difference between crt and lcd monitors in stock

CRT and LCD are both display devices. CRT is an old technology whereas LCD is modern one. One major difference between CRT and LCD is in the technology used for image formation. The CRT display produces an image by using an electron beam, while LCD display produces an image on the screen using liquid crystal display.

CRT stands for Cathode Ray Tube. CRT displays produce an image on the screen by using a sharp beam of electrons that is highly focused to hit a phosphor screen present in front of the tube. The important components of a CRT are electron gun, focusing mechanism, and phosphor screen.

CRT was used in earlier TVs and computer monitors. CRT produces poor quality images on the screen and also consumes large electricity. The lifespan of CRT displays is very short. Because of all reasons, CRTs are being replaced by other display technologies these days.

LCD stands for Liquid Crystal Display. In LCD, liquid crystals are used to produce images on the screen. LCD displays are thin and more energy efficient, thus they are used in several small sized devices like mobiles, laptops, TVs, desktop computer monitors, calculators, etc.

In LCDs, light is obtained from external sources, and then it is converted into a definite graphics pattern using optical effects. LCDs have several advantages over CRT such as less power consumption, faster response, smaller size, low cost, etc.

Both CRT and LCD have their own advantages and disadvantages. However, these days, CRTs have almost become extinct. No one seems to be using them anymore. LCDs and other display technologies have replaced them because the new devices are highly efficient in terms of cost, power, and performance.

difference between crt and lcd monitors in stock

CRT stands for Cathode Ray Tube and LCD stands for Liquid Crystal Display area unit the kinds of display devices wherever CRT is employed as standard display devices whereas LCD is more modern technology. These area unit primarily differentiated supported the fabric they’re made from and dealing mechanism, however, each area unit alleged to perform identical perform of providing a visible variety of electronic media. Here, the crucial operational distinction is that the CRT integrates the 2 processes lightweight generation and lightweight modulation and it’s additionally managed by one set of elements. Conversely, the LCD isolates the 2 processes kind one another that’s lightweight generation and modulation.

difference between crt and lcd monitors in stock

Since the production of cathode ray tubes has essentially halted due to the cost and environmental concerns, CRT-based monitors are considered an outdated technology. All laptops and most desktop computer systems sold today come with LCD monitors. However, there are a few reasons why you might still prefer CRT over LCD displays.

While CRT monitors provide better color clarity and depth, the fact that manufacturers rarely make them anymore makes CRTs an unwise choice. LCD monitors are the current standard with several options. LCD monitors are smaller in size and easier to handle. Plus, you can buy LCD monitors in a variety of sizes, so customizing your desktop without all the clutter is easy.

The primary advantage that CRT monitors hold over LCDs is color rendering. The contrast ratios and depths of colors displayed on CRT monitors are better than what an LCD can render. For this reason, some graphic designers use expensive and large CRT monitors for their work. On the downside, the color quality degrades over time as the phosphors in the tube break down.

Another advantage that CRT monitors hold over LCD screens is the ability to easily scale to various resolutions. By adjusting the electron beam in the tube, the screen can be adjusted downward to lower resolutions while keeping the picture clarity intact. This capability is known as multisync.

The biggest disadvantage of CRT monitors is the size and weight of the tubes. An equivalently sized LCD monitor can be 80% smaller in total mass. The larger the screen, the bigger the size difference. CRT monitors also consume more energy and generate more heat than LCD monitors.

For the most vibrant and rich colors, CRTs are hard to beat if you have the desk space and don"t mind the excessive weight. However, with CRTs becoming a thing of the past, you may have to revisit the LCD monitor.

The biggest advantage of LCD monitors is the size and weight. LCD screens also tend to produce less eye fatigue. The constant light barrage and scan lines of a CRT tube can cause strain on heavy computer users. The lower intensity of the LCD monitors coupled with the constant screen display of pixels being on or off is easier on the eyes. That said, some people have issues with the fluorescent backlights used in some LCD displays.

The most notable disadvantage to LCD screens is the fixed resolution. An LCD screen can only display the number of pixels in its matrix. Therefore, it can display a lower resolution in one of two ways: using only a fraction of the total pixels on the display, or through extrapolation. Extrapolation blends multiple pixels together to simulate a single smaller pixel, which often leads to a blurry or fuzzy picture.

For those who are on a computer for hours, an LCD can be an enemy. With the tendency to cause eye fatigue, computer users must be aware of how long they stare at an LCD monitor. While LCD technology is continually improving, using techniques to limit the amount of time you look at a screen alleviates some of that fatigue.

Significant improvements have been made to LCD monitors over the years. Still, CRT monitors provide greater color clarity, faster response times, and wider flexibility for video playback in various resolutions. Nonetheless, LCDs will remain the standard since these monitors are easier to manufacture and transport. Most users find LCD displays to be perfectly suitable, so CRT monitors are only necessary for those interested in digital art and graphic design.

difference between crt and lcd monitors in stock

There are two primary types of computer monitors in use today: LCD monitors and CRT monitors. Nearly every modern desktop computer is attached to an LCD monitor. This page compares the pros and cons of both the CRT type displays and LCD or flat-panel type displays. You"ll quickly discover that the LCD or flat-panel displays pretty much sell themselves and why they are the superior display used today.

LCD monitors are much thinner than CRT monitors, being only a few inches in thickness (some can be nearly 1" thick). They can fit into smaller, tighter spaces, whereas a CRT monitor can"t in most cases.

Although a CRT can have display issues, there is no such thing as a dead pixel on a CRT monitor. Many issues can also be fixed by degaussing the monitor.

