lcd display color change made in china

One of today’s modern technological wonders is the flat-panel liquid crystal display (LCD) screen, which is the key component we find inside televisions, computer monitors, smartphones, and an ever-proliferating range of gadgets that display information electronically.What most people don’t realize is how complex and sophisticated the manufacturing process is. The entire world’s supply is made within two time zones in East Asia. Unless, of course, the factory proposed by Foxconn for Wisconsin actually gets built.

Liquid crystal display (LCD) screens are manufactured by assembling a sandwich of two thin sheets of glass.On one of the sheets are transistor “cells” formed by first depositing a layer of indium tin oxide (ITO), an unusual metal alloy that you can actually see through.That’s how you can get electrical signals to the middle of a screen.Then you deposit a layer of silicon, followed by a process that builds millions of precisely shaped transistor parts.This patterning step is repeated to build up tiny little cells, one for each dot (known as a pixel) on the screen.Each step has to be precisely aligned to the previous one within a few microns.Remember, the average human hair is 40 microns in diameter.

On the other sheet of glass, you make an array of millions of red, green, and blue dots in a black matrix, called a color filter array (CFA).This is how you produce the colors when you shine light through it.Then you drop tiny amounts of liquid crystal material into the cells on the first sheet and glue the two sheets together.You have to align the two sheets so the colored dots sit right on top of the cells, and you can’t be off by more than a few microns in each direction anywhere on the sheet.The sandwich is next covered with special sheets of polarizing film, and the sheets are cut into individual “panels” – a term that is used to describe the subassembly that actually goes into a TV.

For the sake of efficiency, you would like to make as many panels on a sheet as possible, within the practical limitations of how big a sheet you can handle at a time.The first modern LCD Fabs built in the early 1990s made sheets the size of a single notebook computer screen, and the size grew over time. A Gen 5 sheet, from around 2003, is 1100 x 1300 mm, while a Gen 10.5 sheet is 2940 x 3370 mm (9.6 x 11 ft).The sheets of glass are only 0.5 - 0.7 mm thick or sometimes even thinner, so as you can imagine they are extremely fragile and can really only be handled by robots.The Hefei Gen 10.5 fab is designed to produce the panels for either eight 65 inch or six 75 inch TVs on a single mother glass.If you wanted to make 110 inch TVs, you could make two of them at a time.

The fab is enormous, 1.3 km from one end to the other, divided into three large buildings connected by bridges.LCD fabs are multi-story affairs.The main equipment floor is sandwiched between a ground floor that is filled with chemical pipelines, power distribution, and air handling equipment, and a third floor that also has a lot of air handling and other mechanical equipment.The main equipment floor has to provide a very stable environment with no vibrations, so an LCD fab typically uses far more structural steel in its construction than a typical skyscraper.I visited a Gen 5 fab in Taiwan in 2003, and the plant manager there told me they used three times as much structural steel as Taipei 101, which was the world’s tallest building from 2004- 2010.Since the equipment floor is usually one or two stories up, there are large loading docks on the outside of the building.When they bring the manufacturing equipment in, they load it onto a platform and hoist it with a crane on the outside of the building.That’s one way to recognize an LCD fab from the outside – loading docks on high floors that just open to the outdoors.

LCD fabs have to maintain strict standards of cleanliness inside.Any dust particles in the air could cause defects in the finished displays – tiny dark spots or uneven intensities on your screen.That means the air is passed through elaborate filtration systems and pushed downwards from the ceiling constantly.Workers have to wear special clean room protective clothing and scrub before entering to minimize dust particles or other contamination.People are the largest source of particles, from shedding dead skin cells, dust from cosmetic powders, or smoke particles exhaled from the lungs of workers who smoke.Clean rooms are rated by the number of particles per cubic meter of air.A class 100 cleanroom has less than 100 particles less than 0.3 microns in diameter per cubic meter of air, Class 10 has less than 10 particles, and so on. Fab 9 has hundeds of thousands of square meters of Class 100 cleanroom, and many critical areas like photolithography are Class 10.In comparison, the air in Harvard Square in Cambridge, MA is roughly Class 8,000,000, and probably gets substantially worse when an MBTA bus passes through.

Since most display manufacturing has to be done in a cleanroom and handling the glass requires such precision, the factory is heavily automated.As you watch the glass come in, it is placed into giant cassettes by robot handlers, and the cassettes are moved around throughout the factory.At each step, robots lift a piece of glass out of the cassette, and position it for the processing machines.Some of the machines, like the ones that deposit silicon or ITO, orient the glass vertically, and put them inside an enormous vacuum chamber where all the air is first pumped out before they can go to work.And then they somehow manage to deposit micrometer thin layers that are extremely uniform.It is a miracle that any of this stuff actually works.

The Hefei Gen 10.5 is one of the most sophisticated manufacturing plants in the world.On opening day for the fab, BOE shipped panels to Sony, Samsung Electronics, LG Electronics, Vizio, and Haier.So if you have a new 65 or 75-inch TV, there is some chance the LCD panel came from here.

lcd display color change made in china

► When the leading Korean players Samsung Display and LG Display exit LCD production, BOE will be the most significant player in the LCD market. Though OLED can replace the LCD, it will take years for it to be fully replaced.

When mainstream consumer electronics brands choose their device panels, the top three choices are Samsung Display, LG Display (LGD) and BOE (000725:SZ) – the first two from Korea and the third from China. From liquid-crystal displays (LCD) to active-matrix organic light-emitting diode (AMOLED), display panel technology has been upgrading with bigger screen products.

From the early 1990s, LCDs appeared and replaced cathode-ray tube (CRT) screens, which enabled lighter and thinner display devices. Japanese electronics companies like JDI pioneered the panel technology upgrade while Samsung Display and LGD were nobodies in the field. Every technology upgrade or revolution is a chance for new players to disrupt the old paradigm.

The landscape was changed in 2001 when Korean players firstly made a breakthrough in the Gen 5 panel technology – the later the generation, the bigger the panel size. A large panel size allows display manufacturers to cut more display screens from one panel and create bigger-screen products. "The bigger the better" is a motto for panel makers as the cost can be controlled better and they can offer bigger-size products to satisfy the burgeoning middle-class" needs.

