Interface (DVI). It is backward compatible with other interfaces, such as HDMI and DVI, through the use of either active or passive adapters.

It is the first display interface to rely on packetized data transmission, a form of digital communication found in technologies such as Ethernet, USB, and PCI Express. It permits the use of internal and external display connections. Unlike legacy standards that transmit a clock signal with each output, its protocol is based on small data packets known as micro packets, which can embed the clock signal in the data stream, allowing higher resolution using fewer pins.

DisplayPort can be used to transmit audio and video simultaneously, although each can be transmitted without the other. The video signal path can range from six to sixteen bits per color channel, and the audio path can have up to eight channels of 24-bit, 192kHz uncompressed PCM audio.EDID, MCCS, and DPMS standards. The interface is also capable of carrying bidirectional USB signals.

The interface uses an LVDS signal protocol that is not compatible with DVI or HDMI. However, dual-mode DisplayPort ports are designed to transmit a single-link DVI or HDMI protocol (TMDS) across the interface through the use of an external passive adapter, enabling compatibility mode and converting the signal from 3.3 to 5 volts. For analog VGA/YPbPr and dual-link DVI, a powered active adapter is required for compatibility and does not rely on dual mode. Active VGA adapters are powered directly by the DisplayPort connector, while active dual-link DVI adapters typically rely on an external power source such as USB.

DisplayPort 1.0–1.1a allow a maximum bandwidth of 10.8Gbit/s (8.64Gbit/s data rate) over a standard 4-lane main link. DisplayPort cables up to 2 meters in length are required to support the full 10.8Gbit/s bandwidth.fiber optic, allowing a much longer reach between source and display without signal degradation,HDCP in addition to DisplayPort Content Protection (DPCP). The DisplayPort1.1a standard can be downloaded for free from the VESA website.

DisplayPort version 1.2 was introduced on 7 January 2010.Gbit/s in High Bit Rate 2 (HBR2) mode, which allows increased resolutions, higher refresh rates, and greater color depth, such as 3840 × 2160 at 60Hz 10bpc RGB. Other improvements include multiple independent video streams (daisy-chain connection with multiple monitors) called Multi-Stream Transport, facilities for stereoscopic 3D, increased AUX channel bandwidth (from 1Mbit/s to 720Mbit/s), more color spaces including xvYCC, scRGB, and Adobe RGB 1998, and Global Time Code (GTC) for sub 1μs audio/video synchronisation. Also Apple Inc."s Mini DisplayPort connector, which is much smaller and designed for laptop computers and other small devices, is compatible with the new standard.

DisplayPort version 1.2a was released in January 2013Adaptive Sync.AMD"s CES 2014 on a Toshiba Satellite laptop by making use of the Panel-Self-Refresh (PSR) feature from the Embedded DisplayPort standard,

DisplayPort version 1.3 was approved on 15 September 2014.Gbit/s with the new HBR3 mode featuring 8.1Gbit/s per lane (up from 5.4Gbit/s with HBR2 in version 1.2), for a total data throughput of 25.92Gbit/s after factoring in 8b/10b encoding overhead. This bandwidth is enough for a 4K UHD display (3840 × 2160) at 120Hz with 24bit/px RGB color, a 5K display (5120 × 2880) at 60Hz with 30bit/px RGB color, or an 8K UHD display (7680 × 4320) at 30Hz with 24bit/px RGB color. Using Multi-Stream Transport (MST), a DisplayPort port can drive two 4K UHD (3840 × 2160) displays at 60Hz, or up to four WQXGA (2560 × 1600) displays at 60Hz with 24bit/px RGB color. The new standard includes mandatory Dual-mode for DVI and HDMI adapters, implementing the HDMI2.0 standard and HDCP2.2 content protection.Thunderbolt 3 connection standard was originally to include DisplayPort1.3 capability, but the final release ended up with only version 1.2. The VESA"s Adaptive Sync feature in DisplayPort version 1.3 remains an optional part of the specification.

DisplayPort version 1.4 was published 1 March 2016.Gbit/s) as introduced in version 1.3 still remains as the highest available mode. DisplayPort1.4 adds support for Display Stream Compression 1.2 (DSC), Forward Error Correction, HDR10 metadata defined in CTA-861.3, including static and dynamic metadata and the Rec. 2020 color space, for HDMI interoperability,

On 26 June 2019, VESA formally released the DisplayPort 2.0 standard. VESA stated that version 2.0 is the first major update to the DisplayPort standard since March 2016, and provides up to a ≈3× improvement in data rate (from 25.92 to 77.37Gbit/s) compared to the previous version of DisplayPort (1.4a), as well as new capabilities to address the future performance requirements of traditional displays. These include beyond 8K resolutions, higher refresh rates and high dynamic range (HDR) support at higher resolutions, improved support for multiple display configurations, as well as improved user experience with augmented/virtual reality (AR/VR) displays, including support for 4K-and-beyond VR resolutions.

According to a roadmap published by VESA in September 2016, a new version of DisplayPort was intended to be launched in "early 2017". It would have improved the link rate from 8.1 to 10.0Gbit/s, a 23% increase.Gbit/s to 40.0Gbit/s. However, no new version was released in 2017, likely delayed to make further improvements after the HDMI Forum announced in January 2017 that their next standard (HDMI2.1) would offer up to 48Gbit/s of bandwidth. According to a press release on 3 January 2018, "VESA is also currently engaged with its members in the development of the next DisplayPort standard generation, with plans to increase the data rate enabled by DisplayPort by two-fold and beyond. VESA plans to publish this update within the next 18 months."Hz without compression and was expected to be released in the first half of 2019.