LCD monitors have a slightly bigger viewable area than a CRT monitor. A 19" LCD monitor has a diagonal screen size of 19" and a 19" CRT monitor has a diagonal screens size of about 18".

difference between crt and lcd monitors in stock

A cathode-ray tube monitor is a display device used in television sets and computer monitors. It is a kind of vacuum tube which contains one or more electron guns, electrostatic deflection plates and a phosphor target which is located at the back of the glass screen.

In computer or in a television set, images and color are produced by shooting and controlling the electrons beams representing each additive color light (red, blue and green) using the video signal as the reference. The brightness, color and persistence of the illumination can be varied using different kinds of phosphor.

Cathode ray tubes (CRTs) have an electron gun at the end of the monitor tube. The electron gun emits electron beam that strikes the phosphors dots on the monitor screen.

difference between crt and lcd monitors in stock

The main key difference between CRT and LCD exist in their image forming technique. CRT displays images on the screen by making use of an electron beam while in LCD utilizes liquid crystals for the formation of an image on the screen. Here we will discuss some other important main key difference between CRT and LCD to better understand this topic.

CRT stands for a cathode-ray tube. It is a display device used in the television set and computer monitors. It is a one kind of vacuum tube that contains one or more electron guns, electrostatic deflection plates, and a phosphor target which is located at the back of the glass screen.

LCD stands for liquid crystal display. It monitors a computer monitor or display that uses LCD technology to show clear images and is found in many laptop computers and flat-panel monitors. This device is available to display arbitrary images or some fixed images with low information content. Which can be displayed or hidden such as preset word, some digits, and seven-segment display and also a digital clock.

CRT and LCD both are display devices. The power consumed by LCD is approximately around the 1/3rd of that of the CRT.CRT consuming high power compared to LCD.

A major component of CRT is phosphor screen, electron gun, vacuum glass tube, deflection plate. While in The main component of LCD was an internal light source, glass plate, nematic liquid crystal.

One of the excellent properties of LCD over CRT is its an antiglare property. LCD screen more efficiently reduces the glare generated by light as compared to the CRT.

CRT is more dominant in flickering as it possesses a low refresh rate that causes a drop in image brightness that is easily recognized by makes eyes. While flickering is not that much higher in LCD due to its high refresh rate.

difference between crt and lcd monitors in stock

The article provides a detailed insight into the difference between CRT and LCD display type of PC monitors. Take time to read through to get awareness.

difference between crt and lcd monitors in stock

The primary component used in the CRT is the vacuum tube while in LCD it is liquid crystal. The LCD uses shutter effect and also known as twisting of light for displaying images. On the other hand, CRT employs beam penetration and shadow masking methods.

CRT expands to (Cathode Ray Tube) which uses electron beam (cathode rays) and utilized in monochromatic display monitors. CRT is made up of a glass tube where in one end there exists a display screen coated with phosphor while on the other end connectors are attached to it.

Phosphor posses a useful property of light, it can emit light (Fluorescence) continuously for a specific duration when struck by an electron beam. This fluorescence is consistently glowing even after removing the beam which is known as phosphor persistence. The various types of phosphor and variable time period are capable of generating different colours of the light.

On the reverse side of the screen, there is an electron gun placed, to emit electrons. The electrons in the electron gun are controlled through the control electrode and forced by concentrating the electrode into the narrow beam at the tiny spots over the phosphor coating. When the electron beam crosses the deflection plates, they are compelled to bend in the horizontal and vertical direction according to the horizontal and vertical deflection plate.

The displaying image is stored at the memory area known as a frame buffer, and the control circuit is a significant component for producing proper video signals for the display monitor.

The colour CRT uses three different electron guns inspite of single electron guns and three kinds of phosphor coating inside the display screen. This phosphor coating is capable of emitting red, green and blue light.

Now, what is refresh rate? The rate at which the content of the frame buffer transmitted to the display monitor is referred to a refresh rate. The required rate of refreshing for proper functioning is 60 frames per second or even more than that. The flickering effect is one of the major demerits of the CRT’s which causes due low refreshing rate. The low refreshing rates rise the inability of integration of light impulses from the phosphor dots into a stable picture.

Another major issue in CRT is that the phosphor persistence of monitor must be accurate, sufficiently long for a frame to retain the visibility while short enough to fade prior to the next frame is displayed.

LCD (Liquid Crystal Displays) are categorized under the non-emissive displays as it uses optical effects to transform the light into graphics pattern. It renders the pictures on monitors by passing the polarized light from the atmosphere or internal light source across a liquid crystal material which can completely allow the light to transmit or block it.

Here the meaning of the liquid crystals is associated with the liquid characteristic of the molecules even after being arranged in a crystalline structure. These are the flat panel displays usually uses nematic liquid crystals, where the molecules align in free patterns. These are constructed by the two glass plates each containing a light polarizer positioned at 90° degrees to the other plates sandwiching the liquid crystal material. The rows of horizontal transparent conductor and column vertical transparent conductors are arranged in the two distinct glass plates where their intersection specifies a pixel position.

The alignment of the molecules in LCD is shown in the diagram given below where in the “on state” the polarized light surpassing the material is tilted at 90 degrees making it possible to be passed through the opposite polarizer. After that, the light is reflected back to the viewer. For switching off the pixel the voltage is applied to the two intersecting conductors to align the molecules causing 0° degrees of rotation.

In LCD’s to present colours a triad of colour pixels is placed at each pixel location which is formed using different materials or dies, these are known as passive matrix display. In some cases, the LCD is constructed using a transistor, here the primary task of the transistor is to regulate the voltage at each pixel positions and preventing the leakage of charges from liquid crystal cells.

The cost of CRT is low due to the popularity of LCD, the use of CRT had been extremely reduced while LCD can be purchased at a higher price as compared to CRT.

