kuman 3.5 tft lcd shield library quotation

Note: There is a film on the LCD, if there is scratch on the film when you receive the item, pls try to remove the film with your finger nail from the corner of the LCD, thanks.

kuman 3.5 tft lcd shield library quotation

I know that the TFT is not faulty, because I used it on an Arduino Uno using a different library, and it worked just fine. The problem with this library is that it only works on AVR processors, and as you know, the due uses an ARM processor. Does anyone know how to get something to show on screen? I would be ok with losing the sd card reader and maybe touch, but those would be a plus to keep! Thanks for reading!

kuman 3.5 tft lcd shield library quotation

I bought online this LCD Touchscreen Kuman SC3A-NEW-UK. It uses ILI9486 drivers, but it didn"t include any instructions manual, and kumantech.com seems to be devoid of complete technical documentation about SC3A-NEW-UK model.

Just in case it wasn"t noticable: I am trying to make a "Hello World" for my SC3A-NEW-UK"s LCD Touchscreen from an Arduino UNO board. In other words: just print "Hello World" to see if it works.

To see if I can use it, I tried downloading a whole ZIP from this Github project, and inside the Arduino IDE, I tried adding the downloaded library using the option "Include .ZIP library". If I copy-paste the code example provided within README.md (the following) and compile:

...and I have no idea what this FS library is supposed to be, so I don"t think I can use that Github project at all... I am tempted to assume that Github"s project is dead.

This compiled in Arduino IDE, no problem, but I still don"t know if it will work well with my screen. I am also confused about initialization of the TFT object and how would I have to wire the LCD screen to the Arduino depending on this initialization:

...i mean, my LCD screen has CS and RESET pins, but what is DC supposed to be here? (in this context, I don"t think it stands for "Direct Current"... but there"s no DC pin reference in my LCD screen written "AS IS"... ?? This brings me more confusion...

...specially having in mind that I don"t know how am I supposed to wire the LCD screen to the Arduino yet. It seems the LCD pins have been designed to fit in directly to the Arduino board without thinking too much about it (like the shape is the same), but that would make the screen getting all the Arduino UNO"s pins for itself, so I don"t think so...

...so, powering the screen shouldn"t be a big deal, but, how am I supposed to connect everything else? I am completely misguided about how am I supposed to interact with the screen from Arduino code... what is RS pin for? Should I use 4-bit or 8-bit mode? (I think 4-bit would imply connecting 4 digital pins for the screen, and 8-bit the whole 8 pins from screen to the Arduino UNO board)? Should I use LCD_RD and LCD_WR? Well you have a picture of my confusion.

Even though I know how to control Input/Output in Arduino code to interact with analog/digital input and output pins at will with C++ in Arduino code (but even so, I think I"m still an Arduino n00b), this LCD screen"s physical interface is very confusing to me...

PD: I have read somewhere that this SC3A-NEW-UK Touchscreen is made to shield Arduino MEGA boards (by fitting the PINs directly into it), but mine is an Arduino UNO Board! (perhaps I shouldn"t have bought This LCD model, then?)... but I have sets of wires, pinboards and stuff... I don"t want to give up the idea of harnessing this LCD screen using an Arduino UNO. I don"t care about shielding feature, I just want to wire it and make it work. I will figure out how to shield electronics later on.

Based on VE7JRO"s answer, I managed to map the connections by seeing where the connections would go if I just fit the connections shielding the Arduino UNO, the way VE7JRO suggested:

I put NONE for A5 input, because that pin of LCD screen doesn"t have any name on it. There are another ones without name as well, that I didn"t include in this table. I believe (perhaps I"m wrong believing it, I don"t know) that those pins without name have no use.

I still don"t know much of the details about what pins do what for the screen, but I have read somewhere that LCD_D0 to LCD_D7 are meant to receive digital data in some kind of 8-bit parallel mode. But I also heard that there is a 4-bit mode. If I could use that mode with this screen, I would be able to have 4 free digital pins for anything else...