With the increased bandwidth enabled by DisplayPort 2.0, VESA offers a high degree of versatility and configurations for higher display resolutions and refresh rates. In addition to the above-mentioned 8K resolution at 60Hz with HDR support, UHBR20 through USB-C as DisplayPort Alt Mode enables a variety of high-performance configurations:

When using only two lanes on the USB-C connector via DP Alt Mode to allow for simultaneous SuperSpeed USB data and video, DP 2.0 can enable such configurations as:

VESA announced version 2.1 of the DisplayPort standard on 17 October 2022.Gbit/s) and UHBR20 (80Gbit/s) speeds introduced in version 2.0. Additionally, it revises some of the electrical requirements for DisplayPort devices in order to improve integration with USB4. In VESA"s words:

DisplayPort 2.1 has tightened its alignment with the USB Type-C specification as well as the USB4 PHY specification to facilitate a common PHY servicing both DisplayPort and USB4. In addition, DisplayPort 2.1 has added a new DisplayPort bandwidth management feature to enable DisplayPort tunneling to coexist with other I/O data traffic more efficiently over the USB4 link.

Total bandwidth (the number of binary digits transmitted per second) is equal to the bandwidth per lane of the highest supported transmission mode multiplied by the number of lanes.

While the total bandwidth represents the number of physical bits transmitted across the interface, not all of the bits represent video data. Some of the transmitted bits are used for encoding purposes, so the rate at which video data can be transmitted across the DisplayPort interface is only a portion of the total bandwidth.

The 8b/10b encoding scheme uses 10 bits of bandwidth to send 8 bits of data, so only 80% of the bandwidth is available for data throughput. The extra 2 bits are used for DC balancing (ensuring a roughly equal number of 1s and 0s). They consume bandwidth, but do not represent any data.

The DisplayPort main link is used for transmission of video and audio. The main link consists of a number of unidirectional serial data channels which operate concurrently, called lanes. A standard DisplayPort connection has 4 lanes, though some applications of DisplayPort implement more, such as the Thunderbolt 3 interface which implements up to 8 lanes of DisplayPort.: 4

In a standard DisplayPort connection, each lane has a dedicated set of twisted-pair wires, and transmits data across it using differential signaling. This is a self-clocking system, so no dedicated clock signal channel is necessary.: §1.7.1 Unlike DVI and HDMI, which vary their transmission speed to the exact rate required for the specific video format, DisplayPort only operates at a few specific speeds; any excess bits in the transmission are filled with "stuffing symbols".: §2.2.1.4

In DisplayPort versions 1.0–1.4a, the data is encoded using ANSI 8b/10b encoding prior to transmission. With this scheme, only 8 out of every 10 transmitted bits represent data; the extra bits are used for DC balancing (ensuring a roughly equal number of 1s and 0s). As a result, the rate at which data can be transmitted is only 80% of the physical bitrate. The transmission speeds are also sometimes expressed in terms of the "Link Symbol Rate", which is the rate at which these 8b/10b-encoded symbols are transmitted (i.e. the rate at which groups of 10 bits are transmitted, 8 of which represent data). The following transmission modes are defined in version 1.0–1.4a:

DisplayPort 2.0 uses 128b/132b encoding; each group of 132 transmitted bits represents 128 bits of data. This scheme has an efficiency of 96.96%.: §3.5.2.18 The following transmission modes are added in DP 2.0:

The transmission mode used by the DisplayPort main link is negotiated by the source and sink device when a connection is made, through a process called Link Training. This process determines the maximum possible speed of the connection. If the quality of the DisplayPort cable is insufficient to reliably handle HBR2 speeds for example, the DisplayPort devices will detect this and switch down to a lower mode to maintain a stable connection.: §2.1.1 The link can be re-negotiated at any time if a loss of synchronization is detected.: §1.7.3

Audio data is transmitted across the main link during the video blanking intervals (short pauses between each line and frame of video data).: §2.2.5.3

The DisplayPort AUX channel is a half-duplex (bidirectional) data channel used for miscellaneous additional data beyond video and audio, such as EDID (I2C) or CEC commands.: §2.4 This bidirectional data channel is required, since the video lane signals are unidirectional from source to display. AUX signals are transmitted across a dedicated set of twisted-pair wires. DisplayPort1.0 specified Manchester encoding with a 2Mbaud signal rate (1Mbit/s data rate).: §3.4 Version 1.2 of the DisplayPort standard introduced a second transmission mode called FAUX (Fast AUX), which operated at 720Mbaud with 8b/10b encoding (576Mbit/s data rate),: §3.4 but it was deprecated in version 1.3.

All features of DisplayPort will function across any DisplayPort cable. DisplayPort does not have multiple cable designs; all DP cables have the same basic layout and wiring, and will support any feature including audio, daisy-chaining, G-Sync/FreeSync, HDR, and DSC.

DisplayPort cables differ in their transmission speed support. DisplayPort specifies seven different transmission modes (RBR, HBR, HBR2, HBR3, UHBR10, UHBR13.5, and UHBR20) which support progressively higher bandwidths. Not all DisplayPort cables are capable of all seven transmission modes. VESA offers certifications for various levels of bandwidth. These certifications are optional, and not all DisplayPort cables are certified by VESA.

Cables with limited transmission speed are still compatible with all DisplayPort devices, but may place limits on the maximum resolution or refresh rate available.

