ips vs lcd display brands
Liquid crystal display (LCD) technology is one of the most widely used screen technologies. It’s instantly recognizable because of its iconic flat-panel display.
In fact, within LCD, there are several technologies each with its own strengths and weaknesses when it comes to rendering images and video effectively.
If you’re wondering what makes IPS different and if it is the right display choice for your viewing desires, this article will compare IPS and LCD technologies with an explanation of how both work and the features they bring to your experience.
IPS was developed to overcome critical limitations of legacy LCD technologies, like twisted nematic field effect (TN) matrix and vertical alignment (VA).
IPS can achieve a much wider viewing angle than the older LCD technologies. It can achieve a viewing angle of up to 178 degrees in horizontal and vertical directions, making it an ideal LCD for wide-screen television viewing.
IPS screens can achieve rates that range from 60 Hz to as much as 390 Hz. This keeps IPS as a contender technology for gaming screens even though its response rate is not as fast as more modern screen technologies like OLED.
The linear response, higher bit depth, improved contrast, and image consistency give IPS screens exemplary color accuracy. They also have little to no color shift, which often affects VA displays.
An IPS screen can be confidently used for graphic and video design work if the resolution is suitable. It renders 256 colors faithfully, but its backlit screen creates a low native contrast ratio.
IPS retains its commercial appeal because of the sheer range of screens that are available, ranging from 23.8 inches right through to 85-inch options.
The versatility of IPS screen technology enables it to be used for a range of applications and devices, including televisions, smartphones, smartwatches, and tablets.
Like other LCDs, overheating of the screen can cause blackening defects. Manufacturers have developed liquid crystal formulations with a higher critical temperature to prevent this.
Gravity defects can affect any type of LCD screen. This is where the cohesive power of the liquid crystal in the screen is low, causing it to flow down to the bottom of the screen with a yellowing defect.
With this type of LCD screen, the liquid crystals are in a plane that lies parallel to its glass substrate. Voltage is applied through opposing electrodes on the glass substrate to activate the crystals in a unified plane. Each pixel in an IPS screen requires two transistors to achieve this switching.
Katsumi Kondo of Hitachi was a significant developer of IPS technology and, by 1992, Hitachi developers had established the principles of in-plane switching, later releasing the first IPS screen.
IPS technology has continued to be used for screens that include laptops, tablets, and even smartwatches. Its viewing angles, refresh rates, and color accuracy makes it a suitable screen for gaming and design applications.
Liquid crystal display is a display technology that uses the light-modulating properties of liquid crystals to render images in conjunction with a polarizer and backlight.
LCD was the first flat-panel display technology and has diversified over the last century to create screens suitable for a wide range of applications.
Twisted nematic (TN) LCD consists of liquid crystals that rotate (twist) to allow the passage of light when voltage is applied. Adjustments to the level of voltage lead to changes in light polarization and can be used to display an image.
Without the application of voltage, the crystals remain in this position and the screen is dark. When voltage is applied, the crystals shift to a tilted position allowing light to pass through and an image to become visible. VA can achieve greater contrast than IPS, but it is still hampered by an extremely narrow viewing angle.
By the 1960s, the electro-optic properties of liquid crystals were known and, later in the decade, the concept of TN LCD was advanced with the development of screens for watches and other displays during the 1970s.
IPS monitors are the most advanced LCD technologies. They are still commercially viable with leading manufacturers like LG and Samsung selling IPS televisions with exemplary image quality.
Because IPS screens are a relatively older technology, it is possible to get a high-quality screen for prices that are much lower than the newer LED technologies. Older, TN LCD screens simply do not have the responsiveness, image quality, or color accuracy to render modern content effectively. They have become legacy technologies that are not being produced anymore.
Nano IPS vs. IPS Displays: What’s the Difference? They’re both varieties of liquid crystal displays invented by the brand LG. Which has slower response times and a wider color range? Discover all you need to know in this article.
IPS vs. LED Monitors: Which is Best for You? One offers wider viewing angles and enhanced screen consistency, while the other uses less energy, responds faster and offers better image quality. Find out which is which and what other differences set them apart.
LED vs. UHD: What’s the Difference? What are they precisely? Which one is a form of technology? Which one refers to a standard applied to screen resolution? Find out here
In-plane switching is a type of panel technology for LCDs. The LCD panel technology is famous for offering high-quality and life-like images. Additionally, the panel technology provides better contrast and viewing angles than TN and VA panel technologies.
IPS LCD monitors are also known to offer incredible color accuracy. Thus, they are an excellent choice for people looking for monitors for more than just gaming.
Simply put, LED monitors are LCD monitors. Both LED and LCD panel technologies use Liquid Crystal Display (LCD). They also have lamps at the back of the display that helps produce the images you see on your screen.
The main difference between LCD and LED technologies is in the lights you find at the back of the screen. LCDs use fluorescent lights at the back of the screen, while LED monitors have light-emitting diodes.
LED displays also have two backlighting technologies, including full array lighting and edge lighting. For the full array lighting, you have LEDs that span the entire back of the screen, whereas edge lighting has LEDs at the edges of the screen.
If you are looking for a cheaper option between the two, an LCD is ideal. An LCD is much cheaper than an LED of a similar size. You can get a bigger LCD for a more affordable price than an LED.
Many TVs use LCD (Liquid Crystal Display) panels that are lit by LED backlights. There are two popular types of LCD panels: In-Plane Switching (IPS) and Vertical Alignment (VA), and there are two main differences between each type. A VA panel usually has a high contrast ratio and narrow viewing angles. However, an IPS panel has low contrast and wide viewing angles. These are the main differences between each, and for the most part, panel type doesn"t affect other aspects of picture quality, like peak brightness, color gamut, or color accuracy.
For the purposes of this article, we"re going to compare two LED-backlit LCD TVs: the Sony X800H, which has an IPS panel, and the Hisense H9G, which has a VA panel. Due to their different panel types, there are three noticeable differences in picture quality: viewing angles, contrast, and black uniformity, so we"re going to look at each one.
Viewing angle refers to the angle at which you can watch the TV without seeing a noticeable drop in picture quality. IPS TVs are the clear winner here, as the image remains accurate when viewing from the side - you can see the differences in the videos above. This is their main advantage over VA panels. Most VA panel TVs have a noticeable loss in image accuracy when viewing from the side. The narrow viewing angle of VA-type TVs is also problematic when the TV is used as a PC monitor from up close since the edges of the display look washed out.
