which version phone 10 oled vs tft lcd free sample

Of all the new phones announced at Apple’s September iPhone event, the iPhone XR is arguably the most interesting. Compared to the significantly more expensive iPhone XS and XS Max, the XR is eerily similar.

It’s the type of display. The XS OLED panel against the XR’s LCD. With the base model of the XS and XS Max models starting at $350 and $490 more respectively, that’s a lot of money for an OLED panel.

It’s worth noting that OLED or LCD doesn’t affect the resolution of the display. Regardless, higher resolution means higher image quality. However, more pixels means more power usage.

The XS models also have 3D Touch. Again, not related to the type of display — the 7 and 8 had the feature with LCD displays. However, the XR has Haptic Touch, a sort of ‘press-and-hold’ variation that borrows the haptic feedback of MacBook trackpads.

Finally, the XS models have significantly higher contrast ratios. Apple’s website lists both XS devices with 1,000,000:1 contrast, compared to the XR’s 1,400:1. This is where the OLED and LCD differences come in.

It all comes down to how the displays work. Liquid Crystal Display (LCD) has a constant backlight. A panel the same size as the display creates a steady white light that illuminates the display. Manufacturers layer polarizers and filters in front of the backlight control the amount of light that shines through. Additionally, they shape the images you see on the screen.

LCD isn’t bad by any stretch. It’s been the go-to flat-panel display technology for some time. But it has some drawbacks when it comes to mobile devices — most related to that backlight.

OLED, or Organic Light Emitting Diode, displays don’t use a backlight. Each individual pixel produces its own light. Brightness can also be controlled on a per-pixel basis.

That difference is visible in the image above. The iPhone 7 Plus with an LCD panel (left) next to the iPhone X with an OLED shows the contrast difference. There’s more detail in the Earth image, specifically on the dark side of the planet. Furthermore, the lights on the continent are sharper on the OLED. It’s hard to see in the photo, but the black is deeper as well.

Getting rid of the backlight has other advantages as well. It makes the display thinner overall, allowing for thinner phones or phones with more stuff inside — like a bigger battery.

Furthermore, OLED can save battery. With OLED screens, dim colours use less power. Black uses no power at all. This could counteract the extra battery drain from having a high-res display like the XS has.

Generally, on OLED will wear evenly. The pixels will be used at roughly the same amount. However, phones have several static elements like home buttons and status bars. Typically, these display as white on dark backgrounds or black and light backgrounds.

Software has gotten pretty good at mitigating wear, however. My Pixel 2 XL, despite havingan LG display prone to burn-in, exhibits almost no sign of burn-in. After almost a year of heavy use, my phone has less burn-in than my first-gen Pixel after the same period of use.

This ultimately comes down to personal preference. I’d take an OLED over anything because I love the vivid colours and contrast. However, when it comes to the new iPhones, an extra $350 is a lot to ask for an OLED screen.

Considering that every iPhone except 2017’s iPhone X had an LCD display — and great looking LCDs at that — I think most people will be more than happy with the XR.

OLEDs are great, but I don’t think they’re $350 great. If you’re that interested in OLED, it’d be worth looking at Android options like the S9. For just a little more than the iPhone XR, you can get an S9+ with one of the best OLED displays in a phone right now.

which version phone 10 oled vs tft lcd free sample

How often do you think about your iPhone’s display? Unless you’re a tech nerd (like me), or living with a shattered display (like me in the past), you might not ever give it much thought. Otherwise, it looks nice — what more do you need to know? But you don’t need to be a geek to care about your iPhone’s display. In fact, you might be missing out on some great features if you’re not aware of what kind you have.

Let’s start with the basics. There are basically two different kinds of iPhone displays. The first is LCD, which stands for liquid-crystal display. To simplify the explanation (and this is a significant simplification) let’s look at two of the components that make LCDs work. The first is their pixels, which are what dictate the colours that appear onscreen. Each pixel has three subpixels — one red, one green, and one blue — which each change in intensity. That combination of colours creates the images that appear when you scroll on Instagram, watch a YouTube video, or look at your photos.

The second component with LCDs is the backlight. The backlight is a panel that sits behind the pixels, and shines light through them in order for you to see what you see. When you change the brightness of your display, you’re really controlling the backlight, and it covers the entire display; think of it like a lightbulb — you can’t decide to have one part of the lightbulb getting brighter while another part gets dimmer.

The other type of iPhone display is OLED, short for organic light-emitting diode. The major difference between LCD and OLED displays is that there is no backlight in an OLED panel. Instead, the pixels lightthemselves up. That gives you some significant benefits; for one, you can have more finely detailed images, since each pixel stands out on its own, rather than requiring a backlight that covers all surrounding pixels as well. The biggest benefit, and the one you might see people talk about most, is that OLED pixels can turn themselves off, giving you incredible contrast between light and dark images.

Here’s an example of why that’s great: Let’s say you’re watching a movie on your phone. Anytime there are dark scenes in that movie, those areas of your display will quite literally turn off. A night sky goes completely black; if the movie is widescreen or a square 4:3, the bars that appear top and bottom or left and right are suddenly completely dark. It results in a very good-looking image, especially if you’re watching in a low-lit room.

These benefits are why I love OLED TVs in particular. The image is fantastic, and, when watching in a totally dark room, letterboxing bars just disappear; you only see the part of the screen you should (whether it be super widescreen or the old square format).

