20 4 lcd display pin diagram pricelist

ERM2004SYG-3 is small size 20 characters wide,4 rows character lcd module,SPLC780C controller (Industry-standard HD44780 compatible controller),6800 4/8-bit parallel interface,single led backlight with yellow green color included can be dimmed easily with a resistor or PWM,stn-lcd positive,dark blue text on the yellow green color,wide operating temperature range,rohs compliant,built in character set supports English/Japanese text, see the SPLC780C datasheet for the full character set, It"s optional for pin header connection,5V or 3.3V power supply and I2C adapter board for arduino.

20 4 lcd display pin diagram pricelist

ERM2004SYG-2 is 20 characters wide,4 rows character lcd module,SPLC780C controller (Industry-standard HD44780 compatible controller),6800 4/8-bit parallel interface,single led backlight with yellow green color included can be dimmed easily with a resistor or PWM,stn-lcd positive,dark blue text on the yellow green color,wide operating temperature range,rohs compliant,built in character set supports English/Japanese text, see the SPLC780C datasheet for the full character set. It"s optional for pin header connection,5V or 3.3V power supply and I2C adapter board for arduino.

20 4 lcd display pin diagram pricelist

This command will have no effect on USB modules. It will return an ACK for compatibility with old versions of host software. For serial modules this command will return an ACK for a 0 (19200 BAUD) or 1 (115200 BAUD). All other entries will return an error as stated in the datasheet

20 4 lcd display pin diagram pricelist

CFA631-RMF-KU, CFA633-YYB-KS, CFA633-TMC-KS, CFA633-RMC-KS, CFA633-YYB-KU, CFA633-TMC-KU, CFA633-RMC-KU, CFA635-YYE-KS, CFA635-TMF-KS, CFA635-TFE-KS, CFA635-TMF-KL, CFA635-TFE-KL, CFA631-TMF-KU, CFA635-TFE-KU, CFA635-YYE-KL, CFA635-TMF-KU, CFA635-YYE-KU, CFA533-YYH-KS, CFA533-YYH-KU, CFA533-TMI-KS, CFA533-TMI-KU, CFA533-YYH-KL, CFA533-TMI-KL, CFA533-YYH-KC, CFA533-TMI-KC, CFA533-YYH-KI, CFA633-YYH-KS, CFA633-TMI-KS, CFA633-YYH-KU, CFA633-TMI-KU, CFA632-YFH-KS, CFA632-YDI-KS, CFA632-YFH-KU, CFA632-YDI-KU, CFA634-TFH-KS, CFA634-TMI-KS, CFA634-YFH-KS, CFA634-YDI-KS, CFA634-TFH-KU, CFA634-TMI-KU, CFA634-YFH-KU, CFA634-YDI-KU, CFA633-RDI-KU, CFA633-RDI-KS, CFA533-TFH-KU, CFA533-TFH-KS, CFA633-TFH-KU, CFA633-TFH-KS, CFA533-TFH-KL, CFA533-TFH-KC, CFA735-TFK-KR, CFA735-TFK-KT, CFA735-TML-KR, CFA735-TML-KT, CFA735-YYK-KR, CFA735-YYK-KT, CFA632-YDI-KL, CFA632-YDI-KN, CFA632-YDI-KC, CFA632-YDI-KP, CFA632-YFH-KL, CFA632-YFH-KN, CFA632-YFH-KC, CFA632-YFH-KP, CFA634-YDI-KC, CFA634-TMI-KC, CFA634-YFH-KC, CFA634-TFH-KC, CFA634-YFH-KL, CFA634-TFH-KL, CFA634-TMI-KL, CFA634-YDI-KL, CFA634-TFH-KP, CFA634-YFH-KP, CFA634-TMI-KP, CFA634-YDI-KP, CFA634-TFH-KN, CFA634-YFH-KN, CFA634-TMI-KN, CFA634-YDI-KN, CFA631P-TMF-KU

20 4 lcd display pin diagram pricelist

On previous tutorials on our website, we have covered the use of several displays, LCDs, and TFTs, with diverse Arduino boards. From Nokia 5110 LCD display to different types of OLEDs, the reason for the tutorials has been to ensure that, as a reader, you know how to use many of the most popular displays so this help you make the best choice when trying to select the perfect display for your project. For today’s tutorial, we will continue in that line and examine how to use the 20×4 I2C Character LCD Display with Arduino.

