2.8 inch spi tft lcd ili9341 free sample

To download. click the DOWNLOADS button in the top right corner, rename the uncompressed folder Adafruit_ILI9341. Check that the Adafruit_ILI9341 folder contains Adafruit_ILI9341.cpp and Adafruit_ILI9341.

Place the Adafruit_ILI9341 library folder your arduinosketchfolder/libraries/ folder. You may need to create the libraries subfolder if its your first library. Restart the IDE

2.8 inch spi tft lcd ili9341 free sample

The ILI9341 TFT module contains a display controller with the same name: ILI9341. It’s a color display that uses SPI interface protocol and requires 4 or 5 control pins, it’s low cost and easy to use.

The resolution of this TFT display is 240 x 320 which means it has 76800 pixels. This module works with 3.3V only and it doesn’t support 5V (not 5V tolerant).

The ILI9341 TFT display board which is shown in project circuit diagram has 14 pins, the first 9 pins are for the display and the other 5 pins are for the touch module.

Pins D5 (GPIO14) and D7 (GPIO13) are hardware SPI module pins of the ESP8266EX microcontroller respectively for SCK (serial clock) and MOSI (master-out slave-in).

The first library is a driver for the ILI9341 TFT display which can be installed from Arduino IDE library manager (Sketch —> Include Library —> Manage Libraries …, in the search box write “ili9341” and choose the one from Adafruit).

The ILI9341 TFT display is connected to NodeMCU hardware SPI module pins (clock and data), the other pins which are: CS (chip select), RST (reset) and DC (data/command) are defined as shown below:

Full Arduino code:The following Arduino code is from Adafruit ILI9341 library (graphicstest.ino) with some modifications in order to work with the above circuit diagram.

2.8 inch spi tft lcd ili9341 free sample

Spice up your Arduino project with a beautiful large touchscreen display shield with built in microSD card connection. This TFT display is big (2.8" diagonal) bright (4 white-LED backlight) and colorful (18-bit 262,000 different shades)! 240x320 pixels with individual pixel control. As a bonus, this display has a optional resistive touch panel with controller XPT2046 attached by default and a optional capacitive touch panel with controller FT6206 attached by default, so you can detect finger presses anywhere on the screen and doesn"t require pressing down on the screen with a stylus and has nice glossy glass cover.

2.8 inch spi tft lcd ili9341 free sample

I am using an esp32 WROOM 32 dev kit, but you can use any esp32 as long as you configure the pins correctly. If you notice that I am using two separate SPI buses, one for the display and one for the touch interface. At first I tried to run both controllers off the same spi (as most of the instructions out there seem to implement) but was not successful. Once they were independent of each other, the system stabilized.

I had an MPU6050 so I added it to the project. Next I will add an oximeter, a MLX90640(software added 2/24/21) and SD card to the SPI bus(later). also on the horizon - a blue-tooth interface to an android device... stay tuned.

2.8 inch spi tft lcd ili9341 free sample

The LCD I am using is a 2.8″ TFT LCD with SPI communication. I also have another 16-bit Parallel TFT LCD but it will be another story for another time. For this post, let’s focus on how to display what you want on the 2.8″ LCD. You can find all details about this LCD from this page:http://www.lcdwiki.com/2.8inch_SPI_Module_ILI9341_SKU:MSP2807

First thing first, this LCD use SPI as the main communication protocol with your MCU. For STM32 users, HAL Library has already implemented this protocol which makes this project easier for us. But, a little knowledge about this protocol does not hurt anyone. SPI is short for Serial Peripheral Interface which, aside from two data lines, also has a clock line and select lines to choose between devices you want to communicate with.

This LCD uses ILI9341 as a single-chip SOC driver for a display with a resolution of 240×320. More details can be found in the official document of ILI9341. But the most important thing is that we have to establish astart sequencein order for this LCD to work. The “start sequence” includes many other sequences which are also defined in the datasheet. Each sequence starts when you send a command to ILI9341 and then some parameters to follow up. This sequence is applied for all communication between MCU and ILI9341.

For this project, I recommend using theSystem Workbench for STM32for coding and building the code. After installing and open the program, go to the source code you have just downloaded and double click the.cprojectfile. It will automatically be open in your IDE. Then build the program by right click on the folder you just open (TFTLCD) and chooseBuild Project. Wait for it to finish and upload it to the board by right clicking the folder, choose Run As and then clickAc6 STM32C/C++ Application. And that’s it for running the example.

The most important library for this project is obviously the ILI9341_Driver. This driver is built from the provided source code in the lcdwiki.com page. I only choose the part that we need to use the most in many applications like writing string, displaying image and drawing symbols. Another library from the wiki page is the TOUCH library. Most of the libraries I got from the Internet were not working properly due to some adjustments to the original one.