When it comes to iPhones, if you compare an LCD iPhone and an OLED iPhone and fill each display with a black rectangle, it would perfectly visualise the difference. The OLED iPhone would look like it was turned off; the LCD iPhone would still appear dark, but the display would be illuminated.

Because OLED pixels can turn themselves off, there are huge implications for battery life. You can save your iPhone some juice just by using dark mode, specifically the kind of dark mode that uses black backgrounds. (Grey ones won’t turn the pixels off, so you really need all-black elements to save your iPhone’s battery from having to power each and every pixel.)

Traditionally, the main flaw with OLED displays is burn-in. You see this a lot with OLED TVs, unfortunately; after an extended period of use, sometimes the “shadow” of static images will always remain on your screen. People who watch a lot of news, for example, complain that they can see the outline of the chyron, news ticker, and outlet logo on their TVs at all times.

That said, Apple has done a good job to prevent burn-in on OLED iPhones and it just isn’t a common complaint with these devices. The first OLED iPhone — the X — has been out since 2017, and in those four years, residual images haven’t been a noted issue. That’s to say, you don’t need to go out of your way to choose an LCD iPhone if you’re afraid of burn-in.

Below, I’ve listed each and every iPhone that Apple has ever made, complete with their display type. Some of these iPhones are quite old, but I’d love to know if you’re still rocking them. I should note that there are no new LCD iPhones; the last one Apple produced was the 2020 iPhone SE, and the iPhone 11 before that. The entire iPhone 12 and 13 lineups are made using OLED displays.

iPhone (2007), iPhone 3G, iPhone 3GS, iPhone 4, iPhone 4S, iPhone 5, iPhone 5C, iPhone 6, iPhone 6 Plus, iPhone 6S, iPhone 6S Plus, iPhone SE (1st Gen), iPhone 7, iPhone 7 Plus, iPhone 8, iPhone 8 Plus, iPhone XR, iPhone 11, iPhone SE (2nd Gen).

iPhone X, iPhone XS, iPhone XS Max, iPhone 11 Pro, iPhone 11 Pro Max, iPhone 12, iPhone 12 mini, iPhone 12 Pro, iPhone 12 Pro Max, iPhone 13, iPhone 13 mini, iPhone 13 Pro, iPhone 13 Pro Max.

which version phone 10 oled vs tft lcd free sample

limited at first. Will be benefits of the new screen make it worth the wait? Here’s a quick rundown on OLED (organic light emitting diode) technology and how it differs from today’s LCD (liquid crystal display) screens.

iPhone 8 and 8 Plus are built on a backlight—a panel as large as the screen itself that produces a constant white light anytime the screen is on. A series of polarizers and filters are layered in front of the backlight to control the light and produce the image you see on screen. It’s been the dominant technology used in flat-panel displays for almost two decades, but keeping that backlight on draws a lot of power—and that’s a big disadvantage in a portable device.

An OLED does away with the backlight completely. Each individual pixel has a tiny amount of organic material that fluoresces when current flows, so the pixels produce light directly. It’s also possible to control brightness at a per-pixel level.

The display is typically the most power-hungry component in any phone because of the backlight. By removing it, the iPhone will be more power efficient, which is great for users.

It’s not the only reason to applaud OLED. Getting rid of the backlight allows for the entire display module to be thinner, which is an important consideration in a smartphone. Apple could use the extra space to make the phone thinner or add a little more battery capacity.

Just as important is the image. OLEDs display more vibrant colors, have deeper blacks and brighter whites and a greater contrast ratio so most people find them superior to LCD.

No. OLED screens began appearing in smartphones several years ago and are used today in phones from Samsung, LG, and other competitors. Several companies also offer OLED monitors and TV screens and flexible OLEDs are increasingly used in smartwatches, fitness bands, and automobile dashboards. Apple is already using an OLED in the Apple Watch.

In part it’s a problem of production. As the iPhone is the world’s best-selling smartphone, Apple needs to be able to ensure a reliable stream of OLED panels from its display partners, but OLED has proved a difficult technology to master.

To date, most of the world’s smartphone OLEDs are produced by Samsung Display, which leaves Apple at the mercy of a single supplier for a key component—typically a position the company has tried to avoid.

While Apple doesn’t comment on its supply chain, the availability of OLED panels is already expected to impact availability of the high-end iPhone with limited supplies being available at launch and back orders being the norm. It will also contribute to the expected record-setting price of the new handset.

which version phone 10 oled vs tft lcd free sample

If you want to buy a new monitor, you might wonder what kind of display technologies I should choose. In today’s market, there are two main types of computer monitors: TFT LCD monitors & IPS monitors.

The word TFT means Thin Film Transistor. It is the technology that is used in LCD displays.  We have additional resources if you would like to learn more about what is a TFT Display. This type of LCDs is also categorically referred to as an active-matrix LCD.

These LCDs can hold back some pixels while using other pixels so the LCD screen will be using a very minimum amount of energy to function (to modify the liquid crystal molecules between two electrodes). TFT LCDs have capacitors and transistors. These two elements play a key part in ensuring that the TFT display monitor functions by using a very small amount of energy while still generating vibrant, consistent images.

Industry nomenclature: TFT LCD panels or TFT screens can also be referred to as TN (Twisted Nematic) Type TFT displays or TN panels, or TN screen technology.

IPS (in-plane-switching) technology is like an improvement on the traditional TFT LCD display module in the sense that it has the same basic structure, but has more enhanced features and more widespread usability.

These LCD screens offer vibrant color, high contrast, and clear images at wide viewing angles. At a premium price. This technology is often used in high definition screens such as in gaming or entertainment.