The equipment used in CRT to form image is the electron beam. On the contrary, the liquid crystal is the major component of LCD in the formation of the image.

CRT is the older technology which also has flaws such as image flickering, high power consumption, low resolution. However, these are still in use in some places. On the other side, LCD is newer technology and has eliminated several limitations of CRT’s, but still, CRT response rate is better than LCD.

difference between crt and lcd monitors in stock

Responsible for performing installations and repairs (motors, starters, fuses, electrical power to machine etc.) for industrial equipment and machines in order to support the achievement of Nelson-Miller’s business goals and objectives:

• Perform highly diversified duties to install and maintain electrical apparatus on production machines and any other facility equipment (Screen Print, Punch Press, Steel Rule Die, Automated Machines, Turret, Laser Cutting Machines, etc.).

• Provide electrical emergency/unscheduled diagnostics, repairs of production equipment during production and performs scheduled electrical maintenance repairs of production equipment during machine service.

difference between crt and lcd monitors in stock

Resolution on a CRT is flexible and a newer model will provide you with viewing resolutions of up to 1600 by 1200 and higher, whereas on an LCD the resolution is fixed within each monitor (called a native resolution). The resolution on an LCD can be changed, but if you’re running it at a resolution other than its native resolution you will notice a drop in performance or quality.

Both types of monitors (newer models) provide bright and vibrant color display. However, LCDs cannot display the maximum color range that a CRT can. In terms of image sharpness, when an LCD is running at its native resolution the picture quality is perfectly sharp. On a CRT the sharpness of the picture can be blemished by soft edges or a flawed focus.

A CRT monitor can be viewed from almost any angle, but with an LCD this is often a problem. When you use an LCD, your view changes as you move different angles and distances away from the monitor. At some odd angles, you may notice the picture fade, and possibly look as if it will disappear from view.

Some users of a CRT may notice a bit of an annoying flicker, which is an inherent trait based on a CRTs physical components. Today’s graphics cards, however, can provide a high refresh rate signal to the CRT to get rid of this otherwise annoying problem. LCDs are flicker-free and as such the refresh rate isn’t an important issue with LCDs.

Dot pitch refers to the space between the pixels that make up the images on your screen, and is measured in millimeters. The less space between pixels, the better the image quality. On either type of monitor, smaller dot pitch is better and you’re going to want to look at something in the 0.26 mm dot pitch or smaller range.

Most people today tend to look at a 17-inch CRT or bigger monitor. When you purchase a 17-inch CRT monitor, you usually get 16.1 inches or a bit more of actual viewing area, depending on the brand and manufacturer of a specific CRT. The difference between the “monitor size” and the “view area” is due to the large bulky frame of a CRT. If you purchase a 17″ LCD monitor, you actually get a full 17″ viewable area, or very close to a 17″.

There is no denying that an LCD wins in terms of its physical size and the space it needs. CRT monitors are big, bulky and heavy. They are not a good choice if you’re working with limited desk space, or need to move the monitor around (for some odd reason) between computers. An LCD on the other hand is small, compact and lightweight. LCDs are thin, take up far less space and are easy to move around. An average 17-inch CRT monitor could be upwards of 40 pounds, while a 17&-inch LCD would weigh in at around 15 pounds.

As an individual one-time purchase an LCD monitor is going to be more expensive. Throughout a lifetime, however, LCDs are cheaper as they are known to have a longer lifespan and also a lower power consumption. The cost of both technologies have come down over the past few years, and LCDs are reaching a point where smaller monitors are within many consumers’ price range. You will pay more for a 17″ LCD compared to a 17″ CRT, but since the CRT’s actual viewing size is smaller, it does bring the question of price back into proportion. Today, fewer CRT monitors are manufactured as the price on LCDs lowers and they become mainstream.

difference between crt and lcd monitors in stock

CRT and LCD are two display technologies used by monitors. CRT is an older technology. For domestic applications, CRT screens have largely been replaced by LCD and plasma screens. However, CRTs continue to be used in science and medicine, where they are used in as cathode ray oscilloscopes (CROs). The main difference between CRT and LCD is that the CRT screens use electron guns to shoot beams of electrons in order to display images whereas LCD screens use the “twist” in liquid crystals to display the images.

CRT stands for cathode ray tube. In CRTs, there are heated metal filaments called cathodes. These filaments emit electrons which are then accelerated by anodes, forming beams of electrons. An anode-cathode pair producing an electron beam is called an electron gun.  The intensity of the electron beam can be controlled by changing the voltage applied to the cathode.

These accelerated electrons travel through a vacuum and strike the television screen. The screen of a CRT is coated with a phosphor, so that when electrons strike the screen, a glow is produced. The brightness of the glow depends on the intensity of the electron beam. The screen is made of many pixels, each pixel consisting of regions coated with different phosphors that would give off a red, green or blue light when electrons strike it. There are three electron beams produced by three electron guns, each beam made to strike a particular phosphor and produce a specific colour. Since the blue, green and red lights are produced in a small region we do not see the individual red, green and blue lights. Instead, depending on how much red, green and blue is present, we can see various colours.

To make sure that electrons from each beam ends up on the intended pixel and not on a neighbouring pixel, a shadow mask is used. This consists of a metal sheet with holes, and it sits behind the screen (some CRTs make use of a filter called aperture grill instead of a shadow mask). To produce an image, electron guns need to illuminate one pixel at a time. They do this at a very fast speed, however, so that we do not notice each pixel lighting up one by one.