To draw symbols or even display images, we need a “byte array” of that image or symbol. As an illustration, to display an image from a game called Transistor, I have a “byte array” of that image stored in a file named transistor.h. You can find this file in the link below. Then, I draw each pixel from the image to the LCD by adding the code in the Display_Picture() function in the Display folder.void Display_Picture()

2.8 inch spi tft lcd ili9341 free sample

This new library is a standalone library that contains the TFT driver as well as the graphics functions and fonts that were in the GFX library. This library has significant performance improvements when used with an UNO (or ATmega328 based Arduino) and MEGA.

Examples are included with the library, including graphics test programs. The example sketch TFT_Rainbow_one shows different ways of using the font support functions. This library now supports the "print" library so the formatting features of the "print" library can be used, for example to print to the TFT in Hexadecimal, for example:

To use the F_AS_T performance option the ILI9341 based display must be connected to an MEGA as follows:MEGA +5V to display pin 1 (VCC) and pin 8 (LED) UNO 0V (GND) to display pin 2 (GND)

In the library Font 0 (GLCD font), 2, 4, 6 and 8 are enabled. Edit the Load_fonts.h file within the library folder to enable/disable fonts to save space.

TFT_ILI9341 library updated on 1st July 2015 to version 12, this latest version is attached here to step 8:Minor bug when rendering letter "T" in font 4 without background fixed

2.8 inch spi tft lcd ili9341 free sample

Because UTFT uses software SPI, the speed is slower than using DmTftLibrary and it require exclusive access to the SPI pins. This also means UTFT can"t be used at the same time as UTouch or other Touch libraries.

2.8 inch spi tft lcd ili9341 free sample

//#define ILI9488_DRIVER // WARNING: Do not connect ILI9488 display SDO to MISO if other devices share the SPI bus (TFT SDO does NOT tristate when CS is high)

2.8 inch spi tft lcd ili9341 free sample

You can build a Timer project where the user can set the time right on the LCD. Other examples include interactive games, controlling thermostats, etc.

The TFT displays come in two variants: With touch and without touch. The modules with touch come with an additional layer of transparent touch screen.

CLKICSP CLKICSP SPI Clock. You can access the pin by locating the ICSP header pin on the Arduino. You can wire this pin to the digital pin 13 of the Arduino using a jumper

MISOICSP MISOICSP hardware SPI MISO line. You can access the pin by locating the ICSP header pin on the Arduino. You can wire this pin to the digital pin 12 of the Arduino using a jumper

MOSIICSP MOSIICSP hardware SPI MOSI line. You can access the pin by locating the ICSP header pin on the Arduino. You can wire this pin to the digital pin 11 of the Arduino using a jumper

I am confident that the article was easy to follow. I have used TFT display with touch for an HMI project which controls the thermostat in my hobby projects to learn more about the OT system (open Therm)

2.8 inch spi tft lcd ili9341 free sample

I recently got my TFT 2.8" ILI9341 display and I"m trying to get a demo working on it on my ESP32 (Lolin D32) but I just can"t get it to work. No matter the code, library, code example, or wiring I try I it just stays on the white screen. I don"t get any errors on the IDE either.

2.8 inch spi tft lcd ili9341 free sample

Welcome to another Arduino video tutorial! In this video, we are going to take a first look at this 2.8” Color TFT Touch display! It is a big, low-cost touch display which is very easy to use. Without any further delay, let’s get started.

Today we are going to learn how to drive the 2.8” Touch display with the ILI9341 driver with an Arduino Uno and an ESP32 board. First of all, let’s take a close look at the display itself. The display is big, and it offers a resolution of 320×240 pixels. Compared to one of my favorites displays, the 1.8” Color TFT display you can see it a lot larger. The screen also offers touch functionality which is an added bonus and an SD card slot at the back. It uses the SPI interface, so the connection with the Arduino is very straightforward. The cost of the display is relatively low; it costs around 11$ which in my opinion is a fair price for what this display offers.

Now let’s see how to connect this display to an Arduino Uno. The first 9 pins of the display are the power pins and the SPI pins. So, if we connect only the first 9 pins of the display, we can use it as a regular display without touch functionality. The display uses 3.3-volt logic levels and unfortunately, it is not 5V tolerant. So, we need to use some 10K resistors if we want to drive it with a board that uses 5V logic levels like the Arduino Uno.

As you can see, we have connected Vcc to 5V of the Arduino Uno and the SPI pins of the display to the hardware SPI pins of the Arduino Uno. Let’s load a demo sketch now. As you can the 8bit Arduino Uno with only 2KBs of RAM can drive this big display! But as you can see it is very slow in updating the screen. It takes many seconds to update the whole screen which is a pity. It can display text with more speed though. It is obvious that the Arduino Uno is not enough to drive a display with such a high resolution. It is obvious that we need a more powerful board to drive this display effectively.

Let’s now see the software side of the project. In order to use this display with Arduino, we need to install the Adafruit ILI9341 driver and the familiar Adafruit GFX library if we don’t use the touch functionality. If we want to use the touch functionality, we have also to install the URtouch library. You can find links to all the libraries needed along with the code of the demo programs I showed you in the description below.