LCD panel makers have been striving to realize bigger-size products in the past four decades. The technology breakthrough of Gen 5 in 2002 made big-screen LCD TV available and it sent Samsung Display and LGD to the front row, squeezing the market share of Japanese panel makers.

The throne chair of LCD passed from Japanese companies to Korean enterprises – and now Chinese players are clinching it, replacing the Koreans. After twenty years of development, Chinese panel makers have mastered LCD panel technology and actively engage in large panel R&D projects. Mass production created a supply surplus that led to drops in LCD price. In May 2020, Samsung Display announced that it would shut down all LCD fabs in China and Korea but concentrate on quantum dot LCD (Samsung calls it QLED) production; LGD stated that it would close LCD TV panel fabs in Korea and focus on organic LED (OLED). Their retreats left BOE and China Stars to digest the LCD market share.

Consumer preference has been changing during the Korean fab"s recession: Bigger-or-not is fine but better image quality ranks first. While LCD needs the backlight to show colors and substrates for the liquid crystal layer, OLED enables lighter and flexible screens (curvy or foldable), higher resolution and improved color display. It itself can emit lights – no backlight or liquid layer is needed. With the above advantages, OLED has been replacing the less-profitable LCD screens.

Samsung Display has been the major screen supplier for high-end consumer electronics, like its own flagship cell phone products and Apple"s iPhone series. LGD dominated the large OLED TV market as it is the one that handles large-size OLED mass production. To further understand Korean panel makers" monopolizing position, it is worth mentioning fine metal mask (FMM), a critical part of the OLED RGB evaporation process – a process in OLED mass production that significantly affects the yield rate.

Prior to 2018, Samsung Display and DNP"s monopolistic supply contract prevented other panel fabs from acquiring quality FMM products as DNP bonded with Hitachi Metal, the "only" FMM material provider choice for OLED makers. After the contract expired, panel makers like BOE could purchase FFM from DNP for their OLED R&D and mass production. Except for FFM materials, vacuum evaporation equipment is dominated by Canon Tokki, a Japanese company. Its role in the OLED industry resembles that of ASML in the integrated circuit space. Canon Tokki"s annual production of vacuum evaporation equipment is fewer than ten and thereby limits the total production of OLED panels that rely on evaporation technology.

Display and LGD are using evaporation on their OLED products. To summarize, OLED currently adopts evaporation and QLED must go with inkjet printing, but evaporation is a more mature tech. Technology adoption will determine a different track for the company to pursue. With inkjet printing technology, players are at a similar starting point, which is a chance for all to run to the front – so it is for Chinese panel fabs. Certainly, panel production involves more technologies (like flexible panels) than evaporation or inkjet printing and only mastering all required technologies can help a company to compete at the same level.

Presently, Chinese panel fabs are investing heavily in OLED production while betting on QLED. BOE has four Gen 6 OLED product lines, four Gen 8.5 and one Gen 10.5 LCD lines; China Star, controlled by the major appliance titan TCL, has invested two Gen 6 OLED fabs and four large-size LCD product lines.

Remembering the last "regime change" that occurred in 2005 when Korean fabs overtook Japanese" place in the LCD market, the new phase of panel technology changed the outlook of the industry. Now, OLED or QLED could mark the perfect time for us to expect landscape change.

After Samsung Display and LGD ceding from LCD TV productions, the vacant market share will be digested by BOE, China Star and other LCD makers. Indeed, OLED and QLED have the potential to take over the LCD market in the future, but the process may take more than a decade. Korean companies took ten years from panel fab"s research on OLED to mass production of small- and medium-size OLED electronics. Yet, LCD screen cell phones are still available in the market.

LCD will not disappear until OLED/QLED"s cost control can compete with it. The low- to middle-end panel market still prefers cheap LCD devices and consumers are satisfied with LCD products – thicker but cheaper. BOE has been the largest TV panel maker since 2019. As estimated by Informa, BOE and China Star will hold a duopoly on the flat panel display market.

BOE"s performance seems to have ridden on a roller coaster ride in the past several years. Large-size panel mass production like Gen 8.5 and Gen 10.5 fabs helped BOE recognize the first place in production volume. On the other side, expanded large-size panel factories and expenses of OLED product lines are costly: BOE planned to spend CNY 176.24 billion (USD 25.92 billion) – more than Tibet"s 2019 GDP CNY 169.78 billion – on Chengdu and Mianyang"s Gen 6 AMOLED lines and Hefei and Wuhan"s Gen 10.5 LCD lines.

Except for making large-size TVs, bigger panels can cut out more display screens for smaller devices like laptops and cell phones, which are more profitable than TV products. On its first-half earnings concall, BOE said that it is shifting its production focus to cell phone and laptop products as they are more profitable than TV products. TV, IT and cell phone products counted for 30%, 44% and 33% of its productions respectively and the recent rising TV price may lead to an increased portion of TV products in the short term.

The change in TV sales responded to a lifestyle change since the 4G era: people are getting more and more used to enjoy streaming services on portable devices like tablets and smartphones. The ‘disappearing living room" is a phenomenon common for the young generation in Chinese tier-1 cities.

Besides the tier-1 cities" "disappearing living rooms," the mobile Internet gives another reason to explain the declining TV sale in China. Various streaming services and high-speed networks allow people to watch programs wherever and whenever they would like to. However, the change in life does not imply TV will disappear. For families, the living room is still a place for family members to gather and have fun. The growth of high-end TV sales also tells the "living room" economy.

The demand for different products may vary as lifestyles change and panel fabs need to make on-time judgments and respond to the change. For instance, the coming Olympics is a new driving factor to boost TV sales; "smart city" projects around the world will need more screens for data visualization; people will own more screens and better screens when life quality improves. Flexible screens, cost-efficient production process, accessible materials, changing market and all these problems are indeed the next opportunity for the industry.

lcd display color change made in china

Our company specializes in developing solutions that arerenowned across the globe and meet expectations of the most demanding customers. Orient Display can boast incredibly fast order processing - usually it takes us only 4-5 weeks to produce LCD panels and we do our best to deliver your custom display modules, touch screens or TFT and IPS LCD displays within 5-8 weeks. Thanks to being in the business for such a noteworthy period of time, experts working at our display store have gained valuable experience in the automotive, appliances, industrial, marine, medical and consumer electronics industries. We’ve been able to create top-notch, specialized factories that allow us to manufacture quality custom display solutions at attractive prices. Our products comply with standards such as ISO 9001, ISO 14001, QC 080000, ISO/TS 16949 and PPM Process Control. All of this makes us the finest display manufacturer in the market.