LCD stands for liquid crystal display. An LCD has two polarising filters placed behind the screen, with their angles of polarisation perpendicular to each other. Normally, if two polarising filters are placed in this way, light cannot reach the screen. However, LCDs have a material called “twisted nematic liquid crystals” sandwiched between these two polarising filters. Liquid crystals are a special type of molecules which are arranged like molecules in a solid, although they have the ability to move about. In particular, twisted nematic liquid crystals can twist. Because they twist, they rotate the plane of polarisation of light passing through them.

In LCD screens, the liquid crystals are placed in such a way that their twist allows the light coming through one polarising filter to pass through the other filter. The “amount of twist” in the molecules, and thereby how much of the light passes through the filters, can be altered by means of a potential difference applied across the liquid crystal layer. The diagram below shows the different layers present in an LCD screen:

Just like a CRT, the LCD screen is also made of many pixels, each pixel consisting of three subpixels to produce red, green and blue light. Each subpixel is given an electrode so that by altering the voltage of this electrode, it is possible to alter the brightness of each coloured subpixel. The following video describes how an LCD screen works, with animations:

CRT screens use electron guns to shoot a beam of electrons onto the screen. The screen is coated with a phosphor, which glows when electrons strike it.

LCD screens use an electric field to untwist molecules of liquid crystals sandwiched between two polarising filters so that the electric field can control the .

Contrary to popular belief, CRT screens are technically capable of producing better-quality images with a high contrast, since they do not need to be backlit, like LCD screens.

difference between crt and lcd monitors in stock

Cathode Ray Tubes (CRT) were once the only way to convey pictures. They are large, bulky and consume a lot of power. Liquid Crystal Displays or more commonly known as LCDs are beginning to replace CRTs in most applications today. They are essentially the reverse of what CRTs are, light, thin, and energy efficient. Also, because of the high power consumption of CRT displays, it needs to dissipate a greater amount of energy which makes it run hotter compared to LCDs.

The only aspect where CRT wins over LCD in performance is in the response time. Older LCDs have been plagued with very slow response times that create ghosting effects on the screen whenever there is high speed motion. This made early LCD screens unsuitable for most gaming needs and even in viewing movies, but newer LCDs have improved on it and this is no longer such a big issue.

Understandably, LCDs cost significantly more compared to CRTs in displays of the same size due to the more complex production process that is needed to produce LCDs. But consumers often rationalize that the extra cost is recovered after a while due to the significantly lower power consumption. The physical dimensions of the LCD also meant that it is usable in so many applications where CRTs would simply be impractical to use. Aside from the usual TV screen or computer monitor, LCDs are also used in mobile phones, digital cameras, music players, GPS navigators, and so much more.

A problem that is unique to LCD screens is the dead pixel, which is unheard of in CRT screens. Since LCDs are a matrix of pixels, one or more of these pixels may not function due to irregularities in the production process. This leaves a small dot on the screen that doesn’t change with the display, appearing like a small piece of dirt stuck in there. Most manufacturers would accept and replace screens that have dead pixels in them but it is always best to inquire about the warranty and their dead pixel policy.

difference between crt and lcd monitors in stock

"Between 0.0001 and 0.00001 nits" "Sony claims an OLED contrast range of 1,000,000:1. When I asked how the contrast could be so high I was told that the surface is SO black the contrast is almost infinite. If the number representing the dark end of the contrast scale is nearly zero then dividing that number into the brightest value results in a very, very high contrast ratio."

Does not normally occur at 100% brightness level. At levels below 100% flicker often occurs with frequencies between 60 and 255 Hz, since often pulse-width modulation is used to dim OLED screens.

No native resolution. Currently, the only display technology capable of multi-syncing (displaying different resolutions and refresh rates without the need for scaling).Display lag is extremely low due to its nature, which does not have the ability to store image data before output, unlike LCDs, plasma displays and OLED displays.

difference between crt and lcd monitors in stock

Also, setup and key adjustments are more complicated with LCDs—and much more necessary—than they are with CRTs. To be sure, all displays can benefit from proper tuning and adjustment. But LCDs are more likely to experience clarity or viewability issues if they"re not tuned and tweaked to optimum conditions.

In this Recipe, we"ll tackle the system-building differences between LCDs and CRTs. We"ll also describe the kinds of usage situations best suited to one kind of display over the other. Finally, we"ll describe some important tools you can use to make sure your customers get the most from their LCD choices.

We"ll start with the pros and cons of CRT displays, and then do likewise for LCDs. After that, we"ll make some comparisons and explain which type of display is best-suited for specific, identifiable usage scenarios.

Our comparison of the pros, cons, and differences between CRT and LCD displays hinges on the differences between analog and digital technologies. CRTs are analog; therefore, they support continuous values, smooth scaling, and arbitrarily high resolutions (within reason or the limits of technology). LCDs are digital and therefore work like an array of individual, discrete pixels with individual, discrete color and gray-scale values, and a fixed, native resolution. In mathematical terms, it"s the difference between a continuous integral versus a stair-step function. Here"s how they line up:

Color/gray-scale accuracy: Best color and gray scale accuracy; used as reference standard for professional calibration. Perfectly smooth gray-scale with infinite number of intensity levels.

Motion artifacts: The faster images move on a display, the more past display values can affect current display contents; these leftovers are called motion artifacts. CRTs offer fast response times with no motion artifacts. For this reason, CRTs are the best choice for fast-moving or ever-changing images.

Resolution: CRTs operate at any resolution, geometry, and aspect ratio with no need to rescale images shown. CRTs also run at the highest resolutions graphics cards support.

Emissions: CRTs emit electrical, magnetic, and electromagnetic fields, where magnetic fields are often believed to pose health hazards (although no available scientific evidence supports this belief).

