3.2 tft lcd touch screen display monitor in stock
※ Price Increase NotificationThe TFT glass cell makers such as Tianma,Hanstar,BOE,Innolux has reduced or stopped the production of small and medium-sized tft glass cell from August-2020 due to the low profit and focus on the size of LCD TV,Tablet PC and Smart Phone .It results the glass cell price in the market is extremely high,and the same situation happens in IC industry.We deeply regret that rapidly rising costs for glass cell and controller IC necessitate our raising the price of tft display.We have made every attempt to avoid the increase, we could accept no profit from the beginning,but the price is going up frequently ,we"re now losing a lot of money. We have no choice if we want to survive. There is no certain answer for when the price would go back to the normal.We guess it will take at least 6 months until these glass cell and semiconductor manufacturing companies recover the production schedule. (Mar-03-2021)
ER-TFT032-2 is 240x320 dots 3.2 " color tft lcd module display with ILI9320 controller and optional 4-wire resistive touch panel,superior display quality,super wide viewing angle and easily controlled by MCU such as 8051, PIC, AVR, ARDUINO ARM and Raspberry PI.It can be used in any embedded systems,industrial device,security and hand-held equipment which requires display in high quality and colorful image.It supports 8080 16-bit parallel interface. .FPC is soldering type,there is no need for zif connector.Lanscape mode is also available.
This 3.2″ TFT LCD is a full color display with a resolution of 240 x 320 pixels or 320 x 240 pixels depending on how it is oriented. It uses the ILI9341 controller with SPI interface. It also includes a resistive touchscreen with built-in XPT2046 controller.
These full color displays are large enough for many applications even when using touch. The supplied stylus is helpful when using smaller touch targets.
Internally the display operates at 3.3V, so if using with a 5V microcontroller, be sure to include logic level shifters on the data lines to prevent possible damage.
In general, it is best to operate the display off of 5V to ensure enough power is available. Be careful of trying to operate the display from the built-in 3.3V available on Arduino and similar microcontrollers since these power sources often have limited current capability and may overheat.
These are interesting modules to work with since they have full color and graphical capability with good library support and the touch capability adds a new dimension of usefulness.
These modules are breadboard friendly with a 14-pin header on the back that can be inserted into a solderless breadboard or a 14-pin female connector can be used to connect to it if the display is to be mounted. The display is mounted on a stiff PCB that provides good support, but be sure to press on the header pins or PCB when applying pressure to insert them into a breadboard and not press on the glass to avoid possible damage.
Though these displays can seem to be a bit intimidating to use at first, just follow these steps to get up and running fairly easily. The pin labeling is on the back only, so we have pictures with the pins labeled on both the front and back to make life a little easier.
I’m also using the Teensy 4.1 because it is currently the fastest Arduino compatible board (600MHz 32-bit vs Uno 16MHz 16-bit) and this example application of calculating Mandelbrot fractals and updating the LCD can take a long time on an Uno (77-105 seconds) and only takes about 1.25 seconds on the Teensy 4.1. If using a 3.3V Arduino like a Due, hookup will basically be the same.
Connect the SPI and control lines for the display. In our example we are using hardware SPI as it gives the best performance. The SPI pin location will depend on the MCU you are using.
If you just want to check the display functionality and speed, the ‘graphicstest’ example program installed as part of the Adafruit_ILI9341 library is a good one to run.
The program below is a modified version of the Mandelbrot example program that gets installed with the Adafruit_ILI9341 library. It was pruned down in size and basic touch added. The program just calculates the Mandelbrot set and draws it to the screen pixel-by-pixel as it is calculated. The math is fairly intense for each pixel, so it is a good judge of the power of the MCU. The display update speed is thus limited by the MCU that is doing the calculations and is not limited by the display itself.
After drawing the first screen, it waits until the touchscreen is touched and then it zooms in slightly and redraws the screen. It also reports the touch location information out to the Serial Monitor window and also reports how long it took to calculate that screen. If you want to evolve the program as an exercise, it would be interesting to use the touch coordinates to center the new zoom.
It is a 3.2" display with 320x240 16-bit color pixels and a resistive touch overlay. The plate uses the high speed SPI interface on the Pi and can use the mini display as a console, X window port, displaying images or video etc. Best of all, it is use FPC cable connect with Raspberry Pi.
The RPi LCD can be driven in two ways: Method 1. install driver to your Raspbian OS. Method 2. use the Ready-to-use image file of which LCD driver was pre-installed.
3) Connect the TF card to the Raspberry Pi, start the Raspberry Pi. The LCD will display after booting up, and then log in to the Raspberry Pi terminal,(You may need to connect a keyboard and HDMI LCD to Pi for driver installing, or log in remotely with SSH)
1. Executing apt-get upgrade will cause the LCD to fail to work properly. In this case, you need to edit the config.txt file in the SD card and delete this sentence: dtoverlay=ads7846.