DisplayPort cables are not classified by "version". Although cables are commonly labeled with version numbers, with HBR2 cables advertised as "DisplayPort1.2 cables" for example, this notation is not permitted by VESA.1.4 display requires a "DisplayPort1.4 cable", or that features introduced in version 1.4 such as HDR or DSC will not function with older "DP1.2 cables". DisplayPort cables are classified only by their bandwidth certification level (RBR, HBR, HBR2, HBR3, etc.), if they have been certified at all.

Not all DisplayPort cables are capable of functioning at the highest levels of bandwidth. Cables may be submitted to VESA for an optional certification at various bandwidth levels. VESA offers four levels of cable certification: Standard, DP8K, DP40, and DP80.: §4.1 These certify DisplayPort cables for proper operation at the following speeds:

In April 2013, VESA published an article stating that the DisplayPort cable certification did not have distinct tiers for HBR and HBR2 bandwidth, and that any certified standard DisplayPort cable—including those certified under DisplayPort1.1—would be able to handle the 21.6Gbit/s bandwidth of HBR2 that was introduced with the DisplayPort 1.2 standard.1.2 standard defines only a single specification for High Bit Rate cable assemblies, which is used for both HBR and HBR2 speeds, although the DP cable certification process is governed by the DisplayPort PHY Compliance Test Standard (CTS) and not the DisplayPort standard itself.: §5.7.1, §4.1

The DP8K certification was announced by VESA in January 2018, and certifies cables for proper operation at HBR3 speeds (8.1Gbit/s per lane, 32.4Gbit/s total).

In June 2019, with the release of version 2.0 of the DisplayPort Standard, VESA announced that the DP8K certification was also sufficient for the new UHBR10 transmission mode. No new certifications were announced for the UHBR13.5 and UHBR20 modes. VESA is encouraging displays to use tethered cables for these speeds, rather than releasing standalone cables onto the market.

It should also be noted that the use of Display Stream Compression (DSC), introduced in DisplayPort1.4, greatly reduces the bandwidth requirements for the cable. Formats which would normally be beyond the limits of DisplayPort1.4, such as 4K (3840×2160) at 144Hz 8bpc RGB/Y′CBCR 4:4:4 (31.4Gbit/s data rate when uncompressed), can only be implemented by using DSC. This would reduce the physical bandwidth requirements by 2–3×, placing it well within the capabilities of an HBR2-rated cable.

This exemplifies why DisplayPort cables are not classified by "version"; although DSC was introduced in version 1.4, this does not mean it needs a so-called "DP1.4 cable" (an HBR3-rated cable) to function. HBR3 cables are only required for applications which exceed HBR2-level bandwidth, not simply any application involving DisplayPort1.4. If DSC is used to reduce the bandwidth requirements to HBR2 levels, then an HBR2-rated cable will be sufficient.

The DisplayPort standard does not specify any maximum length for cables, though the DisplayPort 1.2 standard does set a minimum requirement that all cables up to 2 meters in length must support HBR2 speeds (21.6Gbit/s), and all cables of any length must support RBR speeds (6.48Gbit/s).: §5.7.1, §4.1 Cables longer than 2 meters may or may not support HBR/HBR2 speeds, and cables of any length may or may not support HBR3 speeds or above.

DisplayPort cables and ports may have either a "full-size" connector or a "mini" connector. These connectors differ only in physical shape—the capabilities of DisplayPort are the same regardless of which connector is used. Using a Mini DisplayPort connector does not affect performance or feature support of the connection.

The standard DisplayPort connector (now referred to as a "full-size" connector to distinguish it from the mini connector): §4.1.1 was the sole connector type introduced in DisplayPort1.0. It is a 20-pin single-orientation connector with a friction lock and an optional mechanical latch. The standard DisplayPort receptacle has dimensions of 16.10mm (width) × 4.76mm (height) × 8.88mm (depth).: §4.2.1.7, p201

12 pins for the main link – the main link consists of four shielded twisted pairs. Each pair requires 3 pins; one for each of the two wires, and a third for the shield.: §4.1.2, p183 (pins 1–12)

The Mini DisplayPort connector was developed by Apple for use in their computer products. It was first announced in October 2008 for use in the new MacBooks and Cinema Display. In 2009, VESA adopted it as an official standard, and in 2010 the specification was merged into the main DisplayPort standard with the release of DisplayPort1.2. Apple freely licenses the specification to VESA.

The Mini DisplayPort (mDP) connector is a 20-pin single-orientation connector with a friction lock. Unlike the full-size connector, it does not have an option for a mechanical latch. The mDP receptacle has dimensions of 7.50mm (width) × 4.60mm (height) × 4.99mm (depth).: §2.1.3.6, pp27–31 The mDP pin assignments are the same as the full-size DisplayPort connector.: §2.1.3

Pin 20 on the DisplayPort connector, called DP_PWR, provides 3.3V (±10%) DC power at up to 500mA (minimum power delivery of 1.5W).: §3.2 This power is available from all DisplayPort receptacles, on both source and display devices. DP_PWR is intended to provide power for adapters, amplified cables, and similar devices, so that a separate power cable is not necessary.

Standard DisplayPort cable connections do not use the DP_PWR pin. Connecting the DP_PWR pins of two devices directly together through a cable can create a short circuit which can potentially damage devices, since the DP_PWR pins on two devices are unlikely to have exactly the same voltage (especially with a ±10% tolerance).1.1 and later standards specify that passive DisplayPort-to-DisplayPort cables must leave pin 20 unconnected.: §3.2.2

However, in 2013 VESA announced that after investigating reports of malfunctioning DisplayPort devices, it had discovered that a large number of non-certified vendors were manufacturing their DisplayPort cables with the DP_PWR pin connected:

Recently VESA has experienced quite a few complaints regarding troublesome DisplayPort operation that ended up being caused by improperly made DisplayPort cables. These "bad" DisplayPort cables are generally limited to non-DisplayPort certified cables, or off-brand cables. To further investigate this trend in the DisplayPort cable market, VESA purchased a number of non-certified, off-brand cables and found that an alarmingly high number of these were configured improperly and would likely not support all system configurations. None of these cables would have passed the DisplayPort certification test, moreover some of these cables could potentially damage a PC, laptop, or monitor.