Geometric distortion: CRTs are subject to geometric distortion and generally include adjustments to counter same. But they may also be affected by magnetic fields from other devices.

Interference: CRTs produce visual distortions known as Moire patterns. While many monitors offer Moire reduction, this doesn"t entirely eliminate this problem.

Sharpness: CRTs use electron beams to activate pixels on their screens. This results in softer images than an LCD operating at its native resolution. (But a CRT is usually sharper than an LCD not operating at its native resolutions.)

Size, weight, and power consumption: CRTs are big and bulky. They consume more power—and give off more heat—than most other display technologies.

Size, weight, and power consumption:LCDs are thin-profile devices that are generally lighter than CRTs. LCDs also consume less electricity—and give off less heat—than CRTs.

Aspect ratio: Any LCD has a fixed resolution and aspect ratio. For panels with a resolution of 1280 x 1024 (common for 17- and 19-inch models), the aspect ratio is 5:4 or 1.25, smaller than the 4:3 or 1.33 ratio common for other displays. This may require letterboxing to a 1280 x 960 resolution to get a standard 4:3 ratio.

Bad pixels and screen uniformity: LCDs may include malfunctioning pixels that are weak, or stuck in on or off modes. They are also subject to variations in backlighting, owing to the use of light sources at the top or bottom edges of the display.

Black-level, contract, color saturation: LCDs are poor at producing deep blacks and dark grays. This results in lower contrast and reduced color saturation for low intensity colors, which makes LCDs a poor choice for dimly lit or dark environments.

Color and gray scale accuracy: Internal gamma and gray-scale on an LCD varies by location on the display surface. LCDs normally produce only a limited number—fewer than 256—of discrete intensity levels. This leads to image-accuracy issues with black level, gray-scale, and gamma, and it isn"t suitable for professional color balancing.

Interference: LCDs using analog input require painstaking adjustment of pixel tracking and phase to minimize digital noise in image display. Automatic controls seldom produce optimum outputs, and it may be impossible to eliminate all digital noise completely.

Motion artifacts: The slower an LCD"s pixel refresh rate—often called response time, though this term is more appropriate for CRTs—the more likely it is that motion artifacts will appear. For continuous or very fast motion, some artifacts are inevitable on an LCD.

Resolution: Native resolution is set by the manufacturer and cannot be altered. All other resolutions require re-scaling and leads to image degradation, especially where fine text and graphics are concerned.

White saturation: White levels on LCDs are easily overloaded, and maximum brightness occurs before gray-scale values peak. This phenomenon is best managed by careful contrast-setting adjustments.

When it comes to picking one kind of display over the other, here"s what you should advise your customers on a number of criteria, including needs, pocketbooks, and working environments:

Color or gray-scale accuracy: Users who need or want higher color or gray-scale accuracy, and more viewable deep blacks or dark grays, will be better served by CRTs. Professional color balancing demands a high-quality CRT.

Contrast: CRTs produce the brightest contrast levels available, LCDs fare somewhat more poorly, especially with black and dark colors. Contrast ratio numbers published for LCD displays cannot always be taken literally.

Environmental concerns:CRTs, especially the picture tube itself, are chock-full of heavy metals of several varieties and pose more challenges for recycling than do LCDs. Also, smaller size and weight means less waste to manage. Also, LCDs emit less heat and other forms of energy—electrical, electromagnetic and magnetic—than do CRTs.

Lighting: Users who work in bright light are bound to prefer an LCD. Users who work in lower-light conditions will increasingly prefer a CRT as ambient light decreases.

Motion and artifacts: Users who need or want to work with fast or constantly moving images are best served by CRTs. But this also limits diagonal sizes to no more than 24 inches.

Operating costs: Those concerned about energy consumption will favor LCDs, as these monitors consume at least 40 percent less electricity than CRTs with the same rated diagonal measurements. (And standby mode savings are about 40 percent.) In theory, users can also get away with less office space by using LCDs, translating into lower rent.

Purchase cost: Those with smaller budgets should consider CRTs, as they cost 50 percent or less than LCDs with the same reported diagonal measurements.

Resolution: If a user doesn"t like an LCD at its native resolution, this spells trouble. Native resolution for an LCD is equivalent to maximum resolution on a CRT; it represents the upper limit of picture quality for a given model. So if a user needs a monitor to run at multiple resolutions, especially if they also need fine text and graphics for all resolutions, this virtually mandates a CRT.

With more customers switching to LCDs, system builders should understand how to set up these monitors and configure them properly once they"re in place. A system builder should also know how to get the best-looking text on the screen. To help, we"ll now describe some great tools for system builders working with LCD displays.

ClearType is a Microsoft technology specifically designed to improve text readability on LCD screens, including laptop screens, mobile device displays, and flat-panel monitors. ClearType technology can access individual color elements in each pixel on an LCD display. Prior to its introduction, the level of detail operated at the pixel level. But with ClearType running on an LCD monitor, features of text as small as a fraction of a pixel in width can be displayed, according to Microsoft. This leads to a visible improvement in the sharpness of tiny text details. It not only improves readability, but also is easier on the eyes, especially over extended periods of time.

ClearType is included with Windows XP. But to tweak text settings on individual LCD displays, you must download a Windows PowerToy called ClearType Tuner.

Once downloaded and installed, ClearType Tuner appears as a control panel widget named ClearType Tuning. Its users work with a wizard that asks them to select among multiple on-screen displays that look the best, in much the same way an optometrist works with patients to help determine a new prescription for corrective lenses.

Using the ClearType Tuning widget is fast and easy, and a bit of practice makes working with it a snap. You"ll also see noticeable improvements to text on LCD screens as a consequence of its use, as toggling the check box for "Turn on ClearType" in the widget itself will show.