Contrast ratio is one of the most important factors when it comes to picture quality. It determines how well a TV displays blacks, so one with a good contrast displays deep blacks when viewed in the dark. However, if your TV has a low contrast ratio, you"ll notice that blacks look gray when viewed in the dark.
VA panels are far superior to IPS panels when it comes to this, so if you tend to watch movies in the dark, you likely want to get a TV with a VA panel. Most TVs use VA panels due to this main advantage, and high-end models may have a local dimming feature that further enhances black levels. On the other hand, IPS panels normally have low contrast, so blacks look closer to gray, but you may not notice the difference in contrast in bright environments.
Our black uniformity tests determine how well a TV displays a dark scene with a bright image in the center. Ideally, you want to see a completely black screen with the center cross being the only part that"s lit up, and this is important for people watching movies. No LED TV has perfect uniformity, and unlike viewing angles and contrast, the panel type doesn"t completely determine its black uniformity. However, most VA panels that we"ve tested have good black uniformity, while most IPS panels have sub-par black uniformity. This doesn"t mean that every VA panel TV has good uniformity, as this can change between units, and you can also improve uniformity using the local dimming feature.
LCDs function by having liquid crystals in little groups to form the pixels. These crystals react and change position when charged with electricity and, depending on their position, they allow a certain color of light to pass through.
IPS displays have their crystals aligned horizontally at all times. When charged, they turn to allow light through. VA displays have their crystals aligned vertically. When charged, they move to a horizontal position, allowing light through. When current isn"t sent through them, however, their vertical alignment blocks light far more efficiently, creating better blacks and giving better contrast.
There"s also another type of IPS panel, called Plane-to-Line Switching (PLS), which can be seen with the Sony X800H. This panel type was designed by Samsung and technically performs the same as an IPS panel. When you compare the pixels visually, IPS panels look like chevrons, VA looks like very straight rectangles, and PLS looks like round-edged capsules. You can learn more about pixels here.
The way the pixels are laid out can also affect text clarity. Many IPS panels, like the ones on the Sony X800H or the LG SK9000, use RGB sub-pixel layouts, while many VA panels have a BGR layout, like on the Hisense H9G. The sub-pixel layout doesn"t directly affect picture quality unless you"re using it as a PC monitor. Some applications may expect an RGB layout, so if you have a BGR sub-pixel layout, text may not look clear. You may need to increase the text scaling to read it properly, but this issue isn"t common with an RGB layout. You can learn more about it here.
TV manufacturers have come up with ways to improve LED TVs to increase picture quality. There are competing technologies, like OLED, which also present their own unique characteristics.
Unlike LED TVs, OLEDs don"t use a backlight and instead have self-emitting pixels. This allows the pixels to individually turn on and off, resulting in perfect blacks. This means that they also have perfect black uniformity as there"s no blooming around bright objects like on some LED TVs. They also have wide viewing angles, sometimes even wider than some IPS panels, so OLEDs are a good choice for wide seating arrangements.
However, the one major downside to OLEDs compared to LEDs is their risk of permanent burn-in. This could be problematic if you constantly watch content with static elements, like the news, or if you use it as a PC monitor. We don"t expect it to be an issue for people who watch varied content, but if you"re truly worried about it, LED TVs appear to be immune to burn-in.
Samsung released quantum dot TVs in 2015, which they later labeled as QLED in 2017. These TVs include a quantum dot layer between the LED backlights and the LCD panel to achieve a wider color gamut. Other companies like Vizio and TCL also use this quantum dot technology on their TVs. Adding this extra quantum dot layer doesn"t change the characteristics of the panel type; the VA panel on the TCL 6 Series/S635 2020 QLED still has a high contrast ratio and narrow viewing angles. Although most QLED TVs use VA panels, you can easily use an IPS panel as well.
Manufacturers have tried different techniques to improve the viewing angles on VA panels over the years, aiming to produce a perfect LCD panel with both wide viewing angles and high contrast. While they have yet to achieve that goal, a few TVs have hit the market that try to combine the best of both panel types. The first TVs with this viewing angle technology came out in 2018, and only a few high-end models like the Samsung Q90/Q90T QLED and the Sony X950H had this technology in 2020. These TVs are a bit unique, delivering noticeably better viewing angles than their pure VA counterparts, but still worse than true IPS panels. This comes at the expense of a lower contrast ratio, as these TVs have worse native contrast than most VA panels, but they"re still better than IPS panels. Combined with their local dimming features, they still produce deep blacks.
Between IPS and VA panels, neither technology is inherently superior to the other as they both serve different purposes. In general, IPS TVs have wide viewing angles suitable for when you want to watch the big game or your favorite show in a large seating arrangement. They"re also beneficial for use as a PC monitor since the edges remain accurate if you sit up close. However, VA panels are a better choice for watching content in dark rooms, as their improved contrast allows them to display deep blacks. Choosing between the two is a series of trade-offs and qualities, so choosing the best TV for your needs depends on your usage.
Choosing a new monitor is tricky, especially now when there are lots of different options available with each offering a pretty great set of features. There are a lot of things that you need to consider while buying a digital display of any kind such as display size, resolution, aspect ratio, color accuracy, and many others. But, there is a major underlying fact which affects the overall image quality and viewing experience on a display which is the display panel. There are multiple types of panels available in the market and each offers specific pros and cons.
Today, we are going to talk in detail about LED and IPS display panels. While looking for a new TV or monitor for your computer, you must have come across these 2 options more so than others. In this guide, we will talk about these panels in detail and discuss how the panel type affects the image quality and color accuracy on a display. We will also compare both of these options with regards to various important factors such as image quality, response time, power consumption, and much more. So, make sure you don’t miss that.
LED stands for Light Emitting Diodes. It is a very simple yet elegant display technology that dates back all the way back to 1962. This is basically a backlight technology where small diodes make up the entirety of the display and light up in a specific manner to create the image. A lot of users often get confused between LED and LCD display technology due to their similarities.
