mainstream lcd displays factory

STONE Technologies is a proud manufacturer of superior quality TFT LCD modules and LCD screens. The company also provides intelligent HMI solutions that perfectly fit in with its excellent hardware offerings.

STONE TFT LCD modules come with a microcontroller unit that has a 1GHz Cortex-A8 CPU. Such a module can easily be transformed into an HMI screen. Simple hexadecimal instructions can be used to control the module through the UART port. Furthermore, you can seamlessly develop STONE TFT LCD color user interface modules and add touch control, features to them.

Becoming a reputable TFT LCD manufacturer is no piece of cake. It requires a company to pay attention to detail, have excellent manufacturing processes, the right TFT display technology, and have a consumer mindset.

Now, we list down 10 of the best famous LCD manufacturers globally. We’ll also explore why they became among the top 10 LCD display Manufacturers in the world.

LG Display is a leading manufacturer of thin-film transistor liquid crystal displays (TFT-LCD) panels, OLED, and flexible displays.LG Display began developing TFT-LCD in 1987 and currently offers Display panels in a variety of sizes and specifications using different cutting-edge technologies (IPS, OLED, and flexible technology).

With innovative and differentiated technologies, QINNOOptoelectronics provides advanced display integration solutions, including 4K2K ultra-high resolution, 3D naked eye, IGZO, LTPS, AMOLED, OLED, and touch solutions. Qinnooptoelectronics sets specifications and leads the market. A wide range of product line is across all kinds of TFT LCD panel modules, touch modules, for example, TV panel, desktop and laptop computer monitor with panels, small and medium scale “panels, medical, automotive, etc., the supply of cutting-edge information and consumer electronics customers around the world, for the world TFT – LCD (thin-film transistor liquid crystal display) leading manufacturers.

AU Optronics Co., LTD., formerly AU Optronics Corporation, was founded in August 1996. It changed its name to AU Optronics after its merger with UNIOPtronics in 2001. Through two mergers, AU has been able to have a full range of generations of production lines for panels of all sizes.Au Optronics is a TFT-LCD design, manufacturing, and r&d company. Since 2008, au Optronics has entered the green energy industry, providing customers with high-efficiency solar energy solutions.

Sharp has been called the “father of LCD panels”.Since its founding in 1912, Sharp developed the world’s first calculator and LIQUID crystal display, represented by the living pencil, which was invented as the company name. At the same time, Sharp is actively expanding into new areas to improve people’s living standards and social progress. Made a contribution.

BYD IT products and businesses mainly include rechargeable batteries, plastic mechanism parts, metal parts, hardware electronic products, cell phone keys, microelectronics products, LCD modules, optoelectronics products, flexible circuit boards, chargers, connectors, uninterruptible power supplies, DC power supplies, solar products, cell phone decoration, cell phone ODM, cell phone testing, cell phone assembly business, notebook computer ODM, testing and manufacturing and assembly business, etc.

From the introduction of Japan’s original washing machines, refrigerators, and other household appliances, to the world’s first laptop, the first 16MB flash memory, the world’s smallest 0.85-inch HDDs; Create advanced HDDVD technology; Toshiba created many “world firsts” in the research and manufacture of new SED displays and contributed to changing people’s lives through constant technological innovation.

Tianma microelectronics co., LTD., founded in 1983, the company focus on smartphones, tablets, represented by high order laptop display market of consumer goods and automotive, medical, POS, HMI, etc., represented by professional display market, and actively layout smart home, intelligent wear, AR/VR, unmanned aerial vehicles (UAVs) and other emerging markets, to provide customers with the best product experience.IN terms of technology, the company has independently mastered leading technologies such as LTPS-TFT, AMOLED, flexible display, Oxide-TFT, 3D display, transparent display, and in-cell/on-cell integrated touch control. TFT-LCD key Materials and Technologies National Engineering Laboratory, national enterprise Technology Center, post-doctoral mobile workstation, and undertake national Development and Reform Commission, The Ministry of Science and Technology, the Ministry of Industry and Information Technology, and other major national thematic projects. The company’s long-term accumulation and continuous investment in advanced technology lay the foundation for innovation and development in the field of application.

mainstream lcd displays factory

With the rapid development of my country’s display industry, the global display industry structure has undergone major changes. At present, the LCD industry is mainly concentrated in China, Japan, and South Korea. With the release of the new production capacity of mainland panel manufacturers, mainland China will become the world’s largest LCD production area shortly. So, what are the top ten LCD manufacturers in the world, and how do they rank?

LG Display (Chinese name is LG Display) is currently the world’s No. 1 LCD panel manufacturer, affiliated to LG Group, headquartered in Seoul, South Korea, with R&D, production, and trading institutions in China, Japan, South Korea, and the United States and Europe.

Innolux is a professional TFT-LCD panel manufacturing company founded by Foxconn Technology Group in 2003. The factory is located in Shenzhen Longhua Foxconn Technology Park, with an initial investment of RMB 10 billion. Innolux has a strong display technology research and development team, coupled with Foxconn’s strong manufacturing capabilities, and effectively exerts the benefits of vertical integration, which will make a significant contribution to improving the level of the world’s flat-panel display industry.