DisplayMate Technologies is a small and highly-regarded company that offers a family of powerful tools of great interest to system builders and consultants. The company offers a $89 (download only) or $99 (CD and manual shipped to buyer) product called DisplayMate for Windows Video Edition, which we highly recommend. It not only supports both CRT and LCD displays, but also other display types, including liquid crystal on silicon (LCoS), digital light processing (DLP), TV, HDTV, Plasma, and multi-media displays. Though this product aims primarily at end-users and consumers, system builders and consultants on a tight budget can get plenty of value from this product.

System builders who work with lots of displays and really want to get the most out of them will probably prefer the higher end DisplayMate Multimedia Edition, which sells for $495. It not only handles the same kinds of displays as the aforementioned Windows Video Edition, but also includes many more test patterns and command scripts to perform customized display testing and tuning.

This scaffolding around the consumer-level DisplayMate for Windows program provides users with a set of detailed descriptive text screens that precede each of the monitor test sequences under two general headings: Set-Up Program and Tune-Up Program.

The Set-Up program helps familiarize users with graphics and display capabilities on the systems under test, and to establish initial configuration. The Tune-Up Program provides quick checks on specific display capabilities, with opportunities to tweak and tune them for optimal display output.

Introduction: A lead-in screen for the program that briefly describes its capabilities and (more important) provides the option to toggle the Novice Option on or off. Beginners will appreciate its information and instructions, while experienced users can ignore this.

Set-Up Display: A stepwise procedure that leads users through all available user controls on their display and graphics card, each of which is associated with a test pattern and an explanation of how to use its appearance on screen to achieve settings that are visually optimal. First, an initial explanation appears on screen. Then, users click through a sequence of 22 test-pattern screens that include checks on brightness and contrast, intensity range, black-level, and gray scale checks, numerous standard test patterns and color gauges, and numerous geometry checks. The whole sequence takes at least 30 minutes to traverse the first few times through, especially if you read all the preliminary text that precedes each individual test (and if our experience is any guide, you definitely should).

Video Obstacle Course: A set of demanding and difficult images designed to stress test displays and show settings in need of adjustment or improvement. The software also provides information about what users will see during these 24 tests, and how to remedy any potential problems or issues they may expose. About a third of the tests repeat from the previous Set-Up Display sequence, but others deal with important checks related to Moire patterns, color registration, screen and local display regulation, and more. Expect to spend at least 30 minutes working through this series of test patterns and checks.

Master Test Pattern: As the name suggests, this one has a little bit of everything: Geometry, focus and resolution checks, gray-scale and color levels and saturation, and more. You"ll learn to use this to take a quick look at a display and see if it needs some (or more) work.

Video System Information: Shows what information from your display and graphics card DisplayMate can read, including native resolution, screen colors, gray levels, screen and pixel aspect ratios, pixel shape (square or not), color depth, palette, and planes, as well as system font and display driver information. Useful to make sure everything is as it should be.

The DisplayMate Tune-Up Program includes the following elements, whose organization indicates that this tool takes a functional view of the various activities involved in display tuning and tweaking:

Sharpness and Resolution: Deals with sharpness, focus, and resolution with numerous horizontal and vertical bars, as well as the battery of Moire pattern tests (18 in all).

Screen Pixel Resolution: Shows a series of 15 visually interesting test patterns to check screen resolution, fineness of detail, and accuracy in a series of complex line and pattern traces. This is some of the coolest looking stuff in the program.

Miscellaneous Effects: A series of 14 tests and checks that let you fool around with colors and gray scales on the display. Be sure to toggle through color selections where you can; click the right mouse button to toggle through such options where available.

In our test lab, we have a number of LCD screens ranging in size from 17 inches (diagonal) to 30 inches. We found the DisplayMate program"s ability to help us properly set brightness, contrast, and pixel timing to be of greatest use. Those are the aspects of our LCDs that suffer the most when left at factory-default settings. System builders and consultants will find these tools useful in making sure that their customers and users have the best possible experiences when they upgrade or switch to LCD displays.

ED TITTEL is a freelance writer and trainer in Austin, TX, who specializes in Windows topics and tools, especially networking and security related matters. JUSTIN KORELC is a long-time Linux hacker and Windows maven who concentrates on hardware and software security topics. Ed and Justin are also co-authors of Build the Ultimate Home Theater PC (John Wiley, 2005).

difference between crt and lcd monitors in stock

CRTs are analog devices controlled by the varying voltages in the signal. There are also two controls for each of the three "beams" coming off the electron gun: bias and gain. When the three bias controls and gain controls are lumped together, you have contrast and brightness. All of these together control the floor and ceiling of the amplification (black and white luminance) as well as how quickly the luminance of the display increases from black to white. These are the controls most users know.

LCDs are digital devices and are a completely different animal. When run digitally, there is no bias or gain and in some instances...no contrast adjustment. The only variation is the intensity of the backlight. This is how LCDs connected to a computer through a DVI or ADC cable will operate. Unfortunately, digital interfaces for displays did not exist when LCDs were first introduced, so manufacturers tried to graft on analog controls since an analog signal was being used. This has caused mixed results. In most cases, setting brightness and/or contrast too high on an LCD with an analog connection will introduce clipping of the lighter tones.

Our goal is to achieve the highest contrast ratio and luminance without introducing clipping. We are measuring the luminance of a white patch and a very light gray patch and checking to see if there is an appropriate difference between them. We have found that some displays (usually laptops) will not produce a large enough luminance difference between the two patches regardless of the contrast setting. You can do this test visually. The alternating patches will be displayed continuously. If you can see them change with contrast all the way up, you can proceed. If not, turn the contrast down until you can see the difference and then proceed.