LCD is a slightly older technology compared to LED. Thus, LED is basically an upgrade to LCD display technology. Both of these display panels come with liquid crystals that generate the image on the display panel. But, the LED display panel features a backlight along with the liquid crystal layer.
There are a lot of applications for which LED TVs and monitors turn out to be the best options. Also, a lot of brands use LED technology along with IPS to offer the best of both worlds. Now that you understand what an LED panel is and how it works, let us take a look at some pros and cons of LED display panels.
IPS is one of the recent technological advancements in display technologies. Even though the technology came out in the mid-1990s, it is just starting to become the standard option for TVs and monitors. There have been a lot of improvements in the IPS display technology since its initial release and most of its limitations have been overcome thanks to the new options and compatibility with other technologies.
IPS stands for In-Plane Switching. This is also a type of LCD display technology much like the LED display technology. However, a lot of users prefer IPS display panels due to their wide viewing angles and sharp color accuracy. IPS panels are also a preferred option compared to VA and TN panels when it comes to desktop monitors.
In an IPS display, the liquid crystal panels are aligned in parallel to introduce lush colors. There are also polarizing filters that have their transmission axes aligned in the same direction for even better image quality. Unlike LED panels where the crystals are at right angles, IPS panels feature liquid crystals lined up in parallel to offer extended viewing angles as well as color accuracy.
In the majority of cases, users are confused between LED or IPS panels when it comes to buying a new monitor. Unlike TVs where you can simply go with a highly reliable brand in order to get the best experience, you will have to carefully check each and every aspect of the desktop monitor you are going to buy. While a lot of these aspects include refresh rate, color modes, black stabilizer, response time, etc, one major factor is the panel type.
A lot of these major factors in a desktop monitor change based on the panel installed on the monitor. And with that, the compatibility of the monitor also changes due to differences in specifications. If you are buying a premium desktop monitor, you should carefully consider the following comparison and check which type of monitor is best for you. Going forward, we will discuss IPS desktop monitors and LED desktop monitors and compare them based on various important factors.
As you might have guessed, IPS monitors are desktop monitors that are powered by an IPS display panel. And with that, you will get the same advantages as well as limitations as mentioned above in our take on the IPS display panels. However, IPS monitors are right now one of the most preferred options for desktop users.
Despite offering the best color production and viewing angles, IPS monitors were lacking behind for heavy usage due to low refresh rate and response time for quite some time. But not anymore as a lot of brands have overcome these problems by combining IPS technology along with other options. Thus, the premium range of IPS monitors nowadays will offer a high refresh rate along with a low response time. And on top of that, Most IPS monitors also offer higher resolutions along with HDR compatibility which makes them perfect for entertainment.
LED desktop monitors are also not a bad option, especially if you are looking for longevity and reliable performance for all applications. Basic LED monitors will be highly affordable compared to high-quality IPS monitors. One of the best advantages of LED monitors is their efficient power consumption which also ensures their reliability for the long term. The overall temperature levels on LED desktop monitors are also significantly lower than that of an IPS monitor.
Furthermore, LED monitors offer a much faster refresh rate when paired with VA panel technology along with a faster response time. This makes them ideal for hardcore gaming. The few back draws of getting an LED desktop monitor are the comparatively shorter viewing angles, inconsistent contrast ratio, and fatigue effects on the display panel after long-term usage. Similar to IPS panels, you can also find a lot of great choices in LED monitors where the display panel technology will be paired with LED, LCD, or TN panels to overcome some of these drawbacks.
By now, you must have understood the major differences between an IPS and an LED desktop monitor. If you are still not sure, here is our comparison between both of these options. Here, you can quickly understand both of these options and select the one which offers you the most benefits based on your application.
When it comes to image quality, IPS display panels offer the best results in almost all aspects. Whether it be clarity, image sharpness, or viewing angles, IPS panels offer the best performance in all regards.
But as IPS panels have pretty high brightness levels, the contrast ratio on these panels might not always be great. On the other hand, LED panels offer pretty great black levels and high contrast ratio. If you decide to go with a VA panel, you can have both decent image quality as well as dark black levels which makes the image much more realistic.
The response time for IPS display panels has always been lower compared to LED display panels due to differences in technology. But, recently released IPS display panels have overcome the drawback and offer up to 144 Hz refresh rate on a mid-range monitor. And if you were to choose a premium option, you can get even higher refresh rate monitors powered by IPS display panels.
But compared to VA or TN panels, IPS still falls behind when it comes to refresh rate and response time. To be specific, TN panels are generally the best option for high-paced FPS games as it offers the fastest response rate at the expense of image quality. Typically, an LED panel such as VA or TN will offer you 1 ms of response time.
Again, IPS display panels seem to be the best option in this scenario. Due to the unique construction and working principle, you will get a very high level of brightness on the IPS panels. On top of that, the color accuracy and hue levels are not affected by the viewing angles on an IPS panel. This makes them a great choice for both primary as well as secondary monitors. Wide viewing angles will also benefit the viewing experience on TVs with an IPS panel.
When it comes to LED monitors, you will instead find better performance in terms of local brightness. With the array of LED lights powering the display, it manages to dim the darker area perfectly, offering a higher contrast ratio. Thus, the dark areas on an LED monitor look darker compared to the same image on an IPS panel. However, LED monitors still suffer changes in color accuracy and temperature due to variations in viewing angles.
As far as power consumption is concerned, LED monitors are far more efficient than IPS monitors. IPS display panels offer higher brightness levels, but at the expense of higher power draw. Also, IPS panels are comparatively less energy efficient considering the overall performance and power draw.
LED panels on the other hand offer pretty good brightness levels with efficient energy consumption. Due to features like local dimming, the overall power consumption of an LED monitor is much lesser than that of an IPS monitor. Thus, LED panels are also cheaper in terms of running costs.
As you can imagine, IPS panels generate more heat when they are active due to increased power consumption. It is not an ideal condition for the monitor or a TV, especially if you live in a considerably warmer region. Higher temperature levels might result in internal problems within the panel.
On the other side of the spectrum, there are LED monitors that offer almost similar brightness levels, but without excessive heat generation. You can easily install an LED display panel on your desk without worrying about increased temperature levels on your monitor.
IPS panels are considerably more expensive than LED panels. As a result, IPS monitors are also more expensive than LEDs. And as IPS panels are usually combined with other display technologies to counter its disadvantages, the price range of IPS monitors further increases.