I tested VE7JRO"s code. LCD Screen did draw the interface as expected. But buttons didn"t respond. I found out the code sample needs further calibration.

There are 22 test sketches that come with the MCUFRIEND_kbv library. One of them scans your display and outputs configuration information (sorry, it"s been a while since I tested my screen). Another sketch will draw little boxes in each corner and sides. This is used to get the x y coordinates of the edges of your particular screen (it might be called TouchScreen_Calibr_native.ino).

The fifth parameter is supposed to be the resistance measured between LCD_D6 and LCD_RS with the screen unplugged. Unfortunately, my multimeter can"t measure it for some reason (I put it in 2000 Ohms mode for reading resistance: I always get "1", the same than when I don"t connect anything... like if multimeter"s contacts aren"t working well, I don"t know)... so I left the default 300 value.

kuman 3.5 tft lcd shield library quotation

In this Arduino touch screen tutorial we will learn how to use TFT LCD Touch Screen with Arduino. You can watch the following video or read the written tutorial below.

As an example I am using a 3.2” TFT Touch Screen in a combination with a TFT LCD Arduino Mega Shield. We need a shield because the TFT Touch screen works at 3.3V and the Arduino Mega outputs are 5 V. For the first example I have the HC-SR04 ultrasonic sensor, then for the second example an RGB LED with three resistors and a push button for the game example. Also I had to make a custom made pin header like this, by soldering pin headers and bend on of them so I could insert them in between the Arduino Board and the TFT Shield.

Here’s the circuit schematic. We will use the GND pin, the digital pins from 8 to 13, as well as the pin number 14. As the 5V pins are already used by the TFT Screen I will use the pin number 13 as VCC, by setting it right away high in the setup section of code.

I will use the UTFT and URTouch libraries made by Henning Karlsen. Here I would like to say thanks to him for the incredible work he has done. The libraries enable really easy use of the TFT Screens, and they work with many different TFT screens sizes, shields and controllers. You can download these libraries from his website, RinkyDinkElectronics.com and also find a lot of demo examples and detailed documentation of how to use them.

After we include the libraries we need to create UTFT and URTouch objects. The parameters of these objects depends on the model of the TFT Screen and Shield and these details can be also found in the documentation of the libraries.

So now I will explain how we can make the home screen of the program. With the setBackColor() function we need to set the background color of the text, black one in our case. Then we need to set the color to white, set the big font and using the print() function, we will print the string “Arduino TFT Tutorial” at the center of the screen and 10 pixels  down the Y – Axis of the screen. Next we will set the color to red and draw the red line below the text. After that we need to set the color back to white, and print the two other strings, “by HowToMechatronics.com” using the small font and “Select Example” using the big font.

kuman 3.5 tft lcd shield library quotation

i had the same issues with this 3,5" TFT LCD and wiring it to an ESP32 and making the TouchScreen work. However i managed to find a solution to the problem. Lets start with the wiring:

Next lets focus on the software side. In bodmers awesome library you have to comment/uncomment the right sections. The User_Setup.h file is pretty straight forward. My display used the ILI9488 processor and is run in 8 Bit parallel mode:

When it came to the touchscreen i faced some difficulties. Since the display with 8 bit there is no dedicated "Touch Pin" like other displays use. I decided to use a different library than @Bodmer (no front, still love you and the library <3). I used the ADAFRUIT Touchscreen library in extend:

kuman 3.5 tft lcd shield library quotation

Kuman 3.5 inch 320*480 Resolution Touch Screen TFT LCD Display With Protective Case + 3 x Heat sinks+ Touch Pen for Raspberry Pi 3 Model B, Pi 2 Model B & Pi Model B+ SC11

kuman 3.5 tft lcd shield library quotation

Displays are one of the best ways to provide feedback to users of a particular device or project and often the bigger the display, the better. For today’s tutorial, we will look on how to use the relatively big, low cost, ILI9481 based, 3.5″ Color TFT display with Arduino.