Innolux conducts production and sales operations in a one-stop manner and provides overall solutions for group system customers. Innolux attaches great importance to the research and development of new products. Star products such as mobile phones, portable and car-mounted DVDs, digital cameras, game consoles, and PDA LCD screens have been put into mass production, and they have quickly seized the market to win market opportunities. Several patents have been obtained.

AU Optronics was formerly known as Daqi Technology and was established in August 1996. In 2001, it merged with Lianyou Optoelectronics and changed its name to AU Optronics. In 2006, it acquired Guanghui Electronics again. After the merger, AUO has a complete production line for all generations of large, medium, and small LCD panels. AU Optronics is also the world’s first TFT-LCD design, manufacturing, and R&D company to be publicly listed on the New York Stock Exchange (NYSE). AU Optronics took the lead in introducing an energy management platform and was the first manufacturer in the world to obtain ISO50001 energy management system certification and ISO14045 eco-efficiency assessment product system verification, and was selected as the Dow Jones Sustainability World in 2010/2011 and 2011/2012. Index constituent stocks set an important milestone for the industry.

At present, BOE’s shipments in notebook LCD screens, flat-panel LCD screens, mobile phone LCD screens, and other fields have reached the world’s first place. Its successful entry into Apple’s supply chain will become the world’s top three LCD panel manufacturers soon.

Sharp is known as the “Father of LCD Panels.” Since its establishment in 1912, Sharp Corporation has developed the world’s first calculator and liquid crystal display, represented by the invention of the live pencil, which is the origin of the current company’s name. At the same time, Sharp is actively expanding into new areas to improve the living standards of human beings and society. Contribute to progress.

Toshiba is a well-known multinational enterprise group with a history of 130 years, with a wide range of business, involving social infrastructure construction, household appliances, digital products, electronic components, and other business fields, covering almost all aspects of production and life. Toshiba has the largest R&D institution in Japan. Through unremitting innovation and development, Toshiba has always been at the forefront of world science and technology. From launching Japan’s first washing machines, refrigerators, and other household appliances, to developing the world’s first notebook computer, the first 16MB flash memory, the world’s smallest 0.85-inch HDD; creating advanced HDDVD technology; researching and manufacturing new SED displays, Toshiba has created many “world firsts” and has contributed to changing people’s lives through continuous technological innovation. Recently, Toshiba is gradually withdrawing from the home appliances and electronic product markets and developing into industries with higher technological content.

The company independently masters leading technologies including LTPS-TFT, AMOLED, flexible display, Oxide-TFT, 3D display, transparent display, and IN-CELL/ON-CELL integrated touch control. The company has a national engineering laboratory for TFT-LCD key materials and technology, a national-level enterprise technology center, a post-doctoral mobile workstation, and undertakes many major national-level special projects such as the National Development and Reform Commission, the Ministry of Science and Technology, and the Ministry of Industry and Information Technology. The company’s strong technology and scientific research capabilities have become the cornerstone of the company’s sustainable development.

mainstream lcd displays factory

Flat-panel displays are thin panels of glass or plastic used for electronically displaying text, images, or video. Liquid crystal displays (LCD), OLED (organic light emitting diode) and microLED displays are not quite the same; since LCD uses a liquid crystal that reacts to an electric current blocking light or allowing it to pass through the panel, whereas OLED/microLED displays consist of electroluminescent organic/inorganic materials that generate light when a current is passed through the material. LCD, OLED and microLED displays are driven using LTPS, IGZO, LTPO, and A-Si TFT transistor technologies as their backplane using ITO to supply current to the transistors and in turn to the liquid crystal or electroluminescent material. Segment and passive OLED and LCD displays do not use a backplane but use indium tin oxide (ITO), a transparent conductive material, to pass current to the electroluminescent material or liquid crystal. In LCDs, there is an even layer of liquid crystal throughout the panel whereas an OLED display has the electroluminescent material only where it is meant to light up. OLEDs, LCDs and microLEDs can be made flexible and transparent, but LCDs require a backlight because they cannot emit light on their own like OLEDs and microLEDs.

Liquid-crystal display (or LCD) is a thin, flat panel used for electronically displaying information such as text, images, and moving pictures. They are usually made of glass but they can also be made out of plastic. Some manufacturers make transparent LCD panels and special sequential color segment LCDs that have higher than usual refresh rates and an RGB backlight. The backlight is synchronized with the display so that the colors will show up as needed. The list of LCD manufacturers:

Organic light emitting diode (or OLED displays) is a thin, flat panel made of glass or plastic used for electronically displaying information such as text, images, and moving pictures. OLED panels can also take the shape of a light panel, where red, green and blue light emitting materials are stacked to create a white light panel. OLED displays can also be made transparent and/or flexible and these transparent panels are available on the market and are widely used in smartphones with under-display optical fingerprint sensors. LCD and OLED displays are available in different shapes, the most prominent of which is a circular display, which is used in smartwatches. The list of OLED display manufacturers:

MicroLED displays is an emerging flat-panel display technology consisting of arrays of microscopic LEDs forming the individual pixel elements. Like OLED, microLED offers infinite contrast ratio, but unlike OLED, microLED is immune to screen burn-in, and consumes less power while having higher light output, as it uses LEDs instead of organic electroluminescent materials, The list of MicroLED display manufacturers:

Sony produces and sells commercial MicroLED displays called CLEDIS (Crystal-LED Integrated Displays, also called Canvas-LED) in small quantities.video walls.