Both TFT display and IPS display are active-matrix displays, neither can’t emit light on their own like OLED displays and have to be used with a back-light of white bright light to generate the picture. Newer panels utilize LED backlight (light-emitting diodes) to generate their light hence utilizing less power and requiring less depth by design. Neither TFT display nor IPS display can produce color, there is a layer of RGB (red, green, blue) color filter in each LCD pixels to produce the color consumers see. If you use a magnifier to inspect your monitor, you will see RGB color in each pixel. With an on/off switch and different level of brightness RGB, we can get many colors.

Winner. IPS TFT screens have around 0.3 milliseconds response time while TN TFT screens responds around 10 milliseconds which makes the latter unsuitable for gaming

Winner. the images that IPS displays create are much more pristine and original than that of the TFT screen. IPS displays do this by making the pixels function in a parallel way. Because of such placing, the pixels can reflect light in a better way, and because of that, you get a better image within the display.

Winner. While the TFT LCD has around 15% more power consumption vs IPS LCD, IPS has a lower transmittance which forces IPS displays to consume more power via backlights. TFT LCD helps battery life.

Normally, high-end products, such as Apple Mac computer monitors and Samsung mobile phones, generally use IPS panels. Some high-end TV and mobile phones even use AMOLED (Active Matrix Organic Light Emitting Diodes) displays. This cutting edge technology provides even better color reproduction, clear image quality, better color gamut, less power consumption when compared to LCD technology.

What you need to choose is AMOLED for your TV and mobile phones instead of PMOLED. If you have budget leftover, you can also add touch screen functionality as most of the touch nowadays uses PCAP (Projective Capacitive) touch panel.

This kind of touch technology was first introduced by Steve Jobs in the first-generation iPhone. Of course, a TFT LCD display can always meet the basic needs at the most efficient price. An IPS display can make your monitor standing out.

which version phone 10 oled vs tft lcd free sample

In recent years OLED technology has emerged as the leading smartphone display technology, and the world"s most popular phone vendors are all shipping AMOLED smartphones.

In 2018, over 500 million AMOLED screens were produced - mostly to satisfy demand from mobile phones vendors. The smartphone OLED 2018 market was led by Samsung, whohas been using AMOLEDs in its high-end phones for many years, followed by Apple, LG, Xiaomi, Huawei and others. Samsung is branding its smartphone OLED displays as Super AMOLED display.

Most premium phones today adopt flexible OLED displays. Apple for example is using a flexible 5.8" 1125x2436 OLED (made by SDC) in its 2018 iPhone XS (the iPhone XS Max sports a larger 6.5" 1242x2688 flexible AMOLED). Display experts say that the iPhone XS Display is the world"s best smartphone display.

Most display experts and consumers agree that OLED displays are the world"s best smartphone displays. The best smartphone OLED displays are the Super AMOLED displays produced by Samsung Display, but other OLED producers (such as LG and BOE Display) are also producing high quality OLEDs.

which version phone 10 oled vs tft lcd free sample

Crystalfontz America is the leading supplier of LCD, TFT, OLED and ePaper display modules and accessories. We specialize in providing our customers the very best in display products, cables and connectors.

In addition to our large catalog of displays, we offer LCD development kits, breakout boards, cables, ZIF connectors and all of the LCD software and drivers you need to develop your product or project. We are located in the U.S. so we can get product to you fast!

which version phone 10 oled vs tft lcd free sample

original iPhone X, the iPhone XS Max has notable improvements including higher Full Screen Brightness and higher Absolute Color Accuracy, all the more

Tests and Measurements the iPhone XS Max receives ourDisplayMate Best Smartphone Display Awardearning DisplayMate�s highest ever A+ grade by providing

which version phone 10 oled vs tft lcd free sample

Reports suggest that Apple is getting closer to implementing MicroLED in its future product releases, including the Apple Watch, with the display technology potentially offering a number of benefits compared to other methods. AppleInsider explains how the current TFT and OLED display technologies work, and how MicroLED differs.

MicroLED shows promise as a display technology, potentially offering power savings and a reduced screen thickness when put beside current-generation display panels. Apple has recognized the potential, and has invested heavily into developing the technology over the last few years, with a view to using it in the company"s future products.

To understand fully how MicroLED can benefit Apple, it is worth understanding how the commonly-used display technologies work in the first place, before examining how different MicroLED really is in a comparison.

The most common display technology used by consumer products today, and the oldest of the technologies examined in this article, TFT"s full name of TFT LCD stands for Thin-film-transistor liquid-crystal display. This technology is extensively used by Apple in its products, found in iPads, iPhones, MacBooks, and iMac lines.

The LCD part relates to the concept of defining small translucent or transparent areas in a thin and flexible liquid crystal-filled panel, like the displays used in calculators. Passing current through the segment changes the molecular properties of the defined segment area, allowing it to switch between being see-through or opaque.

TFT takes this a stage further, by effectively covering an entire panel with a grid of isolated liquid crystal segments, which again can vary between opaque and transparent based on the level of electrical current. In this case, there are far more segments needed to make up the display than with a normal calculator.

Polarizing filters on either side of the TFT display sandwich are used to prevent light from passing through directly, with the liquid crystal reaction of each segment affecting polarized light passing through the first filter to go through the second.

Sometimes these types of display are known as "LED," but this somewhat of a misnomer, as this actually refers to the use of Light Emitting Diodes as a light source. The LED backlight shines light through the various layers making up the TFT LCD.