The 20×4 LCD display is essentially a bigger (increased number of rows and columns) version of the 16×2 LCD display with which we have built several projects. The display has room to display 20 columns of characters on 4 rows which makes it perfect for displaying a large amount of text without scrolling. Each of the columns has a resolution of 5×8 pixels which ensures its visibility from a substantial distance. Asides its size, the interesting thing about this version of the display being used for today’s tutorial is the fact that it communicates via I2C, which means we will only require 2 wires asides GND and VCC to connect the display to the Arduino. This is possible via the Parallel to I2C module coupled to the display as shown in picture below. The I2C module can also be bought individually, and coupled to the 16 pins version of the display.

To demonstrate how to use this display, we will build a real-time clock which will display date and time on the LCD. To generate and keep track of date and time, we will use the DS3231 Real time clock. We covered the use of the DS3231 RTC module in the tutorial on DS3231 based Real-time Clock, you can check it out to learn more about its use with the Arduino.

Since the display and the real-time clock are both I2C devices, they will be connected to the same pins on the Arduino. For the Arduino Uno, the I2C pins are located on Pin A5 (SCL) and A4 (SDA). This may differ on any of the other Arduino boards. Connect the components as shown in the schematics below;

To write the code for this project, we will use three main libraries; the DS1307 Library to easily interface with the DS3231 module, the liquid crystal I2C library to easily interface with the LCD display, and the Wire library for I2C communication. While the Wire library comes built into the Arduino IDE, the other two libraries can be downloaded and installed via the links attached to them.

As mentioned during the introduction, our task for today is to obtain time and date information from the RTC module and display on the LCD. As usual, I will do a breakdown of the code and try to explain some of the concepts within it that may be difficult to understand.

We start the code by including the libraries that will be used. After which we create an object of the Liquid crystal library, with the I2C address of the LCD as an argument. The I2C address can be obtained from the seller or as described in our tutorial on using the 16×2 LCD display to ESP32.

Next, we create a set of variables which comprises of byte arrays that represent custom characters to be created and displayed.  The custom characters are usually 5pixels in width and 8 pixels in height, representing each box in the rows or columns of the LCD. The byte array represents which pixels of the box to be turned on or off.

Next, we write the void setup function and start by initializing the library using the lcd.begin() function, with the first argument representing the number of columns, and the second argument representing the number of rows. After this, the CreateCustomCharacters() function is called to convert the char variables created above into characters that can be displayed on the LCD. One of the characters created is then used to create a UI/frame which is displayed using the printFrame() function.

The first function is the printTime() which breaks down the time data stored in the “tm” variable to extract seconds, minutes and hour values. These values are then displayed on the LCD using the lcd.print() function.

The printDate function is similar to the printTime function. It extracts date information from the variable tm and uses the lcd.print() function to display it.

The printFrame() function, on the other hand, was used to create a sort of user interface for the project. it makes use of the characters created above. Each of the custom characters created is displayed using the lcd.write(byte(x)) function with x being the character number of the character to be displayed. The characters are positioned on the LCD using the lcd.setCursor() function which takes numbers representing the column and row on which the character is to be displayed, as arguments.

Different projects, come with different screen requirements. If you need to display a large amount of information and the size is not a constraint, the 20×4 I2C display is definitely one of the options you should consider.

20 4 lcd display pin diagram pricelist

20x4 Character LCD Display Module available in Serial RS232, TTL, I2C, and USB. Our Character LCD provides you with a cost-effective industrial HMI user interface solution for that great product/project you are developing.

The LK204-25 is a 20x4 intelligent  character lcd module. Engineered to quickly and easily add a powerful HMI to any application. Multiple communication protocols such as Serial RS232, TTL, I2C, and USB communication modes allow the LK204-25 LCD to be connected to a wide variety of host controllers.

Our Character LCD provides you with a cost-effective industrial HMI user interface solution for that great product/project you are developing. This LCD displays features optional on-board large and medium digits, bar graphs all with the convenience of a 25 key matrix keypad will allow fast development for any application.20x4 Character LCD module

Display Tuner Pro (MOCD#) is an update to our popular uProject testing software for Matrix Orbital displays. It adds support for new features and displays, including legacy and graphic units, to our established base of features and scripting. This tool supports all Matrix Orbital Intelligent and Economy Series displays, including the following:GLK Series (GLK12232-25-SM, GLK12232-25, GLK19264-7T-1U, GLK24064-25, GLK24064R-25-1U, GLK240128-25)

uProject is an advanced testing software for Matrix Orbital displays. It allows testing of nearly all the features and allows test scripting and many other advanced features.

uProject (micro Project) is a series of different tools that should allow the testing of nearly all the features of most of our displays. uProject also features