LCDs are made in a glass substrate. For OLED, the substrate can also be plastic. The size of the substrates are specified in generations, with each generation using a larger substrate. For example, a 4th generation substrate is larger in size than a 3rd generation substrate. A larger substrate allows for more panels to be cut from a single substrate, or for larger panels to be made, akin to increasing wafer sizes in the semiconductor industry.

"Samsung Display has halted local Gen-8 LCD lines: sources". THE ELEC, Korea Electronics Industry Media. August 16, 2019. Archived from the original on April 3, 2020. Retrieved December 18, 2019.

"TCL to Build World"s Largest Gen 11 LCD Panel Factory". www.businesswire.com. May 19, 2016. Archived from the original on April 2, 2018. Retrieved April 1, 2018.

"Panel Manufacturers Start to Operate Their New 8th Generation LCD Lines". 대한민국 IT포털의 중심! 이티뉴스. June 19, 2017. Archived from the original on June 30, 2019. Retrieved June 30, 2019.

"Samsung Display Considering Halting Some LCD Production Lines". 비즈니스코리아 - BusinessKorea. August 16, 2019. Archived from the original on April 5, 2020. Retrieved December 19, 2019.

Herald, The Korea (July 6, 2016). "Samsung Display accelerates transition from LCD to OLED". www.koreaherald.com. Archived from the original on April 1, 2018. Retrieved April 1, 2018.

"China"s BOE to have world"s largest TFT-LCD+AMOLED capacity in 2019". ihsmarkit.com. 2017-03-22. Archived from the original on 2019-08-16. Retrieved 2019-08-17.

mainstream lcd displays factory

Since 2012, leading TV manufacturers, including LG Electronics, have been trying to expand OLED TV stores. Because of the high price and some factors, high-end TV can not enter the mass market. In addition, high-end TV market is still the stronghold of LCD TV. Compared with OLED,

Nevertheless, large OLED display giant LG Display shows that with more and more enterprises joining the ranks, will OLED TV soon become the mainstream?

Kang In-byoung, LGD Chief Skills Officer, said at a press conference: "With the advent of the 8K TV era, OLED skills with 33 megapixels of controllable display have a more competitive advantage than LCD displays."

The pixels of an 8K display are about four times as large as those of a 4K display with 8.3 million pixels installed on its surface, which means that its clarity and clarity are four times higher. Because each OLED pixel can emit its own light when it receives the current, the OLED LCD panel does not need backlight to display color, which enables OLED TV to provide deeper black. On the other hand, LCD display panels whose pixels can not self-emit need backlight to emit light, which makes it difficult for them to produce deeper black.

Although LGD has now shown its flexible and transparent displays in different activities, it has so far refused to show foldable OLED displays for smartphones, while rivals such as Samsung Display and occasional reads like Beijing Oriental have competing to show their own foldable products.

Under this trend, LGD will also accelerate the development momentum of OLED. Starting from the third quarter of this year, LGD will launch 60,000 OLED LCD panels per month in Guangzhou, China, increasing its total OLED production to 130,000. The LGD Pozhou factory plans to sell 4 million OLED LCD panels this year, compared with 2.9 million in 2018.

Although OLED came in a fierce fashion, could it replace LCD to become the mainstream at that time? All these are unknown, the mainstream of society is not so easy to replace, LCD LCD has its own value of existence, is still the leader of the electronic display industry, many LCD screens in the market will choose LCD, regardless of price or performance still occupies a certain advantage, but new things will impact on things, whether it will become the mainstream is unknown.

mainstream lcd displays factory

This is another story just like those, except this one involves the very screen you’re probably looking at, especially if it’s based on LCD technology.

In the 1970s, a pair of engineers that worked for Westinghouse, T. Peter Brody and Fang-Chen Luo, came to develop the first active-matrix LCD screen. Brody, born in Hungary, had gained an interest in the fledgling technology of thin film transistors, an experimental technology that had come to be seen as a potential avenue for visually displaying content in a more compact form than a cathode-ray tube.

“It has been apparent for some time that a solid-state flat panel display is conceptually achievable,” the patent filing stated. “Efforts to utilize silicon technology to this end are limited by the size limitation problems of the silicon wafer, which negates achievement of large area displays.”

But it was the starting point of the technology that stuck. By the mid-1990s, active-matrix displays that relied on color became the norm in laptops, thanks to their combination of vivid color and thinness. But despite the concept coming from an American company’s R&D department and improved by other American R&D departments, nearly all panels were developed by Japanese manufacturers even at the beginning of their mainstream use cases.

In fact, Westinghouse’s efforts with the flat-panel LCD display ended way back in the 1970s, as did similar efforts at other large U.S. companies. “Both large corporations and venture capital-backed start-ups have quit the field, usually after hitting production difficulties,” authors Richard Florida and David Browdy wrote.

mainstream lcd displays factory

They filed a Swiss patent for the idea on Dec. 4, 1970. Though it attracted scant attention at the time, the milestone now stands as the birthdate of the liquid crystal display (LCD) – the technological platform which has transformed consumer electronics and presented a brilliant new way to view the world.