TFT LCD screens continue to be widely used in production for a number of reasons. Manufacturers have spent a long time perfecting the production of the display panels to make it as cheap as possible, while its high usage allows it to benefit from economies of scale.

Used in consumer devices in a similar way to TFT LCD, OLED (Organic Light-Emitting Diode) is a display technology that is similar in the basic concept, but differs considerably in its execution. Again, the idea is for a thin panel to be divided up into segments, with charge applied to each section to alter its molecular properties, but that"s where the techniques diverge.

As the name implies, OLED uses an organic compound film that is put between two electrodes, which are used to provide charge. Instead of the charge changing how light passes through, the current instead causes the emissive electroluminescent layer to emit light, without the need for a rear light source.

These self-emitting pixels gives OLED a considerable advantage over LCD-based systems in a number of areas. Most obviously, by not needing a backlight, OLED panels can be made far thinner than an equivalent LCD-based display, allowing for the production of thinner devices or more internal area for other components, like a larger battery.

The power efficiency of OLED panels can be far greater, as while a TFT screen requires an always-on backlight, the brightness of OLED pixels themselves determine power usage, with a black pixel consuming no power at all. OLED screens are also faster to respond than LCD displays, making them more useful for VR displays, where response time needs to be as rapid as possible.

This also allows OLED to provide superior contrast ratios compared to TFT, as the lack of backlight bleed-through that occurs in TFT simply doesn"t happen in OLED.

OLED also can be produced on plastic substrates instead of glass, allowing it to be used to create flexible displays. While this is currently embodied in curved and other non-flat screens in some devices, it has the potential to be employed in foldable smartphones or rolled up for storage, an area Apple is also allegedly examining.

Despite the advantages, OLED is still lagging behind TFT in terms of adoption. The cost of production is far higher, in part due to the need for extremely clean environments, as a single speck of dust can potentially ruining a display during fabrication.

OLED panels are also affected by the presence of water, both in production and in use. Small amounts of water contacting the organic substrate can cause immediate damage to the display, rendering parts of the screen useless.

So far, Apple"s usage of OLED consists of the premium iPhone X and the Apple Watch. As the cost of production drops down, it is plausible for Apple to use OLED in more future products, providing a better screen for customers to use.

Thought to be the next big thing in display technology, MicroLED basically takes the idea of using LEDs for pixels in a large stadium-style screen and miniaturizes it all.

Using extremely small LEDs, three MicroLEDs are put together to create each pixel, with each subpixel emitting a different color from the usual red, blue, and green selection. As each LED emits light, there is no need for a backlight as used in TFT screens.

MicroLED doesn"t use an organic compound to produce light, making it less susceptible to failure compared to OLED. Just like OLED, it can be applied onto a flexible material, allowing it to be used for curved displays or non-stationary components, like a watch strap, and can result in an extremely thin display panel.

MicroLED offers the same lower power consumption and high contrast ratio benefits as OLED when compared to TFT. However, MicroLED is also capable of producing a far brighter image than OLED, up to 30 times brighter, and is in theory more efficient in converting electricity into light.

As a relatively new and in-development technology, the cost of MicroLED production is extremely high in comparison to the more established OLED and TFT mass production lines, in part due to lower than required yields. Manufacturing equipment vendors have produced hardware for MicroLED production that cuts defects in half and reduces deposition deviance from 3 nanometers down to 1 nanometer, but it is unclear if this is enough to help mass production move forward.

While MicroLED is an attractive proposition for Apple, it is not the only technology under development by the company"s engineers. Apple has previously filed patent applications for a technology described as "Quantum Dot LED and OLED Integration for High Efficiency Displays."

Quantum Dots are photoluminescent particles included in an LED-backed TFT display that can produce brighter and more vibrant colors, with the colors produced depending on their size. While available in current QLED televisions, the technology is only really being used to enhance the backlight, rather than being used to illuminate individual pixels.

Under Apple"s implementation, thought to be a "true quantum dot" (QD) system, the dot will emit light on demand without needing a backlight. For true QD, the photoluminescent dots are instead replaced by electroluminescent nanoparticles which are capable of such emissions.

The technology in theory can create an even thinner display than OLED, along with a more streamlined manufacturing process. True QD displays are also capable of high pixel densities of up to 1,000ppi, multiple times the density required to be called a Retina-quality display, and based on Apple"s hybrid invention, will also boast the response times of OLED technology.

The QD patent application certainly shows Apple is thinking about display technology in multiple ways, and how it can be applied to future devices, but short of getting firm supply chain information or an official announcement from Apple directly, it is difficult to confirm which direction it will be heading.

Apple has been interested in using the technology for some time now, with the first notable sign being its acquisition of LuxVue in May 2014, alongside assorted related patents. A MicroLED specialist, LuxVue was rumored to have been the display producer for the ill-fated Google Glass headset, but was also the holder of assorted patents in the LED display field, including MicroLED.

At the time, the acquisition was thought to be an attempt by Apple to bring part of its display technology development in-house, with suggestions the MicroLED technology would be used in another rumored-at-the-time device, the Apple Watch. A more recent report suggests Apple is working with TSMC to make small panels for a future premium Apple Watch, potentially starting mass production by the end of the year.

Apple has also reportedly set up a secret facility just 15 minutes away from Apple Park, believed to be used for developing MicroLED. The 62,000 square-foot facility is thought to house around 300 engineers on a project named "T159," relating directly to the technology"s development.