LCDs respond rather slowly to contrast and brightness adjustments and may take some time to stabilize. Since they change over time, this can cause the luminance of two sequential measurements to be greater or smaller, thus causing the indicator to move. That"s why we recommend waiting for the indicator to stabilize. When the indicator stabilizes, the display probably has as well.

difference between crt and lcd monitors in stock

CRT monitors have surged back to relevance on a wave of nostalgia, driven by the exploding popularity of retro gaming. Unfortunately, most of the reviews, specification sheets, and comparison data that once existed has vanished from the Internet, making it difficult to know what you should look for while scanning eBay and Craigslist ads.

If you’re looking for a newer display filled with the latest and greatest goodies, our guides to the best PC monitors, best 4K monitors, and best gaming monitors can help you find the perfect fit for your needs. But this particular guide will get you up to date on aging, but still hotly desired CRT monitors.

CRT monitors fell from fashion with the same breathtaking speed as portable CD players and vinyl records. Three out of four monitors sold in 2001 were a CRT. But in 2006, Sony drew curtains on the era when it ceased production of new CRT TVs and monitors.

Still, CRTs have their perks. Most have a better contrast ratio and higher refresh rates than modern LCD monitors, so content looks richer and deeper. There’s a sub-culture of first-person shooter fans who swear FPS games always look best on a high-end CRT monitor.

A CRT is also a window into an entire era of media. Films, movies, and games produced from the dawn of television to around 2004 were created with a CRT in mind. You can enjoy older media on a modern LCD or OLED, but it will never look as originally intended. A CRT computer monitor is the most versatile, practical choice for tapping into nostalgia.

One quick note: This guide is for CRT computer monitors, not professional video monitors. PVMs are high-end CRT televisions. They’re amazing for retro console gaming but aren’t designed for use with a computer.

Sony’s Trinitron dominates the conversation just as it does in the world of retro CRT televisions and PVMs. Trinitron computer monitors are excellent, easy to find, and come from Sony, a brand people still recognize today. Other outstanding brands include Mitsubishi, Hitachi, LaCie, NEC, Iiyama, and Eizo.

Dell, Gateway, HP, and Compaq monitors are less loved, but this can be an opportunity. Large PC manufacturers didn’t make monitors in-house but rebranded monitors from others, and some use the same CRT tubes found in Trinitrons and other brands. Deciphering what’s in a rebrand can be difficult, though, so you may need to take a leap of faith.

I don’t recommend fretting brands and models if this is your first CRT. Trying to find a specific monitor is frustrating and, depending on your dream monitor, can take years (or cost thousands of dollars). Still, keep brand in mind when negotiating price. A Gateway monitor with mystery specifications might look great, but it’s not worth top dollar.

CRTs were improved and refined over the years. The oldest CRT monitors commonly sold are pushing forty years of age. They have a low maximum resolution, a low refresh rate, and small physical display size.

Newer CRT monitors, such as those produced in the mid-90s and the 2000s, will look sharper, handle reflections better, and have less noticeable lines or gaps in the image they display. You’re also find better on-screen menus with extensive image quality options.

Luckily, CRT monitors often have a label indicating the year or even month of production. This is printed on the rear of the display or might be found on a sticker in this same location. Newer is better, and a CRT built this millennia are best.

Most CRT computer monitors have a display size between 13 and 21 inches. If you follow my advice and stick with newer monitors, though, you’ll be comparing monitors between 15 and 21 inches.

I don’t recommend going below 17 inches unless you’re trying to replicate the experience of a late-80s or early-90s computer or have very limited space. Smaller CRT monitors feel tiny by modern standards. They also tend to support lower resolutions that are only ideal for enjoying older content.

There’s such a thing as too large, too, so be cautious about massive CRTs. A 21-inch CRT monitor can weigh 50 or 60 pounds. You’re unlikely to run into a CRT computer monitor larger than 21 inches, and if you do, it can weigh nearly 100 pounds. The Sony GDM-FW900, a truly epic 24-inch 16:9 CRT, is the most well-known of these rare beasts.

19 inches is the sweet spot. This size of CRT monitor remains manageable. It’s about as tall as a 24-inch LCD (though narrower, of course) and isn’t too hard to find. With that said, 17-inch monitors are more common and less expensive, so don’t hesitate to leap on a 17-incher if you find one.

Resolution works differently on a CRT computer monitor than on a modern LCD. CRT monitors are an analog technology and don’t have a native resolution. CRT monitors were sometimes marketed with a “recommended” resolution that served as a guideline, but CRTs computer monitors support a range of input resolutions and refresh rates.

Take the Hitachi SuperScan 751 as an example. This 19-inch CRT computer monitor lists a maximum resolution of 1600 x 1200 at 85Hz but supports 1024 x 768 at 130Hz and 640 x 480 at 160Hz.

In general, the best resolution is the highest you can find. A monitor with a high maximum resolution will also support lower resolutions, and often a higher refresh rate. A resolution of 2048 x 1536 is the highest you’re likely to see. 1600 x 1200 is more common.

The importance of resolution depends on your use. I use my CRT monitor to run Windows 95/98 in a virtual machine, play late-90s PC games, and emulate console games. All of these were designed with lower resolutions in mind, so the content I’m viewing is usually at a resolution of 1024 x 768 or lower.

If you want to use a CRT monitor to play Doom: Eternal at insane refresh rates with near-perfect response times, however, you’ll prefer the highest resolution you can find. Resolution is not the final word on CRT monitor sharpness but in general a higher resolution will appear sharper.