Without a shadow of a doubt, Orient Display stands out from other custom display manufacturers. Why? Because we employ 3600 specialists, includingmore than 720 engineers that constantly research available solutions in order to refine strategies that allow us to keep up with the latest technologiesand manufacture the finest displays showing our innovative and creative approach. We continuously strive to improve our skills and stay up to date with the changing world of displays so that we can provide our customers with supreme, cutting-edge solutions that make their lives easier and more enjoyable.

Customer service is another element we are particularly proud of. To facilitate the pre-production and product development process, thousands of standard solutions are stored in our warehouses. This ensures efficient order realization which is a recipe to win the hearts of customers who chose Orient Display. We always go to great lengths to respond to any inquiries and questions in less than 24 hours which proves that we treat buyers with due respect.

Choosing services offered by Orient Display equals a fair, side-by-side cooperation between the customer and our specialists. In each and every project, we strive to develop the most appropriate concepts and prototypes that allow us to seamlessly deliver satisfactory end-products. Forget about irritating employee turnover - with us, you will always work with a prepared expert informed about your needs.

In a nutshell, Orient Display means 18% of global market share for automotive touch screen displays, emphasis on innovation, flexibility and customer satisfaction.Don"t wait and see for yourself that the game is worth the candle!

lcd display color change made in china

For displays with glossy bezels, consider the placement of the display as the bezel may cause disturbing reflections from surrounding light and bright surfaces.

If the screen abnormality is not present in the built-in self-test mode, see the Dell knowledge base article How to Troubleshoot Display or Video Issues on a Dell Monitor.

If the LCD built-in self-test (BIST) diagnostic test passed, the laptop LCD screen is working correctly. The display problem could be due to an outdated graphics driver or incorrect video settings. Follow the troubleshooting instructions in the Dell knowledge base article How to Troubleshoot Display or Video Issues on a Dell Laptop.

lcd display color change made in china

It is essential to verify if the problem is inherent with the monitor, video card (GPU) or video settings on your computer. A straightforward way to identify this is to connect the computer to a known-good external monitor or TV and ensure that the display cable (S-video, VGA, DVI, HDMI, DisplayPort, USB-C, or Thunderbolt 3) is firmly connected to the video port on the computer and the monitor.

If the issue persists on the other monitor it may be due to the video card (GPU) or video settings and not the monitor, go to the step Verify display or video issue in Windows Safe Mode. Else go to the next step.

Performance issues may occur if there is any type of damage that is caused to the display cables or the LCD screen. LCD screen may show that symptoms like LCD screen stops working, work intermittently, color mismatch, flickering, display horizontal or vertical lines if there is damage to the display cables or the LCD screen.

When you notice screen abnormalities like flickering, distortion, clarity issues, fuzzy or blurry image, horizontal or vertical lines, color fade, it is a good practice to isolate the monitor by running a diagnostic test on the Dell monitor.

NOTE: Self-test feature check (SFTC) helps check if the Dell monitor is working normally as a stand-alone device. To check for screen abnormalities such as flickering, distortion, clarity issues, fuzzy or blurry image, horizontal or vertical lines, color fade, and so on, run the integrated self-test (BIST) or integrated diagnostic (BID) test.

Dell monitors can be reset to factory default settings using the on-screen display (OSD) menu. This can be accessed using the buttons or joystick that is available on the Dell monitor. For step-by-step instructions to reset a Dell monitor to factory default settings, see the User Guide of your Dell monitor at the Dell Manuals website.

Display settings like brightness, refresh rate, resolution, and power management may affect the performance of your Dell monitor. Changing the display settings can help resolve several types of video issues.

To learn more about changing the brightness, refresh rate and resolution on a Dell computer, see the Dell knowledge base article How to Change the Video Settings or Improve Text in Windows 10.

lcd display color change made in china

Have you ever properly checked the display quality of the LCD you habitually use? Very often people become aware of previously unnoticed problems in display quality when they run a check using test patterns and so on. This time we are going to talk about the basic points used to assess LCD display quality, and show you a simple way to test it.

Below is the translation from the Japanese of the ITmedia article "The difference in image quality is perfectly obvious! – Let"s check the LCD"s monitor" published April 22, 2010. Copyright 2011 ITmedia Inc. All Rights Reserved.

That"s right. The answer is "LCD" (it is displayed if you drag the space between the brackets). We assume that probably many users could read the letters concealed in the squares.

So, the next test is much more difficult. A word is concealed in the four squares below, just as in the image above. The letters are written in colors that are very similar to those of the boxes and we expect that, in many cases, it is hard to distinguish them in your browser. We would like you to download the image and check it closely in photo retouching software or a viewer that is capable of accurate color reproduction.

This time the answer is "EIZO" (it is displayed if you drag the space between the brackets). Depending on the lighting or the user"s environment it may be hard to make out but, if you can read these four letters, the display quality, or more accurately the still image gradation expression, of your LCD is extremely high.

Let"s get down to details then. "Image quality" is the top priority of the LCD, of course. However, recently LCD prices are fiercely competitive and there are surprisingly few products that insist on high image quality and performance. It may be nice to be able to get hold of a wide-screen monitor with full HD (1920 × 1080 dot) resolution or higher fairly cheaply, but it cannot be denied that such LCDs tend not to place too much importance on display quality.

On the other hand, the increasing opportunities to enjoy things like HD videos and games, and high resolution digital photographs on the computer make LCD display quality even more important. As far as possible it"s best to use an LCD with excellent display quality in order to fully enjoy the charms of the visual content.

Even so, perhaps you think that there can"t really be that much wrong with the LCDs that so many people are using at the moment. Here we would like to show you a simple method to check LCD display quality. You can get a good idea of whether the basic display quality is good or bad just by looking at how some simple test images are displayed, just like in the introductory quiz. First of all, we would like you to get a sense of how important it is that "image data can be properly displayed" by checking the display of the LCD that you currently use, (that"s right, the one you are using to view this page!).