Still, due to the increased competition in the market and the rise of numerous brands, you can easily find a great monitor within an affordable price range. But still, you will find better alternatives with VA or TN display technology compared to an IPS panel. You can opt for a higher resolution or faster refresh rate instead of going with an IPS panel in the same price range.
Due to the reasons mentioned above, VA or TN panels are usually a better option for gaming. These monitors will offer you a higher refresh rate as well as screen resolution within the same price range which is always a better deal. However, you can always invest in a secondary IPS monitor for single-player games which benefit from better display quality and brightness levels.
IPS and LED display panels are always a matter of confusion when you are looking for a new display. There are a lot of options present in the market designed by various brands which offer a great range of options for both IPS as well as LED displays. In our guide, we have discussed both of these display technologies in depth and compared them based on some major factors.
Once you go through our guide, you will definitely find out which monitor is the perfect choice for you. If you are looking for a TV or a desktop monitor for watching movies or for productivity, then you should prefer getting an IPS panel. You will definitely benefit from the better visual quality and viewing angles in this scenario. However, VA or TN panels are generally a better option for gaming.
When it comes to choosing the right panel type of your LCD monitor, the options are seemingly endless. We’ve discussed the differences between AMOLED and LCD displays as well as the different types of touchscreen monitors that are commonly used for various devices and their benefits. Now it’s time to learn about the different features and specifications of PLS and IPS panels so you can decide which one is the most suitable choice for your specific personal or professional applications.
IPS stands for in-plane switching. It’s one of the most commonly used monitors for LCD displays and it consists of two glass panels that hold a layer of liquid crystals in between them. The liquid crystals become animated and perform predetermined actions such as moving in a specific direction or displaying certain colours when they’re charged with an electric current. These actions result in the high-quality images that appear on your television, laptop, or smartphone screen.
Both LCD monitor panel types have their advantages and disadvantages for various types of applications. Finding out how they work will help you determine which one is the best choice for your needs.
As mentioned, IPS LCD monitors contain hundreds of liquid crystals that are situated between two glass sheets in a parallel formation. As electric currents run through the liquid crystals when the screen is turned on, they become animated and move in different directions and backlighting passes through them. This is what produces the crystal-clear and instantaneous images you see on the screen. The excellent viewing angles are the result of the horizontal movements of the liquid crystals inside the panel.
PLS panels for LCD monitors have been on the market for over a decade and have proven to be a worthy adversary for their IPS predecessors. Although the technology is the same for the most part, IPS does offer some minor improvements. The main difference is that IPS panels offer more optimized liquid molecular alignment, which makes for a slightly better viewing experience. Hence, PLS screens offer 15% more brightness than IPS panel types.
From an aesthetic and logistical standpoint, PLS panel types are also thinner than IPS due to the fact that the glass sheets that hold the liquid crystals in place are positioned much lower in the screen configuration.
When it comes to comparing and contrasting the differences between IPS and PLS LCD monitor panel types, the competition is pretty stiff. Both monitors are fairly similar with the exception that PLS is meant to be an improvement on the previous technology. Here are the key factors that should be considered when deciding which one is the best monitor panel for LCD industrial displays.
PLS monitors offer superior viewing angles when compared to IPS displays. Unlike IPS displays, PLS monitors don’t have any noticeable colour distortions and they have significantly lower production costs.
Colour contrast and brightness is a central concern when purchasing a new commercial or industrial display. Whether you’re a gamer or graphic designer, your best option in this regard is to stick to IPS displays. They offer far more consistent image quality, colour contrast, and brightness that’s perfect for applications that rely heavily on high-quality image production.
Unfortunately, PLS and IPS monitors both have a fairly slow response time (the amount of time it takes for liquid crystals to shift from one colour or shade to another). For this reason, neither one is the ideal choice for gaming purposes, but they’re both suitable for graphic design projects that focus more on colour distribution and accuracy than response time.
PLS panel types have been proven to have superior colour distribution and accuracy compared to IPS panel types. PLS displays have a far more expansive colour gamut that’s ideal for users who require the most natural-looking images and colour options.
Backlight bleed occurs when the lights from the back of the screen leak through the edges, which results in uneven lighting or glow. This is a fairly common shortcoming of IPS screens when the brightness is adjusted to a particularly high level and can make for a poor viewing experience. PLS panel types don’t have this problem and offer even lighting regardless of the brightness settings.
The answer is inconclusive. Both IPS and PLS monitor types certainly have their advantages. Although PLS is slightly better in terms of backlighting and faster response times, the margins for improvement are fairly tight. It really just depends on what your preferences are as well as the applications that the monitors are being used for.
Nauticomp Inc.is one of the leading manufacturers and distributors of sophisticated state-of-the-art LCD displays and monitors in North America. Contact us to learn about our various products or to place an order.
OLED vs. IPS LCD is a topic that comes up whenever consumers upgrade to a newer TV or a smartphone. Should you buy a TV that uses an IPS LCD display or should you pick up a TV with an OLED screen? Well, the answer isn’t so straightforward because they both have their advantages and disadvantages. In this article, we will explain how these screen technologies work and which one you should opt for while buying a TV.
IPS LCD (In-Plane Switching Liquid Crystal Display) and OLED (Organic Light-Emitting Diode) are the two most commonly used screen technologies. Older technologies, such as TN (Twisted Nematic) and PLS (Plane-to-Line Switching) displays, have almost disappeared (except in the world of PC monitors and budget laptops) because IPS LCD and OLED are clearly better in almost all aspects. Other technologies such as Mini-LED, MicroLED, and QNED technologies are extremely new and they won’t become mainstream for a few years.
So, when you are finally deciding which TV to buy, the real battle is between OLED and IPS LCD. So where do these stand? Which is better for you? Which one should you pick for your new home theatre? Read on for more information on the OLED vs IPS LCD battle.
IPS LCD displays are perhaps the most common display type days, especially in TVs and laptops. Laptops, entry-level and mid-range smartphones, and most TVs use LCD displays. So, how do IPS displays work? IPS displays use an array of LCD pixels that shift colour as required. However, they don’t emit light on their own. That’s the reason they need a backlight made up of LEDs (Light-Emitting Diodes). The backlight can be arranged in various layouts: towards the edges, spread across the whole display, or separated into different sections.