This LCD can be calibrated through the xinput-calibrator program. Note: The Raspberry Pi must be connected to the network, or else the program won"t be successfully installed.
Fully assembled 3.2inch display with 320x240 pixels TFT LCD and a resistive touch overlay. Just plug it on top of ODROID-C1. 2x13 tall female header is already soldered on the PCB.
3.2 inch resistive touch screen TFT LCD designed to work directly with Raspberry Pi, Raspbian Image is provided in a DVD with this product. A Touch pen is also included for effective touch interface.
In this Arduino touch screen tutorial we will learn how to use TFT LCD Touch Screen with Arduino. You can watch the following video or read the written tutorial below.
For this tutorial I composed three examples. The first example is distance measurement using ultrasonic sensor. The output from the sensor, or the distance is printed on the screen and using the touch screen we can select the units, either centimeters or inches.
The third example is a game. Actually it’s a replica of the popular Flappy Bird game for smartphones. We can play the game using the push button or even using the touch screen itself.
As an example I am using a 3.2” TFT Touch Screen in a combination with a TFT LCD Arduino Mega Shield. We need a shield because the TFT Touch screen works at 3.3V and the Arduino Mega outputs are 5 V. For the first example I have the HC-SR04 ultrasonic sensor, then for the second example an RGB LED with three resistors and a push button for the game example. Also I had to make a custom made pin header like this, by soldering pin headers and bend on of them so I could insert them in between the Arduino Board and the TFT Shield.
Here’s the circuit schematic. We will use the GND pin, the digital pins from 8 to 13, as well as the pin number 14. As the 5V pins are already used by the TFT Screen I will use the pin number 13 as VCC, by setting it right away high in the setup section of code.
I will use the UTFT and URTouch libraries made by Henning Karlsen. Here I would like to say thanks to him for the incredible work he has done. The libraries enable really easy use of the TFT Screens, and they work with many different TFT screens sizes, shields and controllers. You can download these libraries from his website, RinkyDinkElectronics.com and also find a lot of demo examples and detailed documentation of how to use them.
After we include the libraries we need to create UTFT and URTouch objects. The parameters of these objects depends on the model of the TFT Screen and Shield and these details can be also found in the documentation of the libraries.
Next we need to define the fonts that are coming with the libraries and also define some variables needed for the program. In the setup section we need to initiate the screen and the touch, define the pin modes for the connected sensor, the led and the button, and initially call the drawHomeSreen() custom function, which will draw the home screen of the program.
So now I will explain how we can make the home screen of the program. With the setBackColor() function we need to set the background color of the text, black one in our case. Then we need to set the color to white, set the big font and using the print() function, we will print the string “Arduino TFT Tutorial” at the center of the screen and 10 pixels down the Y – Axis of the screen. Next we will set the color to red and draw the red line below the text. After that we need to set the color back to white, and print the two other strings, “by HowToMechatronics.com” using the small font and “Select Example” using the big font.
Now we need to make the buttons functional so that when we press them they would send us to the appropriate example. In the setup section we set the character ‘0’ to the currentPage variable, which will indicate that we are at the home screen. So if that’s true, and if we press on the screen this if statement would become true and using these lines here we will get the X and Y coordinates where the screen has been pressed. If that’s the area that covers the first button we will call the drawDistanceSensor() custom function which will activate the distance sensor example. Also we will set the character ‘1’ to the variable currentPage which will indicate that we are at the first example. The drawFrame() custom function is used for highlighting the button when it’s pressed. The same procedure goes for the two other buttons.
So the drawDistanceSensor() custom function needs to be called only once when the button is pressed in order to draw all the graphics of this example in similar way as we described for the home screen. However, the getDistance() custom function needs to be called repeatedly in order to print the latest results of the distance measured by the sensor.
Ok next is the RGB LED Control example. If we press the second button, the drawLedControl() custom function will be called only once for drawing the graphic of that example and the setLedColor() custom function will be repeatedly called. In this function we use the touch screen to set the values of the 3 sliders from 0 to 255. With the if statements we confine the area of each slider and get the X value of the slider. So the values of the X coordinate of each slider are from 38 to 310 pixels and we need to map these values into values from 0 to 255 which will be used as a PWM signal for lighting up the LED. If you need more details how the RGB LED works you can check my particular tutorialfor that. The rest of the code in this custom function is for drawing the sliders. Back in the loop section we only have the back button which also turns off the LED when pressed.
The 3.2 inch TFT LCD module is a special design for Raspberry Pi for portable application. It features a 3.2” display with 320x240 16bit color pixels and resistive touchscreen.