The test items use color / monochrome patterned images to check gradation expression, and simple images to check brightness / chromaticity variation. Downloads are available of several test images, such as gradation patterns. We would like you to display the downloaded test images in photo retouching software or a viewer that can reproduce color accurately. As we mentioned at the start of this article, you have to be careful as in many cases colors cannot be displayed accurately in web browsers. (Currently only a few browsers such as Safari and Firefox 3.x can handle color management).

Before starting your visual check of the display quality, please return to your LCD"s setting to default, and select Adobe RGB or sRGB as the image quality mode. If these modes are not available it is fine to set the color temperature to 6500K and gamma to 2.2. If you cannot adjust the color temperature and gamma, simply adjust the brightness and contrast so that they are easier to discern. Of course, if it"s an LCD environment that has been color calibrated it"s OK to leave it as it is.

The average LCD takes some time for the monitor to stabilize after it is switched on so, after start up, please wait at least 30 minutes or so before doing the test. (Most EIZO monitors are an exception to this as they are equipped with our proprietary dimming function and the monitor stabilizes in a short time after start up.)

The surface treatment of an LCD makes a difference to the background reflection. Glare panels impede the surface diffusion of backlight, which does make it easier to achieve high color purity, but also makes distinct reflections of the user or lighting much more likely (photo on the left).

If the lights are similarly trained on a non-glare panel they do not have much effect on the display, only appearing as a fuzzy brightness (photo on the right).

For your reference, we ran a test on an EIZO 24.1-inch wide-screen LCD, the FlexScan SX2462W, for this article. The FlexScan SX series comes with a number of high image quality functions and boasts top class display quality as a general-purpose LCD intended for a computer.

When we displayed the quiz images (the more difficult ones, of course) on the FlexScan SX2462W, the four letters appeared faintly when we stared closely at the screen and we could read what they said. This indicates the high image quality level.

When checking the display quality of an LCD it is comparatively easy to understand the gradation expression capability by a visual check. Let"s display color and monochrome gradation images and check whether the entire image is smoothly reproduced. If there is a problem with the gradation expression it produces things like blocked-up shadows in dark areas and blown-out highlights in light areas, banding (vertical or horizontal stripes) in the middle gradations, and color cast, so you should check for problems like these.

Test images of color / monochrome gradations are shown below. Each test image is prepared for three resolution levels (1280 × 800 dots / 1680 × 1050 dots / 1920 × 1200 dots). When you click on an image it is displayed in that actual resolution. We would like you to download the images in the resolution which matches that of your current LCD. Gradation expression can vary according to whether the image is viewed horizontally or vertically, so it will be more effective if you rotate these images and view them vertically as well.

A gradation pattern where the colors red, green, blue, cyan, magenta and yellow go through 16 gradients as they change to white or black. This is an easy test image so we expect that it can be seen in most environments that each color bar is divided into 16 blocks.

A gradation pattern where the colors red, green, blue, cyan, magenta and yellow go through 64 gradients as they change to white or black. Each color bar is divided into 64 rectangular blocks. With this many gradients we expect that many LCDs will find it hard to make distinctions in the dark areas or the areas that are close to primary colors.

A smooth gradation pattern where the colors red, green, blue, cyan, magenta and yellow go through 256 gradients as they change to white or black. At this level of difficulty you cannot distinguish between adjoining colors from a distance but, if you have an LCD with excellent gradation expression, if you look closely you should be able to see that each color is divided into thin rectangular blocks.

A gradation pattern that changes from black to white. It is divided into 5 horizontal bars: from the top, smooth, 128 gradients, 64 gradients, 32 gradients and 16 gradients. Even if all the differences can be distinguished in the 16 and 32 gradient patterns near the bottom, we expect that there will be some parts in the 64 and 128 gradient patterns where it is hard to see the boundaries between adjoining colors. With this kind of monochrome test image you should also check whether any unnecessary colors are mixed with the gray.

On an average LCD gradations of gray that are close to black tend to appear as blocked-up shadows (gradations of gray that are close to white are displayed comparatively accurately). If your LCD"s OSD menu allows you to adjust the contrast, please try gradually turning down the contrast. Turning down the contrast often makes it possible to see gradations that had been subject to blocked-up shadows or blown-out highlights.

Probably most LCDs will be able to detect some degree of banding and color cast in the middle gradations. Banding in the middle gradations is tone jump (Missing gradations) and, along with color cast, means that the RGB gamma curves are unequal. Unlike blocked-up shadows or blown-out highlights, this is an area that it is hard to improve with adjustments made by the user.

When there is a problem with the gradation expression, the original colors of the content being displayed cannot be reproduced. If you look carefully at displays like video, games or photographs you can probably see or sense things like a lack of depth in the coloration, unnatural color shifts in the middle gradations or displays blanked out with large blocked-up shadows. Of course, it is very hard to use such monitors for things where color reproduction such as photo retouching or graphics work.

When we looked at these test images on the FlexScan SX2462W, in the smooth gradation there was blocked-up shadows right next to the black but we could distinguish differences in gradations of gray until very close to the black area. When it comes to such subtle gradation distinctions the brightness of the room and the adaptability of the eye come into play, so the range that is visible will vary according to the environment and the individual. The gradation expression was excellent, with almost no blown-out highlights in light areas, middle gradation banding or color cast.

The FlexScan SX2462W has a 16-bit look-up table (around 278 trillion colors). It converts the 8-bit RGB input from the computer into multiple tones and then reallocates them in 8-bit RGB for their display. (10-bit display is also supported with the DisplayPort input)

This aligns RGB gamma curves for the entire gradation range from dark to light, making it possible to depict subtle gradations and thus eliminating banding and color cast in the middle gradations.

Smooth color and monochrome gradations displayed on the FlexScan SX2462W. This data is of screen displays photographed with a digital camera so some of the gradations may seem to have been destroyed, but they were cleanly represented when checked visually.

We have talked about ways to check gradation expression. We think that it was comparatively easy to understand about blocked-up shadows in dark areas, blown-out highlights in light areas and banding in middle gradations. However, it is hard to distinguish whether a gradation is being cast with unnecessary color so we would like to add a little more about this.

A row of images of slightly different grays (1050 × 300 dots). If you cannot see the boundaries between the grays there is probably a problem with the display environment or gradation expression of your monitor.