Early LCD developers took a few years to figure out that specialty glass, not plastic, was the best stable substrate for the delicate LCD circuitry and the color backplane component. Once they did, they turned increasingly to Corning to supply them with extraordinarily stable, flat, fusion-formed glass, able to preserve the critical properties of the liquid crystal and withstand high processing temperatures.

And LCDs rapidly transformed from “passive matrix” models, mostly used in pocket calculators and digital watches, to “active matrix” LCDs in which each sub-pixel was controlled with an isolated thin-film transistor. AMLCDs enabled wide viewing angles; brilliant, fast-moving images; and high-resolution images that had never been possible before.

Corning Incorporated was a critical player in this development, and eventually became the world’s leading supplier of LCD glass substrates. And Corning® EAGLE XG® Glass, the world’s first LCD substrate with no arsenic or other heavy metals, went on to exceed sales of 25 billion square feet, making it one of the most successful products in Corning’s history.

mainstream lcd displays factory

Like many innovations, curved glass for smartphones has had its share of false starts, retreats, and reintroductions. From the introduction of flat glass with contoured edges to curving of the glass out of the plane of the glass surface, the industry has moved from placing curved glass over flat screens to using curved glass over curved LCD and OLED displays in a short period of time. New software will continue to take advantage of and fuel development of the new displays with both three-dimensional images and increasing use of the edges of the screen to display information.

Initially, curved glass and the capabilities it allows will be a critical differentiator for leading manufacturers in the field. We can then expect curved glass to move into the mainstream and become an essential feature for all serious competitors. As this happens, it’s important to note that the molds used to shape curved glass are just as important as the specialized glass itself in ensuring the powerful potential of this technology is fully realized.

mainstream lcd displays factory

It’s been a different story during the outbreak. In 2020, the FPD market rebounded. In the stay-at-home economy, consumers went on a buying spree for monitors, PCs, tablets and TVs. As a result, demand for displays exploded. And shortages soon surfaced for display driver ICs and other components.

Cars, industrial equipment, PCs, smartphones and other products all incorporate flat-panel displays in one form or another. The majority of TV screens are based on liquid-crystal displays (LCDs). TVs use other display types, such as organic light-emitting diodes (OLEDs) and quantum dots.

Smartphone displays are based on LCDs and OLEDs. Other display technologies, such as microLEDs and miniLEDs, are in the works. Flat-panel displays are made in giant fabs. Suppliers from China, Korea and Taiwan dominate the display market.

It’s been a roller coaster ride in the arena. “Before Covid, the FPD market in the second half of 2019 was not very pretty,” said Ross Young, CEO of Display Supply Chain Consultants (DSCC), in a presentation at Display Week 2021. “We had declining revenues, declining prices, declining margins, companies announcing their exit in the LCD market, CapEx was falling, and there was little interest from investors.”

Demand for PCs, TVs and other products fueled renewed growth for displays. In total, the flat-panel display market reached $118 billion in 2020, up 6% over 2019, according to DSCC. That’s above the previous 2% growth forecast.

The numbers include LCDs, OLEDs and other displays. Of those figures, the LCD market reached $84 billion, while OLEDs were $33 billion in 2020, according to DSCC.

Then, the market is projected to hit a record $152 billion in 2021, up 29% over 2020, according to the firm. Of those figures, the LCD market is expected to reach $113 billion, while OLEDs are $39 billion, they said.

mainstream lcd displays factory

Compared to Samsung, LG"s LCD factory at Paju felt like a ghost town — despite housing thousands of people on-site. Of course, the sub-zero temperatures at the time probably accounted for that. It was also doubly eerie because the LCD plant is the tallest building visible from North Korea — as it"s so close to the border — and the army base built next door to protect it probably makes it even more of a target!

While televisions of one type or other have been in Australia for over 50 years, they have gone through several changes, with flat panels the latest iteration. LCD TVs have been mainstream products for about four years, but what makes them tick? This year we were fortunate enough to have visited both the Samsung and LG plants in South Korea to get a better understanding of how an LCD TV is made, and what the future holds for the technology.

Samsung is one of the world"s largest manufacturers of LCD panels, and it claims to produce one out of every four in the world. One of Samsung"s largest facilities is in Tangjeong, 80km south of Seoul. Samsung has four different plants on this site, and this is where the joint Sony/Samsung S-LCD plant was first built — and still produces Sony panels to this day. CNET Australia visited Tangjeong recently and while we not only got a squiz at the production lines, we also met with the engineers and designers who helped make them possible.

The Tangjeong factory is a large facility south of Seoul, and produces panels for the five-year-old S-LCD collaboration between Sony and Samsung. As a result of this union, Sony owns part of the production lines on the Tangjeong site — this equates to 50 per cent of the L7-1 line, plus half of the combined L8 (1 and 2) lines. The L8-2 factory has only come online in the last month.

We got to see one of the L7 (no relation to the LA-based band) lines in operation, after donning the fetching blue shoe covers. Unfortunately, we were unable to take photos inside the LCD factory, as apparently corporate espionage is a big problem. However, we"ll do our best to explain the long corridor with its helpful blue signs and series of LCD panels in various states of undress explaining each part of the process.

mainstream lcd displays factory

Long researched in labs worldwide, OLED displays are becoming a market reality, especially in mobile phones. OLEDs offer the potential for vast improvements in image quality and also open up new possibilities for device design—such as TVs that can be rolled up. But for the time being, several challenges must be overcome for OLEDs to become mainstream in TVs. In particular, manufacturing costs need to come down and durability has to improve. As the following pages show, chemistry will play a key role in enabling the growth of the OLED display market.