IPS screens display the black colour by changing the alignment of LCDs so that pixels block the transmission of light, but some light still gets through. That’s the reason IPS LCD displays can’t display true deep black colour. Instead, they display dark grey and there is some ‘backlight bleed’.
To reduce the backlight bleed, a feature called Local Dimming is used. The feature requires the backlight to be compartmentalized into different matrices, and only those sections are turned on which need to display non-black colours. Other sections of the backlight are turned off, offering true blacks. However, active zones still display some backlight bleed.
OLED displays have traditionally been restricted to high-end devices. Even today, only high-end TVs and laptops feature OLED displays. In the world of smartphones, though, OLED technology has been democratised and even mid-range smartphones these days use OLED displays with high brightness and high refresh rates.
In a nutshell, OLED displays don’t use separate backlight sources. Instead, every pixel can reproduce its own light (also known as self-emissive displays). So, there’s no need for an additional backlight and each pixel can be turned on or off as needed. Since there is no need for a separate backlight plane, OLED displays are much thinner than LCD displays. They also offer a much better contrast ratio and viewing angles. However, the organic material used in OLED pixels tends to “burn” over the years that results in ghosting. Moreover, they can’t be as bright as LCD, Mini-LED, or Micro-LED displays.
We have given you a brief overview of IPS and OLED technologies. But which one is better? And which of these will be right for you? Here’s a list of pros and cons to help you in your purchase decision, where it is for smartphones or TVs.
OLED TVs are slimmer and flexible: As we mentioned earlier, OLED displays don’t need a bulky backlight plane, so OLED TVs are really slim. The next wave of display technologies – foldable and rollable displays – will also be powered by OLED.
IPS LCD TVs offer higher brightness: IPS LCD TVs use a powerful backlight which also lets them get much brighter than their OLED counterparts. This can make for better HDR and even offer a better viewing experience if your TV room gets a lot of sunlight.
IPS TVs suffer from backlight bleed and blooming: This is less of an issue with high-end IPS TVs, but some cheaper models may suffer from glow (bright, greyish areas near the corners of the screen) or backlight bleed (patches or leaks of light, usually around the edges).
OLED TVs can suffer burn-in: OLED displays are at risk of burn-in, a condition in which a static image left on for too long can get permanently ‘burned’ onto the display and may appear like a ghostly dark patch.
OLEDs may get dimmer with age: OLEDs use organic substances which tend to decay over time. So, OLED displays lose brightness with age. It is quite slow and modern OLED TVs are not as affected by this as older OLED TVs, and this really shouldn’t be an issue, but you need to be aware of this.
IPS TVs are much cheaper: OLED is a relatively newer technology and is more expensive to manufacture. Currently, very few companies make OLED display panels. LG Display makes most of the OLED panels found on OLED TVs, while Samsung Display, CSOT, LG Display, and BOE make OLED screens for smartphones and smaller products. Most manufacturers also tend to restrict OLED tech to their largest, most feature-packed range, fueling the perception of OLED being expensive.
Follow Onsitego on Facebook, Instagram, Twitter, and YouTube to get the latest news, reviews, maintenance tips, and videos about your favourite gadgets and appliances.
There’s an almost overwhelming amount of options in the display market: OLED, MicroLED, and TN panel types just to name a few. But if you’re looking for a gaming monitor or simply don’t want to drain your bank account on a display, IPS and VA are generally the best choices. In-plane switching (or IPS) is an LCD-based technology that is used in just about every kind of display, whereas Vertical Alignment (or VA) is a more niche LCD technology used in gaming monitors, gaming TVs, and wide displays.
Although IPS is much more popular than VA and is often seen as the more premium option, both panel types have strengths and weaknesses that you should consider before you buy.
IPS panels have traditionally been used for making displays that have high color accuracy and large coverage of wide color gamuts like DCI-P3 or Adobe sRGB. Not only do IPS displays usually look good, but they also look good from wider angles, so you don’t need to look exactly head on at an IPS monitor to get accurate colors.
Color accuracy and coverage can be good on VA displays (even at wide angles), but colors across VA displays aren’t always uniform. Depending on the viewing angle and the distance between the viewer and the display, the center of VA monitors often have more gamma than the edges of the screen, making colors less accurate.
Although IPS is generally better than VA when it comes to color accuracy and coverage, VA panels have perfectly fine color accuracy and coverage for the vast majority of users. Only professional photo and video editors could really be disappointed with a VA monitor that only covers 90% of the DCI-P3 color space, which is actually a very good amount of coverage for gamers and content consumers.
Contrast ratio is a metric that measures how dark the color black is depicted on a display, measured as a ratio of x:1. The higher x is, the better. Although IPS is very good with color accuracy in general, it really struggles with making the color black, and even the best IPS monitors and TVs can only show a very dark grey rather than true black. Most IPS monitors are rated at a 1000:1 contrast ratio, which isn’t terrible but isn’t great either. Some monitors can get up to around 2000:1 however.
Despite VA’s general color accuracy issues, it’s actually amazing at depicting black as truly black. Even the worst VA displays can easily muster a 2000:1 contrast ratio, and some can even achieve higher than 5000:1. In fact, VA is second only to OLED when it comes to contrast ratio, and OLED actually delivers perfect contrast ratios of ∞:1. Because of this, a VA display can look better than an IPS counterpart in darker scenes.
Some displays can boost contrast ratio by using local dimming and HDR. By using a more complex backlight with multiple LEDs that can be turned on or off, local dimming helps IPS and VA displays look even darker when it matters. On the other end of the spectrum, HDR boosts brightness for colors that need it. With these two factors combined, some displays can boost the contrast ratio significantly. However, these features aren’t going to make an IPS display’s contrast ratio as good as the average VA display’s, and poorly implemented local dimming can backfire by creating more visual problems than it solves.
Response time is the amount of time it takes to fully refresh the display and show a new image. This is an area where both IPS and VA struggle, but nowadays very good IPS displays have overcome traditional issues with response times, and VA displays have not shown the same amount of progress. There is no standard that display manufacturers adhere to when it comes to measuring response time, but according to BenQ, which makes both IPS and VA monitors and TVs, IPS has a response time of 1-2ms whereas VA can only achieve 4-5ms. The specific values here aren’t important because this is a best-case scenario. What’s really important is that VA is much slower.