The facility is also claimed to be sufficient in size to perform small scale manufacturing of display panels, allowing the company to keep development and testing in-house without involving third-parties. Considering Apple"s previous history in developing technologies before issuing information to manufacturing partners, it is possible that Apple is trying to work out the kinks in production before suppliers even attempt to make MicroLED panels.

Reports from last year also suggest Apple"s investment in MicroLED was a cause for concern for Samsung, LG, and other South Korean suppliers who provide display panels for the company"s products. Owning the process for MicroLED manufacturing could allow Apple to migrate away from its existing display suppliers in the coming years, reducing revenues and profits.

Aside from Apple"s development, there has been little in the way of announcements from other firms for products using the technology that could be bought by consumers in the coming months. The exception is Samsung, Apple"s main rival in the mobile marketplace and a major supplier of display panels, but its usage of MicroLED is not aimed at producing smaller screens.

At CES 2018, Samsung introduced The Wall, a 148-inch TV claimed to be the "world"s first consumer modular MicroLED" television. According to the South Korean electronics giant, The Wall"s modularity meant consumers would be able to customize their television"s size and shape to suit their needs.

The impending use of the technology in a high-priced consumer product could be considered proof that MicroLED display technology is maturing enough for use in devices. If the reports claiming Apple is getting close to mass producing panels is true, the inclusion of MicroLED in the Apple Watch could end up being the first mainstream usage of the technology.

which version phone 10 oled vs tft lcd free sample

OLED displays have become increasingly common and accessible over the past few years. While they were once reserved for premium smartphones, you’ll now find OLED displays at every smartphone price point. Not every OLED display is equal, though – differences in materials and manufacturing processes can result in varying display qualities. In that vein, let’s explore the differences between POLED vs AMOLED, and what these acronyms mean in the real world.

Before differentiating between POLED and AMOLED, it’s worth understanding the fundamentals of OLED display technology. To that end, let’s ignore the P and AM prefixes for now.

If you look at an OLED display under a microscope, you’ll see these diodes arranged in various red, green, and blue configurations in order to produce a full range of colors. OLED has a key advantage over conventional LCDs – individual light emitters can be switched completely off. This gives OLED deep blacks and an excellent contrast ratio.

Naturally, light emitters in an OLED display need a power source in order to function. Manufacturers can use either a passive wiring matrix or an active wiring matrix. Passive matrix displays provide current to an entire row of LEDs, which isn’t ideal but it is cheap. An active matrix, on the other hand, introduces a capacitor and thin-film transistor (TFT) network that allows each pixel to be driven individually. This driving matrix is part of the panel that sits on top of a base substrate.

Today, virtually all high-resolution OLED displays use active-matrix technology. This is because a passive matrix requires higher voltages the more pixels you introduce. High voltage reduces LED lifetimes, making a passive matrix OLED impractical.

AMOLED simply refers to an Active Matrix OLED panel. The AMOLED branding has become synonymous with Samsung Display’s OLED panels over the years. However, all smartphone OLED panels, including those from Samsung’s rivals like LG Display use active-matrix technology too – they just aren’t marketed as such.

In case you’re wondering what Super AMOLED means, it’s another bit of branding to indicate the presence of an embedded touch-sensitive layer. Similarly, Dynamic AMOLED refers to a display with HDR capabilities, specifically support for Samsung’s favored HDR10+ standard.

Now that we know the layered structure of an OLED display, we can move on to the plastic part. While the first wave of OLED panels was built using glass substrates, the desire for more interesting form factors has seen manufacturers use more flexible plastic components. This is where the P in POLED comes from.

Manufacturers have experimented with a range of plastics for flexible displays, including polyethylene terephthalate (PET) and polyethylene naphthalate (PEN). OLED manufacturers have settled on using polyimide plastics (PI) that can better withstand high TFT manufacturing temperatures. The type of substrate and heating process used also defines the flexibility of the display.

The somewhat confusing part is that Samsung’s AMOLED displays use plastic substrates. And as the name suggests, LG Display’s POLED technology clearly uses plastic as well. In summary, it’s absolutely possible to build a plastic substrate, active-matrix OLED panel. That’s exactly what both of the big two panel manufacturers are doing when it comes to mobile displays.

Even though LG and Samsung-made OLED panels qualify as both POLED and AMOLED simultaneously, the companies aren’t exactly producing identical panels. The quality of the TFT layer and plastic compound can make a difference to display performance, as can the type of emitters and sub-pixel layout.

Over the years, we’ve seen OLED display manufacturers converge on a set of standard parameters. For example, both LG and Samsung use a diamond PenTile sub-pixel layout for smartphone displays. This just means that both should offer similar long-term reliability.

Even when it comes to other attributes like power consumption, brightness, low brightness performance, and panel uniformity, it’s unclear if one has an upper hand. That said, most smartphone makers — from Apple to OnePlus — turn to Samsung’s AMOLED panels for their flagship devices.

In the past, LG used POLED displays in its own flagship smartphones like the Velvet and Wing. However, these panels fell slightly short of the competition in certain aspects like peak brightness and color gamut coverage. These shortfalls led to speculations that Samsung has a leg up over the competition, but the accuracy of these claims is anyone’s guess.

So does that mean you should avoid POLED? Not quite — it’s still fundamentally OLED technology, which offers numerous advantages over IPS LCD. Moreover, you’ll mostly find POLED displays in mid-range and budget smartphones these days, where they should have no problem matching Samsung’s own lower-end AMOLED panels. As a relatively smaller player, LG may also offer more competitive pricing as compared to Samsung.

