nodemcu tft lcd manufacturer
The IoD-09 modules feature a full colour 0.9” TFT LCD display. They are powered by the WiFi enabled ESP8266, which offers an array of functionality and options for any Designer / Integrator / User.
The ILI9341 TFT module contains a display controller with the same name: ILI9341. It’s a color display that uses SPI interface protocol and requires 4 or 5 control pins, it’s low cost and easy to use.
The resolution of this TFT display is 240 x 320 which means it has 76800 pixels. This module works with 3.3V only and it doesn’t support 5V (not 5V tolerant).
The ILI9341 TFT display board which is shown in project circuit diagram has 14 pins, the first 9 pins are for the display and the other 5 pins are for the touch module.
The first library is a driver for the ILI9341 TFT display which can be installed from Arduino IDE library manager (Sketch —> Include Library —> Manage Libraries …, in the search box write “ili9341” and choose the one from Adafruit).
The ILI9341 TFT display is connected to NodeMCU hardware SPI module pins (clock and data), the other pins which are: CS (chip select), RST (reset) and DC (data/command) are defined as shown below:
For an upcoming new project I wanted a colour (UK spelling) LCD screen (ideally OLED), 256×256 (or greater) resolution and nice and cheap. It was not an easy 2 minute task. There were no OLED screens offering what I wanted (that I could see at the time). So compromises were made, in the end I purchased a 128×128 pixel screen (none OLED) for around $3.50 (£3.20, 3.50 Euro). Not as cheap as I thought I might get one for but the cheapest I could find. There were a lot of sellers offering this screen and it’s shown below.
Due to the planned game being more advanced than Space Invaders I needed a processor with more memory and speed than the Arduino could offer. Enter the ESP8266 processors which offer faster speeds and lots and lots more memory. Wifi is also available but will not be required for this project unless we implemented a World High Score Table perhaps! There are newer versions, ESP32, available with even more power but are more expensive and we don’t need that level of performance for this project. I’m using a NodeMCU from Lolin, which is basically a breakout board for the ESP8266 so that you can use it easily on breadboards or small production runs using through hole.
Power is self explanatory. LED adds a little extra brightness to the screen but it does still work if not connected. I’ve seen resistors added in series here and even variable ones to vary the brightness but I’ve ran it directly connected on this screen with no issues and wouldn’t want it dimmer as its not ultra bright. It is actually on even when not connected giving adequate brightness in my opinion. SCL is the SPI clock and goes to the NodeMCU’s hardware SPI pin (pin D5). SDA is actually the SPI MOSI connection and goes to the NodeMCU’s SPI MOSI pin (D7). RS is a Regsiter Select pin for ST7735 driver chips, this maps to a variable called TFT_DC in the Adafruitcode (explained later) that I was using for testing. This controls whether we are sending a command to the ST7735 chip or actual data. I think that Adafruit call it DC meaning Data Control, but I’m not sure. On some boards it may even be referred to as A0. For our purposed we connect it to D4. RST is the screen reset and and is connected to pin D3. These last two can connect to any NodeMCU pins that are not used for other functions. CS is Chip Select (usually referred to as Slave Select in the SPI protocol) and again can connect to any pin but I use D2. If this is pulled low then this device can receive or send data on the SPI bus. If only one device in your design you could pull this low permanently and not use D2.
There is an issue with the line drawing routine within the Adafruit GFX library, so this part of the original demo was removed. Basically it forces the NodeMCU to reset. As I’m not going ot be using this I’ve decided for now to ignore this issue.
This person ( (146) ESP8266 and 2.4" 8-bit parallel ST7781 TFT Uno Shield - YouTube) got the same display working w/ nodeMCU (albeit their module is 5V one and has hack on the LDO).