The stipulation that the DP_PWR wire be omitted from standard DisplayPort cables was not present in the DisplayPort1.0 standard. However, DisplayPort products (and cables) did not begin to appear on the market until 2008, long after version 1.0 had been replaced by version 1.1. The DisplayPort1.0 standard was never implemented in commercial products.

The tables below describe the refresh frequencies that can be achieved with each transmission mode. In general, maximum refresh frequency is determined by the transmission mode (RBR, HBR, HBR2, HBR3, UHBR 10, UHBR 13.5, or UHBR 20). These transmission modes were introduced to the DisplayPort standard as follows:

However, transmission mode support is not necessarily dictated by a device"s claimed "DisplayPort version number". For example, older versions of the DisplayPort Marketing Guidelines allowed a device to be labeled as "DisplayPort 1.2" if it supported the MST feature, even if it didn"t support the HBR2 transmission mode.: 9 Newer versions of the guidelines have removed this clause, and currently (as of the June 2018 revision) there are no guidelines on the usage of DisplayPort version numbers in products.

In addition, individual devices may have their own arbitrary limitations beyond transmission speed. For example, NVIDIA Kepler GK104 GPUs (such as the GeForce GTX 680 and 770) support "DisplayPort 1.2" with the HBR2 transmission mode, but are limited to 540Mpx/s, only 3⁄4 of the maximum possible with HBR2.

To support a particular format, the source and display devices must both support the required transmission mode, and the DisplayPort cable must also be capable of handling the required bandwidth of that transmission mode. (See: Cables and connectors)

The maximum limits for the RBR and HBR modes are calculated using standard data rate calculations.: §3.5.2.18 All calculations assume uncompressed RGB video with CVT-RB v2 timing. Maximum limits may differ if compression (i.e. DSC) or Y′CBCR 4:2:2 or 4:2:0 chroma subsampling are used.

Display manufacturers may also use non-standard blanking intervals rather than CVT-RB v2 to achieve even higher frequencies when bandwidth is a constraint. The refresh frequencies in the below table do not represent the absolute maximum limit of each interface, but rather an estimate based on a modern standardized timing formula. The minimum blanking intervals (and therefore the exact maximum frequency that can be achieved) will depend on the display and how many secondary data packets it requires, and therefore will differ from model to model.

Color depth of 8bpc (24bit/px or 16.7 million colors) is assumed for all formats in these tables. This is the standard color depth used on most computer displays. Note that some operating systems refer to this as "32-bit" color depth—this is the same as 24-bit color depth. The 8 extra bits are for alpha channel information, which is only present in software. At the transmission stage, this information has already been incorporated into the primary color channels, so the actual video data transmitted across the cable only contains 24 bits per pixel.

Only a portion of DisplayPort"s bandwidth is used for carrying video data. DisplayPort versions 1.0–1.4a use 8b/10b encoding, which means that 80% of the bits transmitted across the link represent data, and the other 20% are used for encoding purposes. The maximum bandwidth of RBR, HBR, HBR2, and HBR3 (6.48, 10.8, 21.6, and 32.4Gbit/s) therefore transport video data at rates of 5.184, 8.64, 17.28, and 25.92Gbit/s. DisplayPort version 2.0 uses 128b/132b encoding, and therefore the maximum bandwidths of UHBR 10, 13.5, and 20 (40, 54, and 80Gbit/s) transport data at rates of 38.69, 52.22, and 77.37Gbit/s.

These data rates are for uncompressed 8bpc (24bit/px) color depth with RGB or YCBCR 4:4:4 color format and CVT-R2 timing. Uncompressed data rate for RGB video in bits per second is calculated as bits per pixel × pixels per frame × frames per second. Pixels per frame includes blanking intervals as defined by CVT-R2.

Although this format slightly exceeds the maximum data rate of this transmission mode with CVT-R2 timing, it is close enough to be achieved with non-standard timings

Only a portion of DisplayPort"s bandwidth is used for carrying video data. DisplayPort versions 1.0–1.4a use 8b/10b encoding, which means that 80% of the bits transmitted across the link represent data, and the other 20% are used for encoding purposes. The maximum bandwidth of RBR, HBR, HBR2, and HBR3 (6.48, 10.8, 21.6, and 32.4Gbit/s) therefore transport video data at rates of 5.184, 8.64, 17.28, and 25.92Gbit/s. DisplayPort version 2.0 uses 128b/132b encoding, and therefore the maximum bandwidths of UHBR 10, 13.5, and 20 (40, 54, and 80Gbit/s) transport data at rates of 38.69, 52.22, and 77.37Gbit/s.

These data rates are for uncompressed 8bpc (24bit/px) color depth with RGB or YCBCR 4:4:4 color format and CVT-R2 timing. Uncompressed data rate for RGB video in bits per second is calculated as bits per pixel × pixels per frame × frames per second. Pixels per frame includes blanking intervals as defined by CVT-R2.