The answer is "The far right" (it is displayed if you drag the space between the brackets). If the other grays looked correct, color may not be being correctly recognized for a variety of reasons, such as the lighting environment or the LCD settings.

For example, when the room is lit with standard household incandescent lights white and gray look reddish, while fluorescent lights can make them greenish (which is why there is some lighting that is made to conform to color evaluations). What is more, white and gray can have a reddish tinge when the monitor has been set to a low color temperature, while a high setting can give them a bluish tinge. Thus it often happens that the gray in visual data does not look like a true gray.

Another big problem is that the human eye (brain) is easily influenced by surrounding colors. Everyone has probably experienced the phenomenon where, when you come from outdoors into a room lit with incandescent lights, the room seems to be bathed in a reddish light at first but, as your eyes gradually get used to it, you lose all awareness of the redness.

The two image patterns below are easy to understand examples of optical illusions. When you look at them you should be able to understand how heavily the human eye is influenced by surrounding colors.

The gray in the center of each square is in fact exactly the same color in each case (600 × 200 dots). However, the grays with a dark surrounding look light and the ones with a light surrounding look dark, don"t they? This is known as "brightness contrast"

The orange in the center of each square is in fact exactly the same color in each case (600 × 200 dots). However, when the surrounding saturation is high (red) the orange seems to have a low saturation, but when the surrounding color has a low saturation (green) the orange seems to have a high saturation, doesn"t it? This is known as "chroma contrast"

The human eye has adaptability that it is applicable to a variety of environments, so it is extremely difficult to accurately distinguish color by a visual check, even for color professionals. Big shifts in color can probably be seen but it cannot be helped if very slight color casts go unnoticed.

The important thing in actual use is that you should not adjust the image quality of your monitor or edit visual material while looking at colors that are being wrongly recognized like this. There are some products where the RGB values of the monitor can be adjusted individually, but this requires caution since fiddling around randomly often leads to irreparable loss of color balance. An effective way to make subtle adjustments to the color detail of image data is to display neutral gray or white image data and use that as a yardstick.

Now let"s assess the gradation expression with some slightly different test images. Below are color patterns with a spread of pale colors in gradations close to the dark range and the light range. They are arranged so that a distinction cannot be made between adjoining colors on an LCD with insufficient gradation expression.

In this color pattern the colors gradually change from near-white pastels to gradations that are even closer to white. As the lightness of each color increases (the nearer it approaches to white), the more difficult it becomes to distinguish between adjoining colors.

A color pattern where the lightness and hue gradually change. As the lightness of each color decreases (the nearer it approaches to black), the more difficult it becomes to distinguish between adjoining colors.

We expect that you could roughly get the whole picture in the gradation patterns on the previous page, but in the patterns this time some parts that cannot be seen may have appeared in some cases. As we mentioned earlier, LCDs tend to display gradations close to black as a blocked-up shadows, and color patterns that are close to black are particularly hard to distinguish.

Since there are some parts that cannot be seen, the possibility arises subtle skin colors and tones cannot be accurately recognized when doing things like retouching photographs, though the misrecognition will vary according to the user"s eyesight. People who place importance on color reproduction should probably bear this in mind when they think about replacing their LCD or buying an extra one.

Incidentally, when we checked the FlexScan SX2462W with these tests we could distinguish everything in both the close to white and the close to black patterns. As well as no blown-out highlights or blocked-up shadows, we saw no unnatural color casts.

This shows the color patterns displayed on the FlexScan SX2462W. It was taken with a digital camera so some parts look a little patchy but they were accurately displayed when we did a visual check.

Along with gradation expression, it is easy to visually check brightness variation and chromaticity variation. Brightness variation scatters brightness around the screen and is easy to notice when you use full-screen display for things like drawing up documents or using spreadsheets. Chromaticity variation scatters color around the screen and is not as easily noticed as brightness variation, but it makes graphics-related displays unnatural and causes deterioration in color reproducibility.

Every LCD has some degree of brightness and chromaticity variation, but there are many products where the variations become more obvious when the brightness is lowered. A comparison of the brightness and chromaticity variation of a number of LCDs reveals that there is a fairly large difference between products, so this is a point to bear in mind.

Brightness and chromaticity variation can be checked with standard Windows or Mac OS X functions. All you need to do is to set the desktop background to "Monochrome" and look at the whole screen from a little way away. Your check will be perfect if you change the desktop background to black, white, gray, then 100% red, green, blue, cyan, magenta and yellow, and then any "near-white pale color".

If you actually try this test you may be surprised to find more variation than you expected when gray or a near-white pale color is displayed. Generally speaking, the center of an LCD screen is the brightest and it gradually gets darker towards the edges. This is no problem if there is not a big difference in brightness between the central and peripheral areas, but there are some products where this difference is very striking.

An example of Windows 7 settings. Set the desktop background to "Monochrome" and then click on "Other". Prepare a color on the "Color settings" screen and use it as the background. (The background color cannot be changed in Windows 7 Starter.)

Incidentally, this test is also an effective way to test the LCD for dot defects (normal lighting / unlit room). We would like you to check the black display in a darkened environment, for example by switching off all the room lights at night. Although you probably saw the whole screen as uniformly black in a light environment, very often in a dark environment you can find variations in some parts due to light leaks.

The FlexScan SX2462W got good results again when we tried it with the brightness and chromaticity variation tests. The brightness decreased slightly at the edges of the screen, particularly the lower edge, but overall the display was even and pleasing. It is installed with a "digital uniformity equalizer" that measures brightness and chromaticity throughout the screen and makes corrections so that the entire screen is uniform.

Monochrome full-screen displays on a FlexScan SX2462W. Only the screen display is shown. The bottom right is a near-white pale orange. There are not many LCDs that can display this kind of pale color as uniformly as this

However, the pitfall here is that it simply means that "the screen is visible". The thing is that the viewing angle specifications are permitted to use the term "visible" until the display contrast ratio drops to an extremely low 10:1 or 5:1 when the screen is viewed from an angle (the steeper the angle from which the LCD screen is viewed, the more the contrast generally declines). In other words, they do not take into account the display uniformity of the central and peripheral areas of the screen, or the level of chromatic change, when the screen is viewed from an angle.