The Bodmer/TFT_eSPI: Arduino and PlatformIO IDE compatible TFT library optimised for the Raspberry Pi Pico (RP2040), STM32, ESP8266 and ESP32 that supports different driver chips (github.com) library says 8 bit parallel is not possible w/ ESP8266 because of shortage of GPIOs - but ESP8266 has 16 GPIOs (out of which 4 are SPI). I don"t plan on using touch or SD card functionality anyways. The LCD requires 8(data) + 4 (Control) + 1 = 13 pins, which should fit in the 16 provided by ESP8266 ? Please let me know if I am missing anything.
Anyways - the first question at hand would be - is it possible to run 8 bit parallel tft w/ ESP8266, followed by - which library can do the job if possible.
It is a 2.0 inch TFT display module.TFT liquid crystal has a semiconductor switch for each pixel,and each pixel can be directly controlled by dot pulses,so each node is relatively independent and can be continuous...
Simply put: that TFT requires a lot of GPIO pins - 10 at an absolute bare minimum, but better if you have more available. The ESP8266 doesn"t have many IO pins - and some of them are very sensitive about what they can be connected to without affecting the boot process.
NodeMCU ESP8266 + TFT SPI LCD Display WHERE TO BUY :: https://bit.ly/2GthwbhTFT SPI ILI9225 Libraryhttps://github.com/jorgegarciadev/TFT_22_ILI9225::::::::: ...
ILI9341 is a 262,144-color single-chip SOC driver for a-TFT liquid crystal display with resolution of 240RGBx320 dots, comprising a 720-channel source driver, a 320-channel gate driver, 172,800 bytes GRAM for graphic display data of 240RGBx320 dots, and power supply circuit. ILI9341 supports parallel 8-/9-/16-/18-bit data bus MCU interface, 6-/16-/18-bit data bus RGB interface and 3-/4-line serial peripheral interface (SPI). The moving picture area can be specified in internal GRAM by window address function. The specified window area can be updated selectively, so that moving picture can be displayed simultaneously independent of still picture area.
You can find ILI9341-based TFT displays in various sizes on eBay and Aliexpress. The one I chose for this tutorial is 2.2″ length along the diagonal, 240×320 pixels resolution, supports SPI interface, and can be purchased for less than $10.
Note that we will be using the hardware SPI module of the ESP8266 to drive the TFT LCD. The SPI communication pins are multiplexed with I/O pins D5 (SCK), D6 (MISO), and D7 (MOSI). The chip select (CS) and Data/Command (DC) signal lines are configurable through software.
For ILI9341-based TFT displays, there are some options for choosing the library for your application. The most common one is using Bodmer. We will use this library in this tutorial. So go ahead and download the
The library contains proportional fonts, different sizes can be enabled/disabled at compile time to optimise the use of FLASH memory. The library has been tested with the NodeMCU (ESP8266 based).
Configuration of the library font selections, pins used to interface with the TFT and other features is made by editting the User_Setup.h file in the library folder. Fonts and features can easily be disabled by commenting out lines.
Now you are all set to try out tons of really cool built-in examples that come with the library. The following output corresponds to the TFT_Pie_Chart example.
My favorite example is TFT terminal, which implements a simple “Arduino IDE Serial Monitor” like serial receive terminal for monitoring debugging messages from another Arduino or ESP8266 board.
NodeMCU has ESP-12 based serial WiFi integrated on board to provide GPIO, PWM, ADC, I2C and 1-WIRE resources at your finger tips, built-in USB-TTL serial with super reliable industrial strength CH340 for superior stability on all supported platforms.
The breakout has the TFT display soldered on (it uses a delicate flex-circuit connector) as well as a ultra-low-dropout 3.3V regulator and a 3/5V level shifter so that you can use it with 3.3V or 5V power and TTL control logic.
This is a single-chip controller/driver for 262K-color, graphic type TFT-LCD. It consists of 396 source line and 162 gate line driving circuits. This chip is capable of connecting directly to an external microprocessor, and accepts Serial Peripheral Interface (SPI), 8-bit/9-bit/16-bit/18-bit parallel interface.