This 3.5″ color TFT display as mentioned above, is based on the ILI9481 TFT display driver. The module offers a resolution of 480×320 pixels and comes with an SD card slot through which an SD card loaded with graphics and UI can be attached to the display. The module is also pre-soldered with pins for easy mount (like a shield) on either of the Arduino Mega and Uno, which is nice since there are not many big TFT displays that work with the Arduino Uno.

One of the good things about this module is the ease with which it can be connected to either of the Arduino Mega or Uno. For this tutorial, we will use the Arduino Uno, since the module comes as a shield with pins soldered to match the Uno’s pinout. All we need to do is snap it onto the top of the Arduino Uno as shown in the image below, thus no wiring required.

To easily write code to use this display, we will use the GFX and TFT LCD libraries from “Adafruit” which can be downloaded here. With the library installed we can easily navigate through the examples that come with it and upload them to our setup to see the display in action. By studying these examples, one could easily learn how to use this display. However, I have compiled some of the most important functions for the display of text and graphics into an Arduino sketch for the sake of this tutorial. The complete sketch is attached in a zip file under the download section of this tutorial.

As usual, we will do a quick run through of the code and we start by including the libraries which we will use for the project, in this case, the Adafruit GFX and TFT LCD libraries.

With this done, the Void Setup() function is next. We start the function by issuing atft.reset() command to reset the LCD to default configurations. Next, we specify the type of the LCD we are using via the LCD.begin function and set the rotation of the TFT as desired. We proceed to fill the screen with different colors and display different kind of text using diverse color (via the tft.SetTextColor() function) and font size (via the tft.setTextSize() function).

The Adafruit library helps reduce the amount of work one needs to do while developing the code for this display, leaving the quality of the user interface to the limitations of the creativity and imagination of the person writing the code.

kuman 3.5 tft lcd shield library quotation

i had the same issues with this 3,5" TFT LCD and wiring it to an ESP32 and making the TouchScreen work. However i managed to find a solution to the problem. Lets start with the wiring:

Next lets focus on the software side. In bodmers awesome library you have to comment/uncomment the right sections. The User_Setup.h file is pretty straight forward. My display used the ILI9488 processor and is run in 8 Bit parallel mode:

When it came to the touchscreen i faced some difficulties. Since the display with 8 bit there is no dedicated "Touch Pin" like other displays use. I decided to use a different library than @Bodmer (no front, still love you and the library <3). I used the ADAFRUIT Touchscreen library in extend:

kuman 3.5 tft lcd shield library quotation

ER-TFTM035-6 is 320x480 dots 3.5" color tft lcd module display with ILI9488 controller and breakout board,superior display quality,super wide viewing angle and easily controlled by MCU such as 8051, PIC, AVR, ARDUINO,ARM and Raspberry PI.It can be used in any embedded systems,industrial device,security and hand-held equipment which requires display in high quality and colorful image.

It supports 8080 8-bit /9-bit/16-bit /18-bit parallel ,3-wire,4-wire serial spi interface.Built-in microSD card slot, optional 3.5" 4-wire resistive touch panel with controller XPT2046 and capacitive touch panel with controller FT6236, so you can detect finger presses anywhere on the screen and doesn"t require pressing down on the screen with a stylus and has nice glossy glass cover . It"s optional for font chip, flash chip and microsd card. We offer two types connection,one is pin header and the another is ZIF connector with flat cable mounting on board by default and suggested. Lanscape mode is also available.

Of course, we wouldn"t just leave you with a datasheet and a "good luck!".Here is the link for 3.5"TFT Touch Shield with Libraries, EXxamples.Schematic Diagram for Arduino Due,Mega 2560 and Uno . For 8051 microcontroller user,we prepared the detailed tutorial such as interfacing, demo code and development kit at the bottom of this page.