For most consumers, the choice of POLED vs AMOLED will be of little consequence. The underlying principle – an active-matrix OLED on a flexible plastic substrate – applies equally to both, after all. Despite the different names, LG Display and Samsung aren’t worlds apart in their approach to producing OLED panels for smartphones.

which version phone 10 oled vs tft lcd free sample

Smartphone display technology hasn"t changed for a while. However, with the advent of high refresh rates, we now get a chance to experience a smoother scrolling experience than ever before.

But, your smartphone refreshing 90 times or even 120 times per second can take a hard toll on your battery life. That"s where LTPO display technology comes in. Here"s everything you need to know about LTPO displays.

LTPO stands for low-temperature polycrystalline oxide. However, the full name doesn"t reveal much about the technology. LTPO is a backplane technology for OLED displays that allows displays to change the refresh rate dynamically depending on various conditions. Conditions, in this case, refer to what the user is doing.

LTPO technology has become the norm for flagship phones. The OnePlus 9 Pro and Samsung Galaxy S21 Ultra were some of the first smartphones with this technology. To demonstrate how this works, let"s use the OnePlus 9 Pro as an example.

Its 120Hz 6.7-inch AMOLED panel dynamically refreshes between 1Hz and 120Hz. It uses the full 120Hz when doing active things and switches to 24Hz while watching videos. And if you"re viewing a photo or reading text, the display lowers the refresh rate further to 1Hz.

Typical AMOLED displays use low-temperature polycrystalline silicon (LTPS) in the thin film transistors (TFTs), which make up the display"s backplane. On the other hand, LTPO AMOLED panels use a combination of LTPS TFTs to take care of switching circuits and a different material for driving the display. This is what enables LTPO panels to vary the refresh rate dynamically.

In the case of Apple, it uses LTPS TFTs in combination with Indium Gallium Zinc Oxide (IGZO) TFTs. Samsung also has its proprietary technology for LTPO AMOLED panels using a combination of LTPS TFTs and Hybrid-oxide and Polycrystalline silicon (HOP).

After high-refresh-rate smartphone displays became a reality, smartphone companies stumbled across one issue—reduced battery life. While smartphones typically have poor battery life, cranking up the refresh rate to 90Hz, 120Hz, or even 144Hz means that screen time takes a beating.

Companies came up with LTPO technology to solve this problem by variably changing the refresh rate. As you might expect, high refresh rates consume more battery, and lower numbers translate to less battery use. By dynamically changing the refresh rate, OLED displays cut down power consumption.

In short, LTPO AMOLED panels are better than AMOLED. When shopping for a flagship phone, you"ll notice that some have AMOLED displays while others have LTPO AMOLED displays. It isn"t the same thing.

Although AMOLED panels are more power-efficient than their LCD counterparts, slapping a high refresh rate on top takes a toll on their efficiency. LTPO is an improvement to this, and it allows AMOLED panels to use high refresh rates and still be power efficient.

LTPO is a backplane technology for AMOLED which helps the best screen technology unlock a new capability of refreshing your display dynamically. That helps companies incorporate high refresh rate displays without compromising on battery life.

That"s all well and good, but it does come at a cost. In 2022, LTPO AMOLED displays still live in the premium segment of the smartphone market. However, as with all other newer technologies, it should trickle down to the rest of the market with time. But LTPO is not just available on smartphones. You"ll also find it in Apple"s Watch Series 5 and later.

which version phone 10 oled vs tft lcd free sample

The "p-display" nomenclature used in this article refers to the number of pixels displayed across the width of a given phone"s screen. Earlier phones with lower than 720p (lower than HD ready resolution) are not included in this listing. The lists below are dynamic lists and may be sorted into alphabetical order by clicking on the "sort icons" at the top of the first column.

The combination (which occurs by multiplication) of both the pixel aspect ratio and storage aspect ratio giving the aspect ratio as experienced by the viewer.

LCD panels" resolutions are often quoted in terms of raw subpixels, misnamed "pixels" in manufacturer"s specifications. Each real pixel includes one subpixel for each of three colors, so calling subpixels "pixels" inflates the claimed resolution by a factor of three. This bit of marketing obfuscation is calculated as horizontal resolution × vertical resolution × 3. For example: 640 × 480 VGA is 921,600 subpixels, or 307,200 pixels, 800 × 600 SVGA is 1,440,000 subpixels, or 480,000 pixels, and 1024 × 768 XGA is 2,359,296 subpixels, but only 786,432 full-color pixels.

which version phone 10 oled vs tft lcd free sample

I have a number of IPS LCDs in my Arduino and RaspberryPI toolbox but I didn"t have this one. What I did like about the product initially is that the PCB pins are labeled on both sides. I also liked the fact that they give you both right angle and straight pins to solder to. But it ends there.

Nevertheless, I soldered on the connector and lit it up. Once it was lit up, it was obvious that not all the column drivers were lighting the pixels evenly. When I ran full screen color test, it became really obvious under pure white that the LCD itself had been damaged during production or mis-adhered with whatever tape or glue they were using. It looked like someone clamped it too hard because there was a distinct distortion that was to one side the display. It looked like either a clamp had been secured to tightly during the production process or the adhesive the bonded the display to the board was warping the LCD itself. Either way, these were an unacceptable pair of defects and made the display look awful.

which version phone 10 oled vs tft lcd free sample

To evaluate the performance of display devices, several metrics are commonly used, such as response time, CR, color gamut, panel flexibility, viewing angle, resolution density, peak brightness, lifetime, among others. Here we compare LCD and OLED devices based on these metrics one by one.

where Tf is the frame time (e.g., Tf=16.67 ms for 60 fps). Using this equation, we can easily obtain an MPRT as long as the LC response time and TFT frame rate are known. The results are plotted in Figure 5.