Long the focus of research at academic and corporate labs worldwide, OLED displays are starting to trickle into the market. Although they currently represent only a small slice of the total pie and are so far mostly used in mobile phones, OLEDs are poised to rapidly gain market share in the coming years.

This growth will open up billions of dollars of market opportunity for chemical companies that supply materials to the electronics industry. But at the same time, such firms are keen to hold on to the business they have with makers of displays based on incumbent liquid-crystal display, or LCD, technology.

Like DuPont, market research firms expect the market for OLED displays—in both TVs and smaller devices such as smartphones—to grow significantly. IDTechEx, for example, forecasts that global sales of OLED displays will increase from $16 billion this year to $42 billion in 2020. Samsung, which uses OLEDs in its Galaxy smartphones, is currently the top manufacturer of OLED displays. But others, such as LG, are entering the market, lured by what OLED technology makes possible.

“OLED displays can be lighter, they can be flexible, and they allow designers more leeway with the shape of their devices,” says Guillaume Chansin, senior technology analyst at IDTechEx. Theoretically, he adds, OLEDs can be far more energy-efficient than the LCDs found in most TVs today. And because they are now manufactured on a plastic substrate instead of a glass one, “OLED displays can make phone screens shatterproof, or even foldable.”

The promise of OLEDs has generated much interest among researchers for decades. In an LCD, images are generated by a backlight—a light-emitting diode nowadays—that sends light through liquid crystals, polarizers, color filters, and several image-enhancing filters. The color black in an LCD is created not by turning off the backlight but by electro-orienting the liquid crystals to affect the angle at which the passing light hits the polarizers.

OLED displays are much simpler and thus can be far thinner than LCDs. Instead of a backlight, OLEDs feature pixels that individually emit the red, green, and blue lights required to form an image. OLEDs consist of organic molecules positioned between two electrodes. As current flows from the cathode to the anode, electrons and electron holes in the molecules combine, emitting flashes of light.

And OLED displays are prone to image retention, says Tadashi Uno, a senior analyst at the market research firm IHS Technology. This occurs when a display keeps showing the ghost of a previous image. Unless that problem is completely resolved, OLED will not gain widespread adoption among manufacturers of TVs and laptop computers. Currently, a temporary solution for owners of mobile phones with OLED displays is to download an app that reduces image retention.

The cost of making OLED displays is another issue. The core compounds at the heart of OLED displays are often made with expensive substances such as iridium, a rare metal that sells for nearly $19 per gram.

Despite these challenges, the number of OLED displays hitting the market is steadily rising, with some occasional setbacks. In 2013, both Samsung and LG launched OLED TVs, but Samsung quickly withdrew from the market because of prohibitive production costs.

In recent months, commitments to OLED production have multiplied. In November, LG Display announced a massive $9 billion investment in an OLED TV plant scheduled to open in 2018. Numerous reports say Apple is going to source billions of dollars’ worth of OLED displays from Samsung for use in future iPhone models. Meanwhile, Applied Materials, a supplier of precision manufacturing equipment, disclosed last month that demand for tools to make OLEDs is sharply strengthening in 2016.

Universal Display expects to be a major player as demand for OLED displays expands. “We made major discoveries on phosphorescent illumination back in the 1990s,” DuFour notes. “Today, we practically own specific colors that OLED displays can emit.”

The high cost of display materials and the waste that occurs during mask cleaning will not hamper the growth of the OLED display market, DuFour adds. “One gram of our emitters may be used to make 3,000 phone displays.” she says. Meanwhile, PPG, Universal Display’s manufacturing partner, is developing techniques to reduce the materials loss, she says.

DuPont is betting that reducing the cost of OLED displays and improving their performance will require ink-jet printing processes and suitable inks. Whereas OLED displays are typically created with mask-based deposition of organic materials, DuPont has been conducting research for about 15 years on printing the materials. Last September, it opened a prototyping plant in Newark, Del., that allows its customers to test the viability of printing processes.

To speed development of printed OLED technology, DuPont last year teamed up with the ink-jet equipment manufacturer Kateeva. But Flattery notes that DuPont has other undisclosed partnerships and that it won’t be long before a display manufacturer announces the construction of a plant that prints OLED displays. So far, he knows of as many as eight TV manufacturers that are testing the ink-jet process. “Several, if not all, will proceed with commercialization,” he claims.

Ink-jet printing for OLED displays is steadily advancing, confirms Christopher Savoie, chief executive officer of Kyulux, a developer of OLED display materials based in Fukuoka, Japan. The question, he says, is whether materials developers will succeed in designing inks that can last long enough for use in a television.

Significantly, Savoie explains, the materials that Kyulux offers don’t contain expensive metals such as iridium. Using materials that do not contain rare metals reduces the cost of making displays, even with the deposition process, Savoie says.

As OLED displays mature, progress also continues for mainstream LCD technology. Led by Samsung, more and more TV manufacturers are incorporating quantum dots in their models to boost color performance and image quality without having to switch to a completely new technology and manufacturing process.