Very high response times can result in very animated scenes looking blurry and smeared. This issue is called ghosting, and it’s particularly annoying for discerning gamers playing fast-paced games like Counter-Strike: Global Offensive. Both IPS and VA displays have solutions and workarounds to avoid ghosting, the most important being overdrive. Overdrive that’s too aggressive can cause reverse ghosting, which is when the display tries to change a pixel’s color so quickly that it accidentally overshoots and ends up with the wrong color for a few frames. Ghosting and reverse ghosting both cause smearing, so if overdrive is too weak or too strong, the end result is similar: It looks bad.
Although the best IPS panels beat the best VA panels when it comes to response time, there are plenty of IPS displays that have very bad response times. It’s also worth noting that response time only needs to be equal to the refresh rate of the monitor for there to be no smearing. On a 60Hz display, for instance, it takes 16.66ms to show a new image, so a response time of 1ms doesn’t really do much. Response time matters much more at higher refresh rates, and even at 144Hz a response time of around 7ms is sufficient to avoid ghosting.
IPS is capable of significantly higher refresh rates than VA. IPS is capable of hitting 500Hz while VA caps out at 240Hz. However, the vast majority of VA displays are only capable of 144Hz or 165Hz; there are only a few VA monitors that can do 240Hz. For those wanting extremely high refresh rates, IPS is the clear winner.
Even if VA was capable of 360Hz however, it probably wouldn’t be very good because of its weakness in response times. A 360Hz display refreshes every 2.7ms, which is well below what VA is generally capable of.
While IPS displays are usually a safe recommendation for most people, sometimes there are very good reasons to buy VA monitors and TVs. VA has found its home in midrange gaming monitors, gaming TVs, and ultrawide displays, and many of the best gaming monitors use VA. If you’re shopping outside of these categories, however, you probably won’t have to worry about choosing between IPS and VA because VA is not very often used elsewhere.
If you do have the choice between VA and IPS, you’re going to have to evaluate what you prefer in a display, and you should definitely read some monitor reviews just to make sure if VA or IPS is going to deliver what you want in your next display purchase. After all, even an IPS display can have bad color accuracy or bad response time, so don’t assume IPS means quality and that VA means budget.
Therefore, in the mid-1990s, a new type of LCD monitor was introduced, one that picked up the slack and offered far more advanced performance functionality than its predecessor. In-plane switching (IPS) displays have taken LCD monitors to a whole new level by expanding their applications into various mediums that were otherwise not possible.
In a previousarticle, we discussed using IPS display technology for a variety of different applications and the most important factors that should be considered when choosing a display for your needs. IPS LCD panels and monitors use perfectly aligned liquid crystals that form a parallel pattern to produce bold colours and onscreen colour contrast.
Here’s a brief overview of the different types of IPS displays.Twisted nematic (TN)were the first IPS LCD monitors on the market in the early 1980s. They consist of nematic liquid crystals that are suspended between two plates of polarized glass.
Vertical alignment (VA)LCD monitors have incredible colour contrast and image depth because their crystals are vertically aligned and move into a horizontal position to let light shine through.
In-plane switching (IPS)monitors are the most prevalent type of LCD display of all. IPS LCD display technology is capable of depicting excellent picture quality from all viewing angles along with superior colour contrast.
Of course, IPS displays aren’t completely perfect for every application. In fact, they’re primarily use for professional applications that require the utmost precision and pristine image quality. Their unmatched and expansive viewing angle capabilities include graphic design, video editing, photo editing, and CAD engineering to name a few.
Featuring 8-bit RGB colour depth, IPS panels can reproduce over 16 million different colours, making it the ideal choice for professional applications that require detailed colour compositions.
IPS displays also boast incredibly wide viewing angles to complement their excellent colour reproduction and composition capabilities. This is just one of many reasons that IPS screens are a major improvement on TN panels. IPS screens can be comfortably viewed from virtually any angle without limiting or compromising the image quality, whereas TN screens can only be viewed head-on.
IPS LCD displays also boast far superior sunlight visibility and readability than other displays. Even under extremely bright and harsh natural or artificial lighting conditions, IPS displays maintain clear visibility and readability without interruption. This is made possible by high-quality backlighting combined with superior colour reproduction and viewing angle capabilities that the other abovementioned screens lack. For instance, TN panels have limited colour depth and therefore poor visibility in direct sunlight and strong lighting conditions.
IPS displays generally have a longer lifespan than TN panels; however, the components of the latter are a lot easier and more cost-effective to reproduce in the long-term. The best option depends on the applications for which they’re being used and under what circumstances. TN panels tend to have a faster response time than IPS and VA displays combined, making them the ideal choice for gamers.
As mentioned, however, IPS panels are more commonly used for professional applications that demand the utmost image quality and convenience. Although they have a lower upfront cost, TN panels need to be replaced more frequently. IPS panels, on the other hand, are the better long-term investment for freelancers because they have a longer lifespan.
TN displays have a much faster response time than IPS panels. This is the main reason that gamers typically prefer the former over the latter. Slow response times translate to a lot of lagging as well as increased motion blur which can be a major distraction and diminish the quality of the gaming experience.
Of course, the importance of the response times depends on the type of gamer you are. Shooter and fantasy games that rely on fast response times for pacing and to maintain the image quality of the game are better equipped with TN panels, but for other types of gaming IPS displays could suffice.
IPS displays have a much higher upfront cost compared to the other types of monitors mentioned here. However, the spectacular image quality, unparalleled viewing angles, and the longer lifespan are all pros that outweigh and even justify the upfront costs. Plus, since IPS displays last longer and don’t need to be replaced or repaired as often as the other screens, you could actually end up saving money in the long run.
Due to the fact that IPS LCD displays have a far better colour depth than TN panels, they also have a superior contrast ratio. However, IPS displays aren’t necessarily the crème de la crème in this regard. More accurately, they fall somewhere in the middle. If you’re looking for a screen with an excellent or the best contrast ratio, then VA displays are your best choice.
Another disadvantage of IPS displays is that they consume power inefficiently compared to their counterparts. On average, IPS displays need about 15% more battery power than TN panels, which are suitable for battery-operated low-power devices. Additionally, IPS panels require stronger backlighting to function at all times to maintain a standard level of display clarity, which can eat up more battery power.