From Figure 5, we can gain several important physical insights: (1) Increasing the frame rate is a simple approach to suppress image motion blur, but its improvement gradually saturates. For example, if the LC response time is 10 ms, then increasing the frame rate from 30 to 60 fps would significantly reduce the MPRT. However, as the TFT frame rate continues to increase to 120 and 240 fps, then the improvement gradually saturates. (2) At a given frame rate, say 120 fps, as the LC response time decreases, the MPRT decreases almost linearly and then saturates. This means that the MPRT is mainly determined by the TFT frame rate once the LC response time is fast enough, i.e., τ≪Tf. Under such conditions, Equation (1) is reduced to MPRT≈0.8Tf. (3) When the LC response is <2 ms, its MPRT is comparable to that of an OLED at the same frame rate, e.g., 120 fps. Here we assume the OLED’s response time is 0.

The last finding is somehow counter to the intuition that a LCD should have a more severe motion picture image blur, as its response time is approximately 1000 × slower than that of an OLED (ms vs. μs). To validate this prediction, Chen et al.

If we want to further suppress image blur to an unnoticeable level (MPRT<2 ms), decreasing the duty ratio (for LCDs, this is the on-time ratio of the backlight, called scanning backlight or blinking backlight) is mostly adopted

High CR is a critical requirement for achieving supreme image quality. OLEDs are emissive, so, in theory, their CR could approach infinity to one. However, this is true only under dark ambient conditions. In most cases, ambient light is inevitable. Therefore, for practical applications, a more meaningful parameter, called the ACR, should be considered

To investigate the ACR, we have to clarify the reflectance first. A large TV is often operated by remote control, so touchscreen functionality is not required. As a result, an anti-reflection coating is commonly adopted. Let us assume that the reflectance is 1.2% for both LCD and OLED TVs. For the peak brightness and CR, different TV makers have their own specifications. Here, without losing generality, let us use the following brands as examples for comparison: LCD peak brightness=1200 nits, LCD CR=5000:1 (Sony 75″ X940E LCD TV); OLED peak brightness=600 nits, and OLED CR=infinity (Sony 77″ A1E OLED TV). The obtained ACR for both LCD and OLED TVs is plotted in Figure 7a. As expected, OLEDs have a much higher ACR in the low illuminance region (dark room) but drop sharply as ambient light gets brighter. At 63 lux, OLEDs have the same ACR as LCDs. Beyond 63 lux, LCDs take over. In many countries, 60 lux is the typical lighting condition in a family living room. This implies that LCDs have a higher ACR when the ambient light is brighter than 60 lux, such as in office lighting (320–500 lux) and a living room with the window shades or curtain open. Please note that, in our simulation, we used the real peak brightness of LCDs (1200 nits) and OLEDs (600 nits). In most cases, the displayed contents could vary from black to white. If we consider a typical 50% average picture level (i.e., 600 nits for LCDs vs. 300 nits for OLEDs), then the crossover point drops to 31 lux (not shown here), and LCDs are even more favorable. This is because the on-state brightness plays an important role to the ACR, as Equation (2) shows.

Calculated ACR as a function of different ambient light conditions for LCD and OLED TVs. Here we assume that the LCD peak brightness is 1200 nits and OLED peak brightness is 600 nits, with a surface reflectance of 1.2% for both the LCD and OLED. (a) LCD CR: 5000:1, OLED CR: infinity; (b) LCD CR: 20 000:1, OLED CR: infinity.

Recently, an LCD panel with an in-cell polarizer was proposed to decouple the depolarization effect of the LC layer and color filtersFigure 7b. Now, the crossover point takes place at 16 lux, which continues to favor LCDs.

For mobile displays, such as smartphones, touch functionality is required. Thus the outer surface is often subject to fingerprints, grease and other contaminants. Therefore, only a simple grade AR coating is used, and the total surface reflectance amounts to ~4.4%. Let us use the FFS LCD as an example for comparison with an OLED. The following parameters are used in our simulations: the LCD peak brightness is 600 nits and CR is 2000:1, while the OLED peak brightness is 500 nits and CR is infinity. Figure 8a depicts the calculated results, where the intersection occurs at 107 lux, which corresponds to a very dark overcast day. If the newly proposed structure with an in-cell polarizer is used, the FFS LCD could attain a 3000:1 CRFigure 8b), corresponding to an office building hallway or restroom lighting. For reference, a typical office light is in the range of 320–500 luxFigure 8 depicts, OLEDs have a superior ACR under dark ambient conditions, but this advantage gradually diminishes as the ambient light increases. This was indeed experimentally confirmed by LG Display

Calculated ACR as a function of different ambient light conditions for LCD and OLED smartphones. Reflectance is assumed to be 4.4% for both LCD and OLED. (a) LCD CR: 2000:1, OLED CR: infinity; (b) LCD CR: 3000:1, OLED CR: infinity. (LCD peak brightness: 600 nits; OLED peak brightness: 500 nits).