Dot pitch is the distance between dots in a shadow mask or the distance between wires in an aperture grill. More on that in a moment. Remember that a CRT shoots electrons at the front of the display. The shadow mask or aperture grill filters the electrons so they hit phosphors at the front of the display and create a usable color image. The gaps in the shadow mask or aperture grill influences how sharp the image appears.

Dot pitch is measured in millimeters. I recommend monitors with a horizontal dot pitch around .28 millimeters or lower. A dot pitch between .24 millimeters and .21 millimeters is excellent. Lower is better, but you likely won’t find a monitor with a dot pitch below .21 millimeters in your search.

Make dot pitch a priority if you care about sharpness at resolutions beyond 1600 x 1200. A monitor with a lackluster dot pitch might support a high resolution but appear blurrier at a high resolution than a low resolution. This occurs when a CRT monitor’s dot pitch isn’t up to the task.

Dot pitch is less important if you only care to use a CRT at lower resolutions. Late-model CRT monitors will be enjoyable at 800 x 600 or 1024 x 768 no matter the dot pitch listed on their spec sheet.

A shadow mask or aperture grill is a filter a CRT computer monitor uses to make sure electrons end up where they should be. A shadow mask does the job with a metal mask of evenly spaced holes. An aperture grill uses an array of wires instead. Sony was the first to introduce aperture grill technology under the Trinitron brand name, but Sony wasn’t the only company that sold CRT monitors with an aperture grill.

In general, a monitor with an aperture grill will be superior to one with a shadow mask. The aperture grill blocks less light than a shadow mask, which translates to a brighter and more colorful picture. The aperture grill is also better suited for a flat CRT display, though flat shadow mask CRTs were produced.

That’s not to say shadow masks were trash. Hitachi and NEC put a ton of effort into shadow mask technology to rival Sony’s Trinitron and had success. A late-model Hitachi ErgoFlat or NEC ChromaClear is a great monitor. If you’re comparing two random, mid-range monitors, though, the aperture grill will probably be brighter and more attractive.

As mentioned, CRT monitors support a range of resolutions and refresh rates. The higher the resolution, the lower the refresh rate. Most late-model CRT monitors had a refresh rate of at least 75Hz at maximum resolution. Lower resolutions come with higher supported refresh rates with the best models topping out at 200Hz.

Refresh rate and resolution are linked. CRT monitors with the best refresh rates also support the highest resolutions. If you want the best refresh rate, then, you’ll need to keep an eye out for a top-tier CRT monitor, and you should expect to use it at a resolution lower than the maximum it supports.

Obsessing over a CRT’s refresh rate is often not worth the trouble. CRT monitors feel smooth not just because of refresh but also thanks to fundamental differences in how an image is produced. Nearly all late-model CRT monitors support a refresh rate of at least 75Hz at their maximum supported resolution and look exceptionally smooth.

Most CRT televisions and monitors have curved (also known as convex) glass. This was necessary to fix some problems of CRT technology. CRT makers found ways to overcome these issues by the mid-1990s and flat CRT displays hit the market. Shoppers loved them and flat-screen models dominated the final years of CRT production.

The big difference is the most obvious: Curved CRT monitors are curved, and flat CRT monitors aren’t. Your choice should come down to the “feel” you’re going for. A curved CRT will feel more accurate to a mid-90s PC or earlier, while flat screens were more common after the turn of the millennium. Those looking to use a CRT with modern software and games will prefer a flat screen as well.

The vast majority of CRT computer monitors you’ll encounter have a VGA video input. This is likely the only input on the monitor. It’s an analog technology that most modern computers do not support, so you’ll need an active DisplayPort or HDMI to VGA adapter. I use a StarTech adapter from Amazon.

Be careful about the adapter you purchase. Many, including the one I purchased, have a maximum resolution and refresh rate below the best CRT monitors available. It works for me because I’m mostly driving lower resolutions and my CRT monitor is a mid-range model. But I would need to upgrade if I bought a better CRT.

While VGA dominates by far, it’s not the only input you might find. A handful of late-model CRTs support a version of DVI-A or DIV-I, which can provide an analog signal. CRT monitors from the 1980s might use a different video input. Commodore 1701 and 1702 monitors, for example, can use a composite input (just as you’d find on a CRT television).

The fastest way to buy a CRT monitor is eBay or Etsy. Hundreds of CRT computer monitors are available, including many that fit the recommendations of this guide. You’ll have to spend several hundred dollars, however, and you can’t see the monitor before buying. Shipping is a gamble, too. Many fine CRTs have met their demise in the hands of Fedex.

Local listings like Craigslist, OfferUp, and Facebook Marketplace can help you find a more affordable monitor, but stock can be limited depending on your location. Rural readers may have to search for months or drive long distances. Try to test the CRT before you buy, especially if it’s not sold at a low price. Ask the seller to have it connected to a PC when you arrive.

Don’t neglect searching offline. I snagged my current CRT computer monitor for free from someone a few blocks away who decided to put old electronics on the curb. Yard sales and estate sales are great, too. They can be a grind if you don’t enjoy the search, but you’ll spend a lot less than you would online.

Put out the word, as well. Post on social media about your search and ask relatives if they have a hidden gem. CRT monitors aren’t easy to move or dispose of, so they’re often stuffed in a closet, attic, or basement. Many people will let you have a monitor to get it out of their hair.

Good luck on your search. Just remember: The best CRT monitor is the one you own. Don’t be too harsh on the CRTs you come across. Your first task is finding one that meets your needs and reliably works. After that, you can get picky. Once again, if you’re looking for a newer display filled with the latest and greatest goodies, our guides to the best PC monitors, best 4K monitors, and best gaming monitors can help you find the perfect fit for your needs.