The ideal viewing angles is that the brightness and chromaticity is very uniform and there is not much chromatic change, even when the screen is viewed from a slight angle. The viewing angles given in the specifications are not really very helpful, but you can judge the standard of the panel type that the LCD (liquid crystal panel) adopts. IPS liquid crystal panels have the least change in brightness or chromaticity when the screen is viewed from an angle, and they are followed by VA panels. An IPS or VA liquid crystal panel can be said to indicate the superior nature of the product itself, so this is often included in the catalog or specifications. It is probably a good idea to look through the catalogs of various products.

On the other hand, monitors installed with cost-effective TN liquid crystal panels are in fact the most numerous. However, the TN type lags far behind the IPS and VA types in terms of characteristic viewing angle changes in brightness and chromaticity. Simply viewing the screen from a slightly different angle makes the coloration change dramatically, and the screen looks completely different according to whether it is viewed vertically or horizontally. If the vertical and horizontal viewing angles in the specifications are different then it is a TN type. There are quite a few products with a 20-inch wide screen or larger where colors look different in the central and peripheral areas even when the screen is viewed straight on.

The display on an IPS panel. Even when viewed from this angle, the displayed content can of course be distinguished completely and the colors also show up really well

The display on a VA panel. Compared with the IPS panel the screen is a little whitish and the chromaticity has slipped, but it is a satisfactory viewing angle for actual use

The display on a TN panel. There is a very clear difference from the IPS and VA panels. The display throughout the entire screen lacks uniformity and there is a yellow cast

The gradation images and monochrome images from earlier in this article can be used as they are to check the viewing angles. Display an image on the whole screen, look at it straight on and check whether the brightness and colors are uniform at the top and bottom of the screen, and in the center and at both sides. Then gradually shift the angle from which you view the screen and check how the brightness and coloration change. If you do this with photographic data as well as the test images, you should be able to get a better sense of the difference in the display.

When we checked the viewing angles of the FlexScan SX2462W there was absolutely nothing to criticize since, in addition to the use of an IPS panel, it is equipped with many high image quality functions, including the afore-mentioned digital uniformity correction circuit. The brightness and chromaticity throughout the whole screen is very uniform, and the coloration hardly changed at all when the viewing angle was changed.

Naturally, this is very impressive when doing things like photo retouching, but it is also very pleasant at times like when many people are looking at videos or photographs. You can get a perfect understanding of the viewing angles by a visual check of the display so, if possible, we would like you to check this in the store. You will probably be particularly amazed by the difference between IPS / VA types and TN ones.

The display on the FlexScan SX2462W. As expected, the display did not change even when the vertical display function was used, or when it was viewed from a very sharp angle

We explained here about easy ways to check LCD monitor quality. How were the results for your current LCD? We think that many people were probably very bothered by the blocked-up shadows and blown-out highlights when the test images to check gradation were displayed, by the middle gradation banding, and by the variations in brightness and chromaticity when the monochrome images were displayed.

As we mentioned at the beginning, recently the number of LCDs with excellent display quality is on the decline. Although we would not go so far as to say that the display quality of inexpensive products is poor. Of course a high quality LCD is indispensable if you want to enjoy using your computer, properly handle the needs of applications that require color reproducibility, and to fully enjoy all the benefits of rich content.

The EIZO FlexScan LCD series has excellent display quality in those regards, and we have no qualms about recommending them to everyone. The product line-up is diverse but each model is clearly ranked according to the purpose to which it is suited and its screen size, and they all guarantee above-standard display quality. They may cost a little more than you had budgeted for but the clear value they offer exceeds their price.

If, after trying these tests, you have doubts about the display quality of the LCD that you usually use, we would certainly urge you to consider an EIZO LCD. We would also recommend that you construct a multi-display environment by making the new LCD your main monitor and the one that you have been using your sub monitor.

lcd display color change made in china

If you"re looking to buy an e-reader, you should wait a little longer. Color e-reader screens, like E Ink"s Advanced Color e-Paper version 2 (ACeP v2 or Gallery 4100) and TCL"s Nxtpaper technologies, may revolutionize how we read ebooks in 2022 and beyond. So, if you"re wondering why you should wait, here are the top six backlight-free technologies that will change how we read in the near future.

E Ink"s Gallery 4100 e-paper technology is unusual because it has vibrant colors and can quickly refresh black-and-white text. However, many unanswered questions remain regarding its availability, technical specifications, and cost. Fortunately,

E Ink"s Associate Vice President, Timothy O"Malley, shared details on E Ink"s upcoming Gallery 4100 color E Ink display during a January 2022 interview.

While E Ink refers to its color E Ink technology as Advanced Color ePaper (ACeP v2), its working title is Gallery 4100. Gallery 4100"s name will likely change in the future when it reaches consumers. Currently, Gallery 4100 is only available as a development kit.

The big revelation is that a four-color pigment E Ink system is coming to ereaders. While E Ink declined to state any upcoming product release date, they did confirm specific features. The most important feature is fast-refresh:

The video mentioned in the quote refers to a now-removed clip demonstrating ACeP v2"s color and black-and-white capabilities. The missing video showed that ACeP v2 can turn black-and-white pages similar in speed to Carta panels.

In 2022, Tim O"Malley further elaborated on ACeP"s fast refresh capabilities. While Gallery 4100 uses four pigments to generate color images, it only uses two colors to generate blacks. In other words, Gallery 4100 can rapidly increase refresh speeds by computationally simplifying the image it"s drawing. A black-and-white image has less complexity relative to color, so Gallery 4100 can render it more quickly.

The added complexity causes the slower refresh speeds since whenever a color image is displayed on screen, the hardware arranges cyan, magenta, yellow, and white (CMYW) in elaborate and complicated combinations, which constitute an image. A black-and-white panel only needs to arrange two pigments on the screen. The reduced complexity means faster page turns, although color refreshes take considerably longer to refresh.

If that"s an indication of what a consumer e-reader would cost, then it may remain unaffordable. However, if any color reflective screen ever makes its way into a Kindle, it"ll likely be ACeP because of its high color saturation and fast refreshes for black-and-white text. These characteristics make ACeP perfect for reading textbooks and comic books.

O"Malley declined to comment on the price, dimensions, or release date. However, we know that Gallery 4100 will cost more than a black and white E Ink display due to its complexity. The exact price difference, unfortunately, remains unknown.