Although this format slightly exceeds the maximum data rate of this transmission mode with CVT-R2 timing, it is close enough to be achieved with non-standard timings

Color depth of 10bpc (30bit/px or 1.07 billion colors) is assumed for all formats in these tables. This color depth is a requirement for various common HDR standards, such as HDR10. It requires 25% more bandwidth than standard 8bpc video.

HDR extensions were defined in version 1.4 of the DisplayPort standard. Some displays support these HDR extensions, but may only implement HBR2 transmission mode if the extra bandwidth of HBR3 is unnecessary (for example, on 4K 60Hz HDR displays). Since there is no definition of what constitutes a "DisplayPort 1.4" device, some manufacturers may choose to label these as "DP 1.2" devices despite their support for DP 1.4 HDR extensions.

Only a portion of DisplayPort"s bandwidth is used for carrying video data. DisplayPort versions 1.0–1.4a use 8b/10b encoding, which means that 80% of the bits transmitted across the link represent data, and the other 20% are used for encoding purposes. The maximum bandwidth of RBR, HBR, HBR2, and HBR3 (6.48, 10.8, 21.6, and 32.4Gbit/s) therefore transport video data at rates of 5.184, 8.64, 17.28, and 25.92Gbit/s. DisplayPort version 2.0 uses 128b/132b encoding, and therefore the maximum bandwidths of UHBR 10, 13.5, and 20 (40, 54, and 80Gbit/s) transport data at rates of 38.69, 52.22, and 77.37Gbit/s.

These data rates are for uncompressed 10bpc (30bit/px) color depth with RGB or YCBCR 4:4:4 color format and CVT-R2 timing. Uncompressed data rate for RGB video in bits per second is calculated as bits per pixel × pixels per frame × frames per second. Pixels per frame includes blanking intervals as defined by CVT-R2.

Although this format slightly exceeds the maximum data rate of this transmission mode with CVT-R2 timing, it is close enough to be achieved with non-standard timings

Only a portion of DisplayPort"s bandwidth is used for carrying video data. DisplayPort versions 1.0–1.4a use 8b/10b encoding, which means that 80% of the bits transmitted across the link represent data, and the other 20% are used for encoding purposes. The maximum bandwidth of RBR, HBR, HBR2, and HBR3 (6.48, 10.8, 21.6, and 32.4Gbit/s) therefore transport video data at rates of 5.184, 8.64, 17.28, and 25.92Gbit/s. DisplayPort version 2.0 uses 128b/132b encoding, and therefore the maximum bandwidths of UHBR 10, 13.5, and 20 (40, 54, and 80Gbit/s) transport data at rates of 38.69, 52.22, and 77.37Gbit/s.

These data rates are for uncompressed 10bpc (30bit/px) color depth with RGB or YCBCR 4:4:4 color format and CVT-R2 timing. Uncompressed data rate for RGB video in bits per second is calculated as bits per pixel × pixels per frame × frames per second. Pixels per frame includes blanking intervals as defined by CVT-R2.

Although this format slightly exceeds the maximum data rate of this transmission mode with CVT-R2 timing, it is close enough to be achieved with non-standard timings

DisplayPort Dual-Mode (DP++), also called Dual-Mode DisplayPort, is a standard which allows DisplayPort sources to use simple passive adapters to connect to HDMI or DVI displays. Dual-mode is an optional feature, so not all DisplayPort sources necessarily support DVI/HDMI passive adapters, though in practice nearly all devices do. Officially, the "DP++" logo should be used to indicate a DP port that supports dual-mode, but most modern devices do not use the logo.

Devices which implement dual-mode will detect that a DVI or HDMI adapter is attached, and send DVI/HDMI TMDS signals instead of DisplayPort signals. The original DisplayPort Dual-Mode standard (version 1.0), used in DisplayPort1.1 devices, only supported TMDS clock speeds of up to 165MHz (4.95Gbit/s bandwidth). This is equivalent to HDMI1.2, and is sufficient for up to 1920 × 1200 at 60Hz.

In 2013, VESA released the Dual-Mode 1.1 standard, which added support for up to a 300MHz TMDS clock (9.00Gbit/s bandwidth), and is used in newer DisplayPort1.2 devices. This is slightly less than the 340MHz maximum of HDMI1.4, and is sufficient for up to 1920 × 1080 at 120Hz, 2560 × 1440 at 60Hz, or 3840 × 2160 at 30Hz. Older adapters, which were only capable of the 165MHz speed, were retroactively termed "Type1" adapters, with the new 300MHz adapters being called "Type2".

A DisplayPort to DVI adapter after removing its enclosure. The chip on the board converts the voltage levels generated by the dual-mode DisplayPort device to be compatible with a DVI monitor.

Limited adapter speed – Although the pinout and digital signal values transmitted by the DP port are identical to a native DVI/HDMI source, the signals are transmitted at DisplayPort"s native voltage (3.3V) instead of the 5V used by DVI and HDMI. As a result, dual-mode adapters must contain a level-shifter circuit which changes the voltage. The presence of this circuit places a limit on how quickly the adapter can operate, and therefore newer adapters are required for each higher speed added to the standard.

Unidirectional – Although the dual-mode standard specifies a method for DisplayPort sources to output DVI/HDMI signals using simple passive adapters, there is no counterpart standard to give DisplayPort displays the ability to receive DVI/HDMI input signals through passive adapters. As a result, DisplayPort displays can only receive native DisplayPort signals; any DVI or HDMI input signals must be converted to the DisplayPort format with an active conversion device. DVI and HDMI sources cannot be connected to DisplayPort displays using passive adapters.