Quantum dots are semiconducting nanocrystals that increase the range of colors an LCD can emit. They can be fitted into an LCD TV with only a minor modification to manufacturing processes, according to Jason Hartlove, CEO of Nanosys, which calls itself the leading manufacturer of quantum dots. Currently, Nanosys supplies 95% of the quantum dots used in displays, he claims.

“OLEDs should theoretically offer a better performance, but we’re very cost-effective,” Hartlove says. OLEDs are uniquely capable of displaying true black, he concedes. But the human eye can only detect true black in a completely darkened room, blurring the performance differences between OLED displays and LCDs with quantum dots. “It’s quite rare to watch TV in a pitch-black room,” he notes.

With OLED technology rapidly emerging but LCDs remaining competitive, established suppliers of display materials must allocate their R&D resources to best take advantage of the emerging market while still supporting the LCD business. JSR, a major Japanese supplier of LCD materials, is hedging its bets by developing OLED materials while continuing to vigorously support LCDs, according to Hiroaki Nemoto, general manager of JSR’s display solution division.

“At JSR, we think that the OLED market will be a good opportunity for us to expand our portfolio,” Nemoto says. At the same time, “LCD technology can be further improved in terms of thinness, robustness, and power efficiency.”

OLED displays will not be a major business for some time because their high growth rate is from a small base, Nemoto believes. So far, JSR has focused on modifying some of its LCD materials, such as color resists and color films, so that they can be used in OLEDs. The company has also developed a new desiccant to protect water-averse OLED materials.

But OLED displays provide such significant advantages over LCDs in terms of weight, thinness, robustness, and flexibility that change will happen fast once key hurdles are overcome, Uno adds. “If manufacturers can develop a process that achieves high yields,” he says, “I am certain the whole display industry will shift to OLEDs.”

mainstream lcd displays factory

In recent years, China and other countries have invested heavily in the research and manufacturing capacity of display technology. Meanwhile, different display technology scenarios, ranging from traditional LCD (liquid crystal display) to rapidly expanding OLED (organic light-emitting diode) and emerging QLED (quantum-dot light-emitting diode), are competing for market dominance. Amidst the trivium strife, OLED, backed by technology leader Apple"s decision to use OLED for its iPhone X, seems to have a better position, yet QLED, despite still having technological obstacles to overcome, has displayed potential advantage in color quality, lower production costs and longer life.

Zhao: We all know display technologies are very important. Currently, there are OLED, QLED and traditional LCD technologies competing with each other. What are their differences and specific advantages? Shall we start from OLED?

Huang: OLED has developed very quickly in recent years. It is better to compare it with traditional LCD if we want to have a clear understanding of its characteristics. In terms of structure, LCD largely consists of three parts: backlight, TFT backplane and cell, or liquid section for display. Different from LCD, OLED lights directly with electricity. Thus, it does not need backlight, but it still needs the TFT backplane to control where to light. Because it is free from backlight, OLED has a thinner body, higher response time, higher color contrast and lower power consumption. Potentially, it may even have a cost advantage over LCD. The biggest breakthrough is its flexible display, which seems very hard to achieve for LCD.

Liao: Actually, there were/are many different types of display technologies, such as CRT (cathode ray tube), PDP (plasma display panel), LCD, LCOS (liquid crystals on silicon), laser display, LED (light-emitting diodes), SED (surface-conduction electron-emitter display), FED (filed emission display), OLED, QLED and Micro LED. From display technology lifespan point of view, Micro LED and QLED may be considered as in the introduction phase, OLED is in the growth phase, LCD for both computer and TV is in the maturity phase, but LCD for cellphone is in the decline phase, PDP and CRT are in the elimination phase. Now, LCD products are still dominating the display market while OLED is penetrating the market. As just mentioned by Dr Huang, OLED indeed has some advantages over LCD.

Huang: Despite the apparent technological advantages of OLED over LCD, it is not straightforward for OLED to replace LCD. For example, although both OLED and LCD use the TFT backplane, the OLED’s TFT is much more difficult to be made than that of the voltage-driven LCD because OLED is current-driven. Generally speaking, problems for mass production of display technology can be divided into three categories, namely scientific problems, engineering problems and production problems. The ways and cycles to solve these three kinds of problems are different.

At present, LCD has been relatively mature, while OLED is still in the early stage of industrial explosion. For OLED, there are still many urgent problems to be solved, especially production problems that need to be solved step by step in the process of mass production line. In addition, the capital threshold for both LCD and OLED are very high. Compared with the early development of LCD many years ago, the advancing pace of OLED has been quicker.While in the short term, OLED can hardly compete with LCD in large size screen, how about that people may change their use habit to give up large screen?

Liao: I want to supplement some data. According to the consulting firm HIS Markit, in 2018, the global market value for OLED products will be US$38.5 billion. But in 2020, it will reach US$67 billion, with an average compound annual growth rate of 46%. Another prediction estimates that OLED accounts for 33% of the display market sales, with the remaining 67% by LCD in 2018. But OLED’s market share could reach to 54% in 2020.