E Ink Kaleido uses color-filter array (CFA) technology to generate color. A CFA is a thin layer of colored polymer filter stretched over another panel, usually an electrophoretic panel, like E Ink. The multiple layers create a full-color display, although with diminished resolution compared to a standard E Ink panel. Unfortunately, CFA"s colors also aren"t visually appealing and have the appearance of Jet-Puffed Fruity Marshmallows.

Today"s best CFA panels have a color depth of somewhere around 4,096 colors, or High Color. However, besides having a limited color palette, Kaleido Plus panels have low color saturation. In other words, colors look washed out. However, in our review of the Onyx Boox Nova 3 Color, even with reduced resolution and weak color saturation, the e-reader isn"t bad. Unfortunately, it lacks the vibrancy you"d expect of a Kindle.

DES technology looks an awful lot like E Ink Kaleido, except its color saturation is higher, and it costs less. DES uses a novel latticework of "cofferdams" for its black-and-white layer and a red-blue-green CFA layer to generate color. Because DES technology uses fewer elements in its display stack, it also has higher color saturation. Furthermore, because it"s simpler compared to E Ink, it"s also less expensive.

We reviewed an early color DES panel on the Reinkstone R1 color e-reader in 2021. While the color saturation is markedly richer than Kaleido, the DES panel suffered from numerous teething issues, namely a serious problem with image artifacts and ghosting. In fact, Reinkstone dropped the DES panel in the R1 and moved on to a second-generation version of the panel. As such, we don"t know what the final product will look like.

TCL announced a new reflective LCD (RLCD) technology at IFA 2020 called Nxtpaper. Unfortunately, TCL"s RCLD technology was delayed numerous times. Thanks to the pandemic"s impact on global supply chains, it seems to have been cast into Limbo. TCL declined to comment on the future availability of the Nxtpaper Mid tablet. Although video of the technology indicates good color saturation, even with the backlight turned off.

While TCL announced the TCL Nxtpaper 10s at CES 2022, the 10s isn"t an RLCD unit. It instead uses a standard LCD screen with reduced blue-light emissions.

ClearInk"s reflective technology is based on electrophoretic technology, just like E Ink"s panels. Also, like E Ink"s Kaleido, it uses a CFA layer to generate color. However, unlike E Ink, it uses a single black pigment instead of a two-pigment system. ClearInk first announced its technology in 2016 but has since picked up partners such as Lenovo and display manufacturing giant Tianma.

ClearInk manages to do a few things that its competitors cannot: cost-efficient color video without requiring a backlight. Unfortunately, ClearInk seems to have fallen silent online despite its manufacturing partners. It has remained quiet since 2019, and as of 2022, it appears it hasn"t released a single product while E Ink has released several refinements of its Kaleido technology. Even so, ClearInk has several advantages over its competitors.

E Ink"s Triton was a first-generation color e-paper technology, but it never stood a chance of reaching Amazon"s Kindle. The Triton panel cost a fortune and suffered from a weak contrast ratio and slow refresh rates. In other words, it didn"t look good and couldn"t play video.

ClearInk, on the other hand, displays color at around 4,096 colors (High Color). This means it"s less vibrant compared to LCD and OLED panels. However, its video refresh rate of 33Hz (equivalent to broadcast television or YouTube) allows full-motion video. Here"s an example I shot at Display Week 2019:

While ClearInk"s video variant consumes more energy than E Ink, its power consumption relative to LCD comes in around 80 to 90 percent less. In addition, it can display motion video with a refresh rate of around 33 Hz. A little choppy, but good enough.

ClearInk isn"t a perfect technology. It suffers from issues with image retention, or ghosting, where portions of the display do not refresh. You can see a small amount of ghosting in the picture above. In 2019, ClearInk"s engineering team explained that issues with early prototypes caused the display imperfections.

Additionally, ClearInk panels have the same color accuracy as Kaleido Plus. It"s good enough for textbooks and comics but not enough for enterprise-class purposes.

And finally, like E Ink, ClearInk panels require special software and hardware to create and draw images on its screen. In other words, the hardware-level infrastructure and software techniques used in LCD technology are not fully compatible with ClearInk panels. ClearInk screens cannot just be dropped into a computer without writing special software.

However, Peruvemba mentioned that they are working on drop-in panel solutions for LCD screens. Meaning if they pull it off, manufacturers could simply swap out an LCD for a ClearInk panel without any added costs.

Tianma Micro-Electronics, one of the world"s largest display manufacturers, announced a reflective color LCD panel, known by its project name as Electrical Bag (almost certainly a mistranslation). Like most e-paper technologies, it doesn"t require a backlight but is compatible with the front lights used in most ereaders.

The panel is aimed at the educational market. As such, it comes in a 10.5-inch form factor, designed to read color textbooks. Unlike E Ink, reflective LCDs can display full color and video. But the trade-off is a limited color range and weak contrast ratio. For example, Electrical Bag has a 12:1 contrast ratio and a PPI of 191. It can also only do 11% of the NTSC color range, about half of its competitors. However, the price is low, and they can be dropped into almost any device with little effort.

An engineer at Tianma quoted a price similar to an emissive LCD for a 10.5-inch panel. The educational market, which caters to children, is an ideal product for reducing eyestrain.

Without question, the color E Ink technology most likely to reach Amazon"s ereaders is E Ink"s Gallery 4100. While E Ink Kaleido Plus and Wuxi WeiFeng Technology"s DES can display color, those colors are washed out and unsuitable for high-end devices. As such, Gallery 4100 is the only technology that seems to stand a chance of making its way into an Amazon e-reader.

While Amazon hasn"t shown any interest in color e-paper since it dumped LiquaVista, color ereaders could expand Amazon"s reach to the lucrative education market. Amazon has already tried to expand its reach to children with its Kindle Fire for Kids.

A backlight-free Kindle aimed at children may soon become a reality. But until then, we"ll have to wait and see what new color e-reader tech hits the market.

lcd display color change made in china

Glass substrate with ITO electrodes. The shapes of these electrodes will determine the shapes that will appear when the LCD is switched ON. Vertical ridges etched on the surface are smooth.