Single-link DVI only – Since DisplayPort dual-mode operates by using the pins of the DisplayPort connector to send DVI/HDMI signals, the 20-pin DisplayPort connector can only produce a single-link DVI signal (which uses 19 pins). A dual-link DVI signal uses 25 pins, and is therefore impossible to transmit natively from a DisplayPort connector through a passive adapter. Dual-link DVI signals can only be produced by converting from native DisplayPort output signals with an active conversion device.

Unavailable on USB-C – The DisplayPort Alternate Mode specification for sending DisplayPort signals over a USB-C cable does not include support for the dual-mode protocol. As a result, DP-to-DVI and DP-to-HDMI passive adapters do not function when chained from a USB-C to DP adapter.

Multi-Stream Transport is a feature first introduced in the DisplayPort1.2 standard. It allows multiple independent displays to be driven from a single DP port on the source devices by multiplexing several video streams into a single stream and sending it to a branch device, which demultiplexes the signal into the original streams. Branch devices are commonly found in the form of an MST hub, which plugs into a single DP input port and provides multiple outputs, but it can also be implemented on a display internally to provide a DP output port for daisy-chaining, effectively embedding a 2-port MST hub inside the display.: Fig. 2-59: 20 but the combined data rate requirements of all the displays cannot exceed the limits of a single DP port (17.28Gbit/s for a DP1.2 port, or 25.92Gbit/s for a DP 1.3/1.4 port). In addition, the maximum number of links between the source and any device (i.e. the maximum length of a daisy-chain) is 7,: §2.5.2 and the maximum number of physical output ports on each branch device (such as a hub) is 7.: §2.5.1 With the release of MST, standard single-display operation has been retroactively named "SST" mode (Single-Stream Transport).

Daisy-chaining is a feature that must be specifically supported by each intermediary display; not all DisplayPort1.2 devices support it. Daisy-chaining requires a dedicated DisplayPort output port on the display. Standard DisplayPort input ports found on most displays cannot be used as a daisy-chain output. Only the last display in the daisy-chain does not need to support the feature specifically or have a DP output port. DisplayPort1.1 displays can also be connected to MST hubs, and can be part of a DisplayPort daisy-chain if it is the last display in the chain.: §2.5.1

The host system"s software also needs to support MST for hubs or daisy-chains to work. While Microsoft Windows environments have full support for it, Apple operating systems currently do not support MST hubs or DisplayPort daisy-chaining as of macOS 10.15 ("Catalina").

MST is supported by USB Type-C DisplayPort Alternate Mode, so standard DisplayPort daisy-chains and MST hubs do function from Type-C sources with a simple Type-C to DisplayPort adapter.

DisplayPort1.0 includes optional DPCP (DisplayPort Content Protection) from Philips, which uses 128-bit AES encryption. It also features full authentication and session key establishment. Each encryption session is independent, and it has an independent revocation system. This portion of the standard is licensed separately. It also adds the ability to verify the proximity of the receiver and transmitter, a technique intended to ensure users are not bypassing the content protection system to send data out to distant, unauthorized users.: §6

DisplayPort1.1 added optional implementation of industry-standard 56-bit HDCP (High-bandwidth Digital Content Protection) revision 1.3, which requires separate licensing from the Digital Content Protection LLC.: §1.2.6

VESA, the creators of the DisplayPort standard, state that the standard is royalty-free to implement. However, in March 2015, MPEG LA issued a press release stating that a royalty rate of $0.20 per unit applies to DisplayPort products manufactured or sold in countries that are covered by one or more of the patents in the MPEG LA license pool, which includes patents from Hitachi Maxell, Philips, Lattice Semiconductor, Rambus, and Sony.

MPEG LA is making claims that DisplayPort implementation requires a license and a royalty payment. It is important to note that these are only CLAIMS. Whether these CLAIMS are relevant will likely be decided in a US court.

In December 2010, several computer vendors and display makers including Intel, AMD, Dell, Lenovo, Samsung and LG announced they would begin phasing out FPD-Link, VGA, and DVI-I over the next few years, replacing them with DisplayPort and HDMI.

High-resolution displays and multiple displays with a single connection, via a hub or daisy-chainingHBR2 mode with 17.28Gbit/s of effective video bandwidth allows four simultaneous 1080p60 displays (CEA-861 timings), two 2560 × 1600 × 30 bit @ 120Hz (CVT-R timings), or 4K UHD @ 60Hz

Although DisplayPort has much of the same functionality as HDMI, it is a complementary connection used in different scenarios.dual-mode DisplayPort port can emit an HDMI signal via a passive adapter.

DisplayPort 1.3 raises that to 32.4Gbit/s (25.92Gbit/s with overhead removed), and HDMI 2.1 raises that up to 48Gbit/s (42.67Gbit/s with overhead removed), adding an additional TMDS link in place of clock lane. DisplayPort also has the ability to share this bandwidth with multiple streams of audio and video to separate devices.

DisplayPort has historically had higher bandwidth than the HDMI standard available at the same time. The only exception is from HDMI 2.1 (2017) having higher transmission bandwidth @48Gbit/s than DisplayPort 1.3 (2014) @32.4Gbit/s. DisplayPort 2.0 (2019) retook transmission bandwidth superiority @80.0Gbit/s.

DisplayPort in native mode lacks some HDMI features such as Consumer Electronics Control (CEC) commands. The CEC bus allows linking multiple sources with a single display and controlling any of these devices from any remote.CEC commands over the AUX channelmultiple sources to a single display as is typical for a TV screen. The other way round, Multi-Stream Transport allows connecting multiple displays to a single computer source. This reflects the facts that HDMI originated from consumer electronics companies whereas DisplayPort is owned by VESA which started as an organization for computer standards.