Huang: While different sources may have different prediction, the advantage of OLED over LCD in small and medium-sized display screen is clear. In small-sized screen, such as smart watch and smart phone, the penetration rate of OLED is roughly 20% to 30%, which represents certain competitiveness. For large size screen, such as TV, the advancement of OLED [against LCD] may need more time.

Xu: LCD was first proposed in 1968. During its development process, the technology has gradually overcome its own shortcomings and defeated other technologies. What are its remaining flaws? It is widely recognized that LCD is very hard to be made flexible. In addition, LCD does not emit light, so a back light is needed. The trend for display technologies is of course towards lighter and thinner (screen).

But currently, LCD is very mature and economic. It far surpasses OLED, and its picture quality and display contrast do not lag behind. Currently, LCD technology"s main target is head-mounted display (HMD), which means we must work on display resolution. In addition, OLED currently is only appropriate for medium and small-sized screens, but large screen has to rely on LCD. This is why the industry remains investing in the 10.5th generation production line (of LCD).

Xu: While deeply impacted by OLED’s super thin and flexible display, we also need to analyse the insufficiency of OLED. With lighting material being organic, its display life might be shorter. LCD can easily be used for 100 000 hours. The other defense effort by LCD is to develop flexible screen to counterattack the flexible display of OLED. But it is true that big worries exist in LCD industry.

LCD industry can also try other (counterattacking) strategies. We are advantageous in large-sized screen, but how about six or seven years later? While in the short term, OLED can hardly compete with LCD in large size screen, how about that people may change their use habit to give up large screen? People may not watch TV and only takes portable screens.

Some experts working at a market survey institute CCID (China Center for Information Industry Development) predicted that in five to six years, OLED will be very influential in small and medium-sized screen. Similarly, a top executive of BOE Technology said that after five to six years, OLED will counterweigh or even surpass LCD in smaller sizes, but to catch up with LCD, it may need 10 to 15 years.

Xu: Besides LCD, Micro LED (Micro Light-Emitting Diode Display) has evolved for many years, though people"s real attention to the display option was not aroused until May 2014 when Apple acquired US-based Micro LED developer LuxVue Technology. It is expected that Micro LED will be used on wearable digital devices to improve battery"s life and screen brightness.

Micro LED, also called mLED or μLED, is a new display technology. Using a so-called mass transfer technology, Micro LED displays consist of arrays of microscopic LEDs forming the individual pixel elements. It can offer better contrast, response times, very high resolution and energy efficiency. Compared with OLED, it has higher lightening efficiency and longer life span, but its flexible display is inferior to OLED. Compared with LCD, Micro LED has better contrast, response times and energy efficiency. It is widely considered appropriate for wearables, AR/VR, auto display and mini-projector.

However, Micro LED still has some technological bottlenecks in epitaxy, mass transfer, driving circuit, full colorization, and monitoring and repairing. It also has a very high manufacturing cost. In short term, it cannot compete traditional LCD. But as a new generation of display technology after LCD and OLED, Micro LED has received wide attentions and it should enjoy fast commercialization in the coming three to five years.

Interestingly, quantum dots as light-emitting materials are related to both OLED and LCD. The so-called QLED TVs on market are actually quantum-dot enhanced LCD TVs, which use quantum dots to replace the green and red phosphors in LCD’s backlight unit. By doing so, LCD displays greatly improve their color purity, picture quality and potentially energy consumption. The working mechanisms of quantum dots in these enhanced LCD displays is their photoluminescence.

For its relationship with OLED, quantum-dot light-emitting diode (QLED) can in certain sense be considered as electroluminescence devices by replacing the organic light-emitting materials in OLED. Though QLED and OLED have nearly identical structure, they also have noticeable differences. Similar to LCD with quantum-dot backlighting unit, color gamut of QLED is much wider than that of OLED and it is more stable than OLED.

Given the relatively low resolution of printing technology, QLED shall be difficult to reach a resolution greater than 300 PPI (pixels per inch) within a few years. Thus, QLED might not be applied for small-sized displays at present and its potential will be medium to large-sized displays.

Peng: Good questions. Ligand chemistry of quantum dots has developed quickly in the past two to three years. Colloidal stability of inorganic nanocrystals should be said of being solved. We reported in 2016 that one gram of quantum dots can be stably dispersed in one milliliter of organic solution, which is certainly sufficient for printing technology. For the second question, several companies have been able to mass produce quantum dots. At present, all these production volume is built for fabrication of the backlighting units for LCD. It is believed that all high-end TVs from Samsung in 2017 are all LCD TVs with quantum-dot backlighting units. In addition, Nanosys in the United States is also producing quantum dots for LCD TVs. NajingTech at Hangzhou, China demonstrate production capacity to support the Chinese TV makers. To my knowledge, NajingTech is establishing a production line for 10 million sets of color TVs with quantum-dot backlighting units annually.China"s current demands cannot be fully satisfied from the foreign companies. It is also necessary to fulfill the demands of domestic market. That is why China must develop its OLED production capability.

Huang: The importance of China"s LCD manufacturing is now globally high. Compared with the early stage of LCD development, China"s status in OLED has been dramatically improved. When developing LCD, China has adopted the pattern of introduction-absorption-renovation. Now for OLED, we have a much higher percentage of independent innovation.

units for LCD and electroluminescence in QLED. For the photoluminescence applications, the key is quantum-dot materials. China has noticeable advantages in quantum-dot materials.