Nauticomp Inc.is one of the leading designers, manufacturers, and distributors of custom industrial displays in North America, including IPS monitors that are ideal for a wide range of applications.Contact ustoday to learn more or to place an order.
Manufacturers put out a lot of technical jargon about display technologies. These technologies are used in a variety of devices, including computer monitors, smartphones and television sets. A casual buyer may not pay much attention to screen technology on a smartphone or monitor. But when it comes to buying a TV set, it tends to confuse a buyer.
Back in the day, there was only one display technology – the Cathode Ray Tube (CRT). CRT TVs are bulky and draw a lot of current. But the introduction of Liquid Crystal Display (LCD) TV sets changed all that. TVs became more compact and the impact on the electricity bill was less.
The viewer sees a picture when an LCD screen is backlit by Cold Cathode Fluorescent Lamps (CCFLs), which are placed on the edges or behind the LCD panel. CCFL-backlit TVs have now been replaced with LED-backlit TVs. The advantage with LED-backlit TVs is lower power consumption, longevity of the backlight and a generally brighter picture.
When LCD TVs began to gain popularity from about 2000 onwards, it had only one main competitor – the Plasma Display Panel (PDP). However, PDP TVs faded away as LCD TVs were much cheaper.
A Thin Film Transistor (TFT) display is a type of LCD but the former had better contrast. Apart from TV sets, TFT LCD screens are used in smartphones, handheld devices, calculators, car instrument displays among others.
In-Plane Switching (IPS) technology is another type of LCD TV technology. These panels are more accurate in their picture reproduction and show more accurate colour from narrow viewing angles. In simple terms, IPS was better than LCD.
TV sets with Organic Light Emitting Diode (OLED) displays are better than traditional LCD TVs that are backlit by CCFLs or LEDs. This is because OLED TVs do not need any backlighting. Therefore, these panels produce very deep blacks and this gives very good contrast. This, in turn, means better picture quality. This is good when it comes to future technologies like 4K picture resolution. They are power efficient too.
Quantum LED (QLED) is another technology that Samsung is pursuing actively. OLED TVs are known to be better in terms of sharpness and back levels than QLED TVs but the gap is narrowing.
Normal LED-backlit, OLED and IPS panel TVs are all generally safe bets. Getting too deep into these technologies before buying a TV will lead to confusion. Any company will obviously say that their product is the best with a lot of jargon thrown in.
IPS technology was developed to improve upon the limitations of TN panels—most notably, the poor color reproduction and limited viewing angles. As a result, IPS panels are much better than TNs in both of these areas.
In particular, IPS panels have vastly superior viewing angles than TNs. This means you can view IPS panels from extreme angles and still get accurate color reproduction. Unlike TNs, you’ll notice very little shift in color when you view one from a less-than-ideal perspective.
IPS panels are also known for their relatively good black reproduction, which helps eliminate the “washed out” look you get with TN panels. However, IPS panels fall short of the excellent contrast ratios you’ll find on VAs.
While high refresh rates were typically reserved for TNs, more manufacturers are producing IPS panels with refresh rates of 240 Hz. For example, the 27-inch 1080p ASUS VG279QM uses an IPS panel and supports 280 Hz.
Previously, TNs exhibited less input lag than any other panel, but IPS technology has finally caught up. In June 2019, LG announced its new Nano IPS UltraGear monitors with a response time of one millisecond.
Despite the gap being closed, you’ll still pay more for an IPS panel with such a low response time than you would for a TN with similar specs. If you’re on a budget, expect a response time of around four milliseconds for a good IPS monitor.
One last thing to be aware of with IPS panels is a phenomenon called “IPS glow.” It’s when you see the display’s backlight shining through it at more extreme viewing angles. It’s not a huge problem unless you view the panel from the side, but it’s something to keep in mind.
VA panels are something of a compromise between TN and IPS. They offer the best contrast ratios, which is why TV manufacturers use them extensively. While an IPS monitor typically has a contrast ratio of 1000:1, it’s not unusual to see 3000:1 or 6000:1 in a comparable VA panel.
In terms of viewing angles, VAs can’t quite match the performance of IPS panels. Screen brightness, in particular, can vary based on the angle from which you’re viewing, but you won’t get the “IPS glow.”
VAs have slower response times than TNs and the newer Nano IPS panels with their one-millisecond response rates. You can find VA monitors with high refresh rates (240 Hz), but the latency can result in more ghosting and motion blur. For this reason, competitive gamers should avoid VA.
When compared to CRT monitors, all LCD panels suffer from some form of latency issue. This was a real problem when TN panels first appeared, and it’s plagued IPS and VA monitors for years. But technology has moved on, and while many of these issues have been improved, they haven’t been eliminated entirely.
LCD panels are also susceptible to dead or stuck pixels. Different manufacturers and jurisdictions have different policies and consumer laws covering dead pixels. If you’re a perfectionist, check the manufacturer’s dead-pixel policy before you buy. Some will replace a monitor with a single dead pixel for free, while others require a minimum number.
Photo and video editors/Digital artists: IPS panels are still generally favored for their ability to display a wide gamut of colors. It’s not unusual to find VA panels that also cover a wide gamut (125 percent sRGB, and over 90 percent DCI-P3), but they tend to exhibit more motion blur during fast-paced action than IPS panels. If you’re serious about color accuracy, you’ll need to properly calibrate your monitor.
Programmers who mount monitors vertically: You might think TN panels are great for programmers, but that’s not necessarily the case. TN panels have particularly bad viewing angles on the vertical axis. If you mount your monitor in portrait mode (as many programmers and mobile developers do), you’ll get the worst possible viewing angles from a TN panel. For the best possible viewing angles in this scenario, invest in an IPS display.
Competitive online gamers: There’s no question TN panels are still favored in the eSports world. Even the cheapest models have fast response times and support for high refresh rates. For 1080p gaming, a 24-inch will do just fine, or you could opt for a 1440p, 27-inch model without breaking the bank. You might want to go for an IPS panel as more low-latency models hit the market, but expect to pay more.