HDMI uses unique Vendor-Specific Block structure, which allows for features such as additional color spaces. However, these features can be defined by CEA EDID extensions.

Both HDMI and DisplayPort have published specification for transmitting their signal over the USB-C connector. For more details, see USB-C § Alternate Mode partner specifications and List of devices with video output over USB-C.

Mini DisplayPort (mDP) is a standard announced by Apple in the fourth quarter of 2008. Shortly after announcing Mini DisplayPort, Apple announced that it would license the connector technology with no fee. The following year, in early 2009, VESA announced that Mini DisplayPort would be included in the upcoming DisplayPort 1.2 specification.

On 24 February 2011, Apple and Intel announced Thunderbolt, a successor to Mini DisplayPort which adds support for PCI Express data connections while maintaining backwards compatibility with Mini DisplayPort based peripherals.

Micro DisplayPort would have targeted systems that need ultra-compact connectors, such as phones, tablets and ultra-portable notebook computers. This standard would have been physically smaller than the currently available Mini DisplayPort connectors. The standard was expected to be released by Q2 2014.

Direct Drive Monitor (DDM) 1.0 standard was approved in December 2008. It allows for controller-less monitors where the display panel is directly driven by the DisplayPort signal, although the available resolutions and color depth are limited to two-lane operation.

Display Stream Compression (DSC) is a VESA-developed video compression algorithm designed to enable increased display resolutions and frame rates over existing physical interfaces, and make devices smaller and lighter, with longer battery life.

Embedded DisplayPort (eDP) is a display panel interface standard for portable and embedded devices. It defines the signaling interface between graphics cards and integrated displays. The various revisions of eDP are based on existing DisplayPort standards. However, version numbers between the two standards are not interchangeable. For instance, eDP version 1.4 is based on DisplayPort 1.2, while eDP version 1.4a is based on DisplayPort 1.3. In practice, embedded DisplayPort has displaced LVDS as the predominant panel interface in modern laptops and modern smartphones.

eDP 1.0 was adopted in December 2008.Hz sequential color monitors, and a new display panel control protocol that works through the AUX channel.framebuffer memory in the display panel controller.

Internal DisplayPort (iDP) 1.0 was approved in April 2010. The iDP standard defines an internal link between a digital TV system on a chip controller and the display panel"s timing controller. It aims to replace currently used internal FPD-Link lanes with a DisplayPort connection.GHz clock and is nominally rated at 3.24Gbit/s per lane, with up to sixteen lanes in a bank, resulting in a six-fold decrease in wiring requirements over FPD-Link for a 1080p24 signal; other data rates are also possible. iDP was built with simplicity in mind so doesn"t have an AUX channel, content protection, or multiple streams; it does however have frame sequential and line interleaved stereo 3D.

Portable Digital Media Interface (PDMI) is an interconnection between docking stations/display devices and portable media players, which includes 2-lane DisplayPort v1.1a connection. It has been ratified in February 2010 as ANSI/CEA-2017-A.

Wireless DisplayPort (wDP) enables the bandwidth and feature set of DisplayPort 1.2 for cable-free applications operating in the 60GHz radio band. It was announced in November 2010 by WiGig Alliance and VESA as a cooperative effort.

SlimPort, a brand of Analogix products,Mobility DisplayPort, also known as MyDP, which is an industry standard for a mobile audio/video Interface, providing connectivity from mobile devices to external displays and HDTVs. SlimPort implements the transmission of video up to 4K-UltraHD and up to eight channels of audio over the micro-USB connector to an external converter accessory or display device. SlimPort products support seamless connectivity to DisplayPort, HDMI and VGA displays.Google"s Nexus 4 smartphone.LG G series also adopted SlimPort.

DisplayID is designed to replace the E-EDID standard. DisplayID features variable-length structures which encompass all existing EDID extensions as well as new extensions for 3D displays and embedded displays.

The latest version 1.3 (announced on 23 September 2013) adds enhanced support for tiled display topologies; it allows better identification of multiple video streams, and reports bezel size and locations.

DockPort, formerly known as Lightning Bolt, is an extension to DisplayPort to include USB 3.0 data as well as power for charging portable devices from attached external displays. Originally developed by AMD and Texas Instruments, it has been announced as a VESA specification in 2014.

On 22 September 2014, VESA published the DisplayPort Alternate Mode on USB Type-C Connector Standard, a specification on how to send DisplayPort signals over the newly released USB-C connector. One, two or all four of the differential pairs that USB uses for the SuperSpeed bus can be configured dynamically to be used for DisplayPort lanes. In the first two cases, the connector still can carry a full SuperSpeed signal; in the latter case, at least a non-SuperSpeed signal is available. The DisplayPort AUX channel is also supported over the two sideband signals over the same connection; furthermore, USB Power Delivery according to the newly expanded USB-PD 2.0 specification is possible at the same time. This makes the Type-C connector a strict superset of the use-cases envisioned for DockPort, SlimPort, Mini and Micro DisplayPort.

VirtualLink is a proposal that allows the power, video, and data required to drive virtual reality headsets to be delivered over a single USB-C cable.

Since its introduction in 2006, DisplayPort has gained popularity within the computer industry and is featured on many graphic cards, displays, and notebook computers. Dell was the first company to introduce a consumer product with a DisplayPort connector, the Dell UltraSharp 3008WFP, which was released in January 2008.AMD and Nvidia released products to support the technology. AMD included support in the Radeon HD 3000 series of graphics cards, while Nvidia first introduced support in the GeForce 9 series starting with the GeForce 9600 GT.