After I returned to China, NajingTech (co-founded by Peng) purchased all key patents invented by me in the United States under the permission of US government. These patents cover the basic synthesis and processing technologies of quantum dots. NajingTech has already established capability for large-scale production of quantum dots. Comparatively, Korea—represented by Samsung—is the current leading company in all aspects of display industry, which offers great advantages in commercialization of quantum-dot displays. In late 2016, Samsung acquired QD Vision (a leading quantum-dot technology developer based in the United States). In addition, Samsung has invested heavily in purchasing quantum-dot-related patents and in developing the technology.

Peng: If electroluminescence can be successfully achieved with printing, it will be much cheaper, with only about 1/10th cost of OLED. Manufacturers like NajingTech and BOE in China have demonstrated printing displays with quantum dots. At present, QLED does not compete with OLED directly, given its market in small-sized screen. A while ago, Dr. Huang mentioned three stages of technological development, from science issue to engineering and finally to mass production. For QLED, the three stages have been mingled together at the same time. If one wants to win the competition, it is necessary to invest on all three dimensions.

Huang: When OLED was compared with LCD in the past, lots of advantages of OLED were highlighted, such as high color gamut, high contrast and high response speed and so on. But above advantages would be difficult to be the overwhelming superiority to make the consumers to choose replacement.

It seems to be possible that the flexible display will eventually lead a killer advantage. I think QLED will also face similar situation. What is its real advantage if it is compared with OLED or LCD? For QLED, it seems to have been difficult to find the advantage in small screen. Dr. Peng has suggested its advantage lies in medium-sized screen, but what is its uniqueness?

Peng: New standard (BT2020) certainly helps QLED, given BT2020 meaning a broad color gamut. Among the technologies discussed today, quantum-dot displays in either form are the only ones that can satisfy BT2020 without any optical compensation. In addition, studies found that the picture quality of display is highly associated with color gamut. It is correct that the maturity of printing technology plays an important role in the development of QLED. The current printing technology is ready for medium-sized screen and should be able to be extended to large-sized screen without much trouble.

Xu: For QLED to become a dominant technology, it is still difficult. In its development process, OLED precedes it and there are other rivaling technologies following. While we know owning the foundational patents and core technologies of QLED can make you a good position, holding core technologies alone cannot ensure you to become a mainstream technology. The government"s investment in such key technologies after all is small as compared with industry and cannot decide QLED to become mainstream technology.

Liao: Due to their lack of kernel technologies, Chinese OLED panel manufacturers heavily rely on investments to improve their market competitiveness. But this may cause the overheated investment in the OLED industry. In recent years, China has already imported quite a few new OLED production lines with the total cost of about 450 billion yuan (US$71.5 billion).Lots of advantages of OLED over LCD were highlighted, such as high color gamut, high contrast and high response speed and so on …. It seems to be possible that the flexible display will eventually lead a killer advantage.

mainstream lcd displays factory

Since 2012, leading TV makers, including LG Electronics, have been striving to expand the market for OLED TVs. However, because of the high price tag, among other reasons, the high-end TVs have not been able to enter the mass market. In addition, the high-end TV segment has still remained a stronghold for LCD-based TVs, which have relative price competiveness compared to OLED counterparts.

“With the 8K TV era on our doorstep, OLED technology, which can control all the 33 million pixels of the display, has a competitive edge over other types of displays,” said LGD Chief Technology Officer Kang In-byoung in a press conference at the company’s Magok R&D center, located in western Seoul, on Feb. 27.

Although the company has showcased its rollable and transparent displays at different events, it has been shy of showing off foldable OLED displays for smartphones so far while its rivals Samsung Display and BOE have competitively flaunted their own foldable products.

Even tech giant Samsung Electronics, which currently focuses on LCD TVs fitted with semiconductor nanocrystal, or quantum dot, films, is expected to join the OLED trend.

After launching an OLED TV in 2012, the tech giant halted the OLED TV production due to low yields and high prices. Samsung Display, a subsidiary of the tech firm, however, recently set out a plan to produce prototypes of OLED TV displays featuring quantum dot films at it manufacturing plant in Asan, South Chungcheong Province, according to sources.

mainstream lcd displays factory

Usually, touch screens and LCD displays are produced separately and glued together with air bonding technology. So, there will be an air gap between touch screen and LCD display.

Optical bonding on the other hand, is to glue touch panel onto LCD screen with optical adhesive. Full-fit technology eliminates the air gap between layers. Less reflected light means better display. However, Optical bonding is an expensive technology. Now only a small number of customers with special needs choose this type of touch screen. As more and more end-users demand better LCD display, optical LCD touch screen will become mainstream.

In-Cell refers to embedding touch panel function into liquid crystal pixels, that is, embedding touch sensor function inside LCD screen. Traditional touch panel is no longer necessary. In-cell is an innovation of loading circuits onto liquid crystal. This kind of LCD is much thinner with better readability in sunlight.

On-Cell means embedding touch screen between color filter substrate and polarizer, in other words, equipping sensor on LCD panel. Although manufacture of on-cell screens is easier than In-Cell, there are still thickness and color uneven problems.

If you have any questions about touch screens, please consult us. Topway with more than 25 years of experience of LCD display, will give you a satisfactory solution.