The 3.2 inch TFT LCD module is a special design for Raspberry Pi for portable application. It features a 3.2” display with 320x240 16bit color pixels and resistive touchscreen.
Alibaba.com offers 953 3.2 inch tft lcd module display products. About 84% % of these are lcd modules, 9%% are lcd touch screen, and 1%% are segment displays.
A wide variety of 3.2 inch tft lcd module display options are available to you, You can also choose from tft, ips and standard 3.2 inch tft lcd module display,
• (2.4", 2.8", 3.2", 3.5", 4.3", 5.0", 7.0")• TFT 65K RGB Resistive Touchscreen• Onboard Processor and Memory• Simple ASCII Text Based Instruction Set• The Cost-effective HMI Solution with Decreased
Nextion is a Human Machine Interface (HMI) solution combining an onboard processor and memory touch display with Nextion Editor software for HMI GUI project development.
Using the Nextion Editor software, you can quickly develop the HMI GUI by drag-and-drop components (graphics, text, button, slider, etc.) and ASCII text-based instructions for coding how components interact on the display side.
Nextion HMI display connects to peripheral MCU via TTL Serial (5V, TX, RX, GND) to provide event notifications that peripheral MCU can act on, the peripheral MCU can easily update progress, and status back to Nextion display utilizing simple ASCII text-based instructions.
Nextion is available in various TFT LCD touchscreen sizes including 2.4”, 2.8”, 3.2”, 3.5”, 4.3”, 5.0”, 7.0”, 10.1” . With a large selection to choose from, one will likely fit your needs. Go Nextion Series and Product Datasheets.
The Nextion Editor software offers an easy way to create the intuitive and superb touch user interface even for beginners. Add a static picture as background, define functions by components, you can make a simple GUI in minutes. The easy Drag-and-Drop components and simple ASCII text based instructions will dramatically reduce your HMI project development workloads.
Easy-to-use components, touch event programming and customized GUI at screen side allow you to develop projects rapidly in cost-effective way. The TTL serial Nextion display is the best balance HMI solution between cost and benefit with low and decreased learning curve. See Nextion Editor Guide and Instruction Set.
A classic data logger would use a MCU and its GPIO pins, a SD card, a RTC, an LCD status display and many lines of code. Today, I"ll show you that you can have all in one, using a Nextion Intelligent series HMI and thus reduces cost and development time: First, the Intelligent series has everything "on board", the MCU, the GPIO pins, the RTC, the screen, and the SD card. Second, a very powerful component, the Data Record is available for these HMI displays in the Nextion Editor, which saves us, let"s say around 500 lines of C code. But telling you this is one thing, giving you a demo project at hands which covers all functionalities and which you can modify and extend as you need for your project is today"s topic.First of all, a happy new 2023! I"ll use this occasion to introduce a new type of Sunday blog post: From now on, every now and then, I"ll publish a collection of FAQ around a specific topic, to compile support requests, forum posts, and questions asked in social media or by email...Whatever you are currently celebrating, Christmas, Hanukkah, Jul, Samhain, Festivus, or any other end-of-the-civil-year festivities, I wish you a good time! This December 25th edition of the Nextion Sunday Blog won"t be loaded with complex mathematical theory or hyper-efficient but difficult to understand code snippets. It"s about news and information. Please read below...After two theory-loaded blog posts about handling data array-like in strings (Strings, arrays, and the less known sp(lit)str(ing) function and Strings & arrays - continued) which you are highly recommended to read before continuing here, if you haven"t already, it"s big time to see how things work in practice! We"ll use a string variable as a lookup lookup table containing data of one single wave period and add this repeatedly to a waveform component until it"s full.A few weeks ago, I wrote this article about using a text variable as an array, either an array of strings or an array of numbers, using the covx conversion function in addition for the latter, to extract single elements with the help of the spstr function. It"s a convenient and almost a "one fits all" solution for most use cases and many of the demo projects or the sample code attached to the Nextion Sunday Blog articles made use of it, sometimes even without mentioning it explicitly since it"s almost self-explaining. Then, I got a message from a reader, writing: "... Why then didn"t you use it for the combined sine / cosine lookup table in the flicker free turbo gauge project?"105 editions of the Nextion Sunday blog in a little over two years - time to look back and forth at the same time. Was all the stuff I wrote about interesting for my readers? Is it possible at all to satisfy everybody - hobbyists, makers, and professionals - at the same time? Are people (re-)using the many many HMI demo projects and code snippets? Is anybody interested in the explanation of all the underlying basics like the algorithms for calculating square roots and trigonometric functions with Nextion"s purely integer based language? Are optimized code snippets which allow to save a few milliseconds here and there helpful to other developers?