Later the same year, Apple introduced several products featuring a Mini DisplayPort.Radeon HD 5000 Series of graphics cards, which featured the Mini DisplayPort on the Eyefinity versions in the series.

Nvidia revealed the GeForce GTX 1080, the world"s first graphics card with DisplayPort 1.4 support on 6 May 2016.Radeon RX 400 Series will support DisplayPort 1.3 HBR and HDR10, dropping the DVI connector(s) in the reference board design.

In February 2017, VESA and Qualcomm announced that DisplayPort Alt Mode video transport will be integrated into the Snapdragon 835 mobile chipset, which powers smartphones, VR/AR head-mounted displays, IP cameras, tablets and mobile PCs.

Currently, DisplayPort is the most widely implemented alternate mode, and is used to provide video output on devices that do not have standard-size DisplayPort or HDMI ports, such as smartphones, tablets, and laptops. A USB-C multiport adapter converts the device"s native video stream to DisplayPort/HDMI/VGA, allowing it to be displayed on an external display, such as a television set or computer monitor.

Dual-link DVI is limited in resolution and speed by the quality and therefore the bandwidth of the DVI cable, the quality of the transmitter, and the quality of the receiver; can only drive one monitor at a time; and cannot send audio data. HDMI 1.3 and 1.4 are limited to effectively 8.16Gbit/s or 340MHz (though actual devices are limited to 225–300MHzVGA connectors have no defined maximum resolution or speed, but their analog nature limits their bandwidth, though can provide long cabling only limited by appropriate shielding.

tab connectors on the lcd panel brands

There are several ways to connect a computer to the monitor or projector. The devices may have different types of video connectors, VGA, DVI, HDMI, DisplayPort (DP), USB-C, and so on. The process to connect a computer to the monitor or projector is the same. The instructions in this article provide information about connecting a computer to a monitor or projector.

NOTE: To learn how to set up a Dell monitor, see the User Guide of the Dell monitor for step-by-step instructions. For non-Dell monitors, see the User Guide of the monitor that is available on the device manufacturer"s website.

It is important to identify the type of video connector that is available on the computer and the monitor or projector. Using the correct type of video cable helps avoid video or display issues.

There are two types of video transmission methods: Digital and Analog (see the table below). Each video connector is capable of either digital or analog video signal transmission. Analog video connectors such as S-video, Composite, VGA, SVGA, and DVI (analog) do not support playback of protected high-definition digital content, such as Blu-ray movies, over an analog connection, you will probably get an error message or the movie will play at lower quality resolutions.

Dell desktop: The video connectors are on the back of the computer. If your Dell desktop has a dedicated graphics card (GPU), you must use the video connector that is available on the graphics card (GPU).

Dell all-in-one: The video connectors are on the back of the computer. NOTE: Video-out connector to connect a secondary display is not available on all Dell all-in-one computers. To identify if the Dell all-in-one computer supports a secondary display, see the User Guide of your Dell all-in-one computer.

Dell laptop: The video connectors are available on the back, left, or right side of the laptop. To learn more about what video connectors are available, see the User Guide of your Dell laptop.

Dell monitor: The video connectors are available on the back of the monitor. To learn more about what video connectors are available, see the User Guide of your Dell monitor.

Dell projector: The video connectors are available on the back of the projector. To learn more about what video connectors are available, see the User Guide of your Dell projector.

When the video connector on the back of the computer does not match with the video connector on the monitor or projector, you may need an adapter or converter. See the using adapters or converters section of this article.

The USB-C connector, also known as USB Type-C, is used to transmit digital audio and video signals simultaneously on a single cable. Device manufacturers can enable alternate modes like DisplayPort, Thunderbolt 3, or HDMI that can transmit both video and audio signals using the same cable. See the device specifications to identify if the USB-C port on your device supports one of these alternate modes. NOTE: A USB-C port that does not support DisplayPort or Thunderbolt 3 alternate mode cannot transmit audio or video signals.

The DisplayPort connector is used to transmit digital audio and video signals simultaneously, although each is optional and can be transmitted without the other. There are several versions of DisplayPort standards. With each latest version of DisplayPort, new features are added. The DisplayPort connector on the device and the DisplayPort cable are designed with one specific version of DisplayPort standard. For example, DisplayPort version 1.2 and above supports Multi-Stream Transport (MST) or daisy-chaining compatible monitors. DisplayPort cables and ports may have either a "full-size" connector or a "mini" connector. These connectors differ only in their physical shape, the capabilities of DisplayPort are the same regardless of which connector is used. Using a mini DisplayPort (mDP) connector does not affect the performance or feature support of the connection. For more information about DisplayPort, see https://en.wikipedia.org/wiki/DisplayPort

The HDMI (High-Definition Multimedia Interface) connector is the most common digital audio/video connector that is available on many computers, monitors, TVs, and projectors. HDMI supports the transmission of both video and audio signals on a single cable. There are several versions of HDMI standards. With each latest version of HDMI, new features are added. The HDMI connector on the device and the HDMI cable are designed with one specific version of the HDMI standard. For example, HDMI version 2.0a and above supports High Dynamic Range (HDR) video. There are five types of HDMI connectors: standard HDMI, dual-link HDMI, mini HDMI, micro HDMI, and HDMI automotive connector. For more information about HDMI, see https://en.wikipedia.org/wiki/HDMI

The DVI connector is used to transmit analog or digital video signals depending on the type of DVI connector that is available. The DVI connector on a device can be one of three types, depending on which signals