A liquid-crystal display (LCD) is a flat-panel display or other electronically modulated optical device that uses the light-modulating properties of liquid crystals combined with polarizers. Liquid crystals do not emit light directlybacklight or reflector to produce images in color or monochrome.seven-segment displays, as in a digital clock, are all good examples of devices with these displays. They use the same basic technology, except that arbitrary images are made from a matrix of small pixels, while other displays have larger elements. LCDs can either be normally on (positive) or off (negative), depending on the polarizer arrangement. For example, a character positive LCD with a backlight will have black lettering on a background that is the color of the backlight, and a character negative LCD will have a black background with the letters being of the same color as the backlight. Optical filters are added to white on blue LCDs to give them their characteristic appearance.

LCDs are used in a wide range of applications, including LCD televisions, computer monitors, instrument panels, aircraft cockpit displays, and indoor and outdoor signage. Small LCD screens are common in LCD projectors and portable consumer devices such as digital cameras, watches, digital clocks, calculators, and mobile telephones, including smartphones. LCD screens are also used on consumer electronics products such as DVD players, video game devices and clocks. LCD screens have replaced heavy, bulky cathode-ray tube (CRT) displays in nearly all applications. LCD screens are available in a wider range of screen sizes than CRT and plasma displays, with LCD screens available in sizes ranging from tiny digital watches to very large television receivers. LCDs are slowly being replaced by OLEDs, which can be easily made into different shapes, and have a lower response time, wider color gamut, virtually infinite color contrast and viewing angles, lower weight for a given display size and a slimmer profile (because OLEDs use a single glass or plastic panel whereas LCDs use two glass panels; the thickness of the panels increases with size but the increase is more noticeable on LCDs) and potentially lower power consumption (as the display is only "on" where needed and there is no backlight). OLEDs, however, are more expensive for a given display size due to the very expensive electroluminescent materials or phosphors that they use. Also due to the use of phosphors, OLEDs suffer from screen burn-in and there is currently no way to recycle OLED displays, whereas LCD panels can be recycled, although the technology required to recycle LCDs is not yet widespread. Attempts to maintain the competitiveness of LCDs are quantum dot displays, marketed as SUHD, QLED or Triluminos, which are displays with blue LED backlighting and a Quantum-dot enhancement film (QDEF) that converts part of the blue light into red and green, offering similar performance to an OLED display at a lower price, but the quantum dot layer that gives these displays their characteristics can not yet be recycled.

Since LCD screens do not use phosphors, they rarely suffer image burn-in when a static image is displayed on a screen for a long time, e.g., the table frame for an airline flight schedule on an indoor sign. LCDs are, however, susceptible to image persistence.battery-powered electronic equipment more efficiently than a CRT can be. By 2008, annual sales of televisions with LCD screens exceeded sales of CRT units worldwide, and the CRT became obsolete for most purposes.

Each pixel of an LCD typically consists of a layer of molecules aligned between two transparent electrodes, often made of Indium-Tin oxide (ITO) and two polarizing filters (parallel and perpendicular polarizers), the axes of transmission of which are (in most of the cases) perpendicular to each other. Without the liquid crystal between the polarizing filters, light passing through the first filter would be blocked by the second (crossed) polarizer. Before an electric field is applied, the orientation of the liquid-crystal molecules is determined by the alignment at the surfaces of electrodes. In a twisted nematic (TN) device, the surface alignment directions at the two electrodes are perpendicular to each other, and so the molecules arrange themselves in a helical structure, or twist. This induces the rotation of the polarization of the incident light, and the device appears gray. If the applied voltage is large enough, the liquid crystal molecules in the center of the layer are almost completely untwisted and the polarization of the incident light is not rotated as it passes through the liquid crystal layer. This light will then be mainly polarized perpendicular to the second filter, and thus be blocked and the pixel will appear black. By controlling the voltage applied across the liquid crystal layer in each pixel, light can be allowed to pass through in varying amounts thus constituting different levels of gray.

The chemical formula of the liquid crystals used in LCDs may vary. Formulas may be patented.Sharp Corporation. The patent that covered that specific mixture expired.

Most color LCD systems use the same technique, with color filters used to generate red, green, and blue subpixels. The LCD color filters are made with a photolithography process on large glass sheets that are later glued with other glass sheets containing a TFT array, spacers and liquid crystal, creating several color LCDs that are then cut from one another and laminated with polarizer sheets. Red, green, blue and black photoresists (resists) are used. All resists contain a finely ground powdered pigment, with particles being just 40 nanometers across. The black resist is the first to be applied; this will create a black grid (known in the industry as a black matrix) that will separate red, green and blue subpixels from one another, increasing contrast ratios and preventing light from leaking from one subpixel onto other surrounding subpixels.Super-twisted nematic LCD, where the variable twist between tighter-spaced plates causes a varying double refraction birefringence, thus changing the hue.

LCD in a Texas Instruments calculator with top polarizer removed from device and placed on top, such that the top and bottom polarizers are perpendicular. As a result, the colors are inverted.

The optical effect of a TN device in the voltage-on state is far less dependent on variations in the device thickness than that in the voltage-off state. Because of this, TN displays with low information content and no backlighting are usually operated between crossed polarizers such that they appear bright with no voltage (the eye is much more sensitive to variations in the dark state than the bright state). As most of 2010-era LCDs are used in television sets, monitors and smartphones, they have high-resolution matrix arrays of pixels to display arbitrary images using backlighting with a dark background. When no image is displayed, different arrangements are used. For this purpose, TN LCDs are operated between parallel polarizers, whereas IPS LCDs feature crossed polarizers. In many applications IPS LCDs have replaced TN LCDs, particularly in smartphones. Both the liquid crystal material and the alignment layer material contain ionic compounds. If an electric field of one particular polarity is applied for a long period of time, this ionic material is attracted to the surfaces and degrades the device performance. This is avoided either by applying an alternating current or by reversing the polarity of the electric field as the device is addressed (the response of the liquid crystal layer is identical, regardless of the polarity of the applied field).

Displays for a small number of individual digits or fixed symbols (as in digital watches and pocket calculators) can be implemented with independent electrodes for each segment.alphanumeric or variable graphics displays are usually implemented with pixels arranged as a matrix consisting of electrically connected rows on one side of the LC layer and columns on the other side, which makes it possible to address each pixel at the intersections. The general method of matrix addressing consists of sequentially addressing one side of the matrix, for example by selecting the rows one-by-one and applying the picture