Non-competitive, high-end PC gamers: For a rich, immersive image that pops, a VA panel will provide a higher contrast ratio than IPS or TN. For deep blacks and a sharp, contrasting image, VA is the winner. If you’re okay with sacrificing some contrast, you can go the IPS route. However, we’d recommend avoiding TN altogether unless you play competitively.
Best all-rounder: VA is the winner here, but IPS is better in all areas except contrast ratio. If you can sacrifice contrast, an IPS panel will provide fairly low latency, decent blacks, and satisfactory color coverage.
If you can, check out the monitor you’re interested in in-person before you buy it. You can perform some simple ghosting and motion blur tests by grabbing a window with the mouse and moving it rapidly around the screen. You can also test the brightness, watch some videos, and play with the onscreen display to get a feel for it.
IPS (in-plane switching) is a screen technology for liquid-crystal displays (LCDs). In IPS, a layer of liquid crystals is sandwiched between two glass surfaces. The liquid crystal molecules are aligned parallel to those surfaces in predetermined directions (in-plane). The molecules are reoriented by an applied electric field, whilst remaining essentially parallel to the surfaces to produce an image. It was designed to solve the strong viewing angle dependence and low-quality color reproduction of the twisted nematic field effect (TN) matrix LCDs prevalent in the late 1980s.
The TN method was the only viable technology for active matrix TFT LCDs in the late 1980s and early 1990s. Early panels showed grayscale inversion from up to down,Vertical Alignment (VA)—that could resolve these weaknesses and were applied to large computer monitor panels.
Shortly thereafter, Hitachi of Japan filed patents to improve this technology. A leader in this field was Katsumi Kondo, who worked at the Hitachi Research Center.thin-film transistor array as a matrix and to avoid undesirable stray fields in between pixels.Super IPS). NEC and Hitachi became early manufacturers of active-matrix addressed LCDs based on the IPS technology. This is a milestone for implementing large-screen LCDs having acceptable visual performance for flat-panel computer monitors and television screens. In 1996, Samsung developed the optical patterning technique that enables multi-domain LCD. Multi-domain and in-plane switching subsequently remain the dominant LCD designs through 2006.
IPS technology is widely used in panels for TVs, tablet computers, and smartphones. In particular, most IBM products was marketed as CCFL backlighting, and all Apple Inc. products marketed with the label backlighting since 2010.
Most panels also support true 8-bit-per-channel colour. These improvements came at the cost of a lower response time, initially about 50 ms. IPS panels were also extremely expensive.
IPS has since been superseded by S-IPS (Super-IPS, Hitachi Ltd. in 1998), which has all the benefits of IPS technology with the addition of improved pixel refresh timing.
In this case, both linear polarizing filters P and A have their axes of transmission in the same direction. To obtain the 90 degree twisted nematic structure of the LC layer between the two glass plates without an applied electric field (OFF state), the inner surfaces of the glass plates are treated to align the bordering LC molecules at a right angle. This molecular structure is practically the same as in TN LCDs. However, the arrangement of the electrodes e1 and e2 is different. Because they are in the same plane and on a single glass plate, they generate an electric field essentially parallel to this plate. The diagram is not to scale: the LC layer is only a few micrometers thick and so is very small compared with the distance between the electrodes.
Unlike TN LCDs, IPS panels do not lighten or show tailing when touched. This is important for touch-screen devices, such as smartphones and tablet computers.
Toward the end of 2010 Samsung Electronics introduced Super PLS (Plane-to-Line Switching) with the intent of providing an alternative to the popular IPS technology which is primarily manufactured by LG Display. It is an "IPS-type" panel technology, and is very similar in performance features, specs and characteristics to LG Display"s offering. Samsung adopted PLS panels instead of AMOLED panels, because in the past AMOLED panels had difficulties in realizing full HD resolution on mobile devices. PLS technology was Samsung"s wide-viewing angle LCD technology, similar to LG Display"s IPS technology.
In 2012 AU Optronics began investment in their own IPS-type technology, dubbed AHVA. This should not be confused with their long standing AMVA technology (which is a VA-type technology). Performance and specs remained very similar to LG Display"s IPS and Samsung"s PLS offerings. The first 144 Hz compatible IPS-type panels were produced in late 2014 (used first in early 2015) by AUO, beating Samsung and LG Display to providing high refresh rate IPS-type panels.
Cross, Jason (18 March 2012). "Digital Displays Explained". TechHive. PC World. p. 4. Archived from the original on 2 April 2015. Retrieved 19 March 2015.
"TFT Technology: Enhancing the viewing angle". Riverdi (TFT Module Manufacturer). Archived from the original on 23 April 2016. Retrieved 5 November 2016. However, [twisted nematic] suffers from the phenomenon called gray scale inversion. This means that the display has one viewing side in which the image colors suddenly change after exceeding the specified viewing angle. (see image Inversion Effect) External link in |quote= (help)
tech2 News Staff (19 May 2011). "LG Announces Super High Resolution AH-IPS Displays". Firstpost.com. Archived from the original on 11 December 2015. Retrieved 10 December 2015.
Baker, Simon (30 April 2011). "Panel Technologies: TN Film, MVA, PVA and IPS Explained". Tftcentral.co.uk. Archived from the original on 29 June 2017. Retrieved 13 January 2012.
Ivankov, Alex (1 September 2016). "Advantages and disadvantages of IPS screen technology". Version Daily. Archived from the original on 26 September 2017. Retrieved 25 September 2017.
"Samsung PLS improves on IPS displays like iPad"s, costs less". electronista.com. Archived from the original on 27 October 2012. Retrieved 30 October 2012.
If you’ve ever begun searching for a new computer screen, chances are you’ve probably come across the term IPS. It’s at this point that you may be asking yourself, what is an IPS monitor? And how do I know if an IPS monitor is right for me?
Choosing which type of monitor panel type to buy will depend largely on your intended usage and personal preference. After all, gamers, graphic designers, and office workers all have different requirements. Specific types of displays are best suited for different usage scenarios.
Below we’ll take a look at how IPS, TN, and VA monitors affect screen performance and do some handy summaries of strengths, weaknesses, and best-case uses for each type of panel technology.
IPS monitors or “In-Plane Switching” monitors, leverage liquid crystals aligned in parallel to produce rich colors. IPS panels are defined by the shifting patterns of thei