For conventional LCDs employing a WLED backlight, the yellow spectrum generated by YAG (yttrium aluminum garnet) phosphor is too broad to become highly saturated RGB primary colors, as shown in Figure 9aTable 2. The first choice is the RG-phosphor-converted WLEDFigure 9b, the red and green emission spectra are well separated; still, the green spectrum (generated by β-sialon:Eu2+ phosphor) is fairly broad and red spectrum (generated by K2SiF6:Mn4+ (potassium silicofluoride, KSF) phosphor) is not deep enough, leading to 70%–80% Rec. 2020, depending on the color filters used.

A QD-enhanced backlight (e.g., quantum dot enhancement film, QDEF) offers another option for a wide color gamutFigure 9c), so that high purity RGB colors can be realized and a color gamut of ~90% Rec. 2020 can be achieved. One safety concern is that some high-performance QDs contain the heavy metal Cd. To be compatible with the restriction of hazardous substances, the maximum cadmium content should be under 100 ppm in any consumer electronic product

Recently, a new LED technology, called the Vivid Color LED, was demonstratedFigure 9d), which leads to an unprecedented color gamut (~98% Rec. 2020) together with specially designed color filters. Such a color gamut is comparable to that of laser-lit displays but without laser speckles. Moreover, the Vivid Color LED is heavy-metal free and shows good thermal stability. If the efficiency and cost can be further improved, it would be a perfect candidate for an LCD backlight.

A color filter array is another effective approach to enhance the color gamut of an OLED. For example, in 2017, AUO demonstrated a 5-inch top-emission OLED panel with 95% Rec. 2020. In this design, so-called symmetric panel stacking with a color filter is employed to generate purer RGB primary colors

As mentioned earlier, TFT LCDs are a fairly mature technology. They can be operated for >10 years without noticeable performance degradation. However, OLEDs are more sensitive to moisture and oxygen than LCDs. Thus their lifetime, especially for blue OLEDs, is still an issue. For mobile displays, this is not a critical issue because the expected usage of a smartphone is approximately 2–3 years. However, for large TVs, a lifetime of >30 000 h (>10 years) has become the normal expectation for consumers.

Here we focus on two types of lifetime: storage and operational. To enable a 10-year storage lifetime, according to the analysis−6 g (m2-day)−1 and 1 × 10−5 cm3 (m2-day)−1, respectively. To achieve these values, organic and/or inorganic thin films have been developed to effectively protect the OLED and lengthen its storage lifetime. Meanwhile, it is compatible to flexible substrates and favors a thinner display profile

The next type of lifetime is operational lifetime. Owing to material degradation, OLED luminance will decrease and voltage will increase after long-term drivingT50) can be as long as >80 000 h with a 1000 cd m−2 luminanceT50, half lifetime) with an initial luminance of 1000 nits. However, this is still ~20 × shorter than that of red and green phosphorescent OLEDs

To further enhance the lifetime of the blue OLED, the NTU group has developed new ETL and TTF-EML materials together with an optimized layer structure and double EML structureFigure 10a shows the luminance decay curves of such a blue OLED under different initial luminance values (5000, 10 000, and 15 000 nits). From Figure 10b, the estimated T50 at 1000 nits of this blue OLED is ~56 000 h (~6–7 years)

Power consumption is equally important as other metrics. For LCDs, power consumption consists of two parts: the backlight and driving electronics. The ratio between these two depends on the display size and resolution density. For a 55″ 4K LCD TV, the backlight occupies approximately 90% of the total power consumption. To make full use of the backlight, a dual brightness enhancement film is commonly embedded to recycle mismatched polarized light

The power efficiency of an OLED is generally limited by the extraction efficiency (ηext~20%). To improve the power efficiency, multiple approaches can be used, such as a microlens array, a corrugated structure with a high refractive index substrateFigure 11 shows the power efficiencies of white, green, red and blue phosphorescent as well as blue fluorescent/TTF OLEDs over time. For OLEDs with fluorescent emitters in the 1980s and 1990s, the power efficiency was limited by the IQE, typically <10 lm W−1(Refs. 41, 114, 115, 116, 117, 118). With the incorporation of phosphorescent emitters in the ~2000 s, the power efficiency was significantly improved owing to the materials and device engineering−1 was demonstrated in 2011 (Ref. 127), which showed a >100 × improvement compared with that of the basic two-layer device proposed in 1987 (1.5 lm W−1 in Ref. 41). A white OLED with a power efficiency >100 lm W−1 was also demonstrated, which was comparable to the power efficiency of a LCD backlight. For red and blue OLEDs, their power efficiencies are generally lower than that of the green OLED due to their lower photopic sensitivity function, and there is a tradeoff between color saturation and power efficiency. Note, we separated the performances of blue phosphorescent and fluorescent/TTF OLEDs. For the blue phosphorescent OLEDs, although the power efficiency can be as high as ~80 lm W−1, the operation lifetime is short and color is sky-blue. For display applications, the blue TTF OLED is the favored choice, with an acceptable lifetime and color but a much lower power efficiency (16 lm W−1) than its phosphorescent counterpartFigure 11 shows.

Power efficiency of white, red, green and phosphorescent blue and fluorescent/TTF blue OLEDs over time. Data are compiled from Refs. 41, 45, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133.

To compare the power consumption of LCDs and OLEDs with the same resolution density, the displayed contents should be considered as well. In general, OLEDs are more efficient than LCDs for displaying dark images because black pixels consume little power for an emissive display, while LCDs are more efficient than OLEDs at displaying bright images. Currently, a ~65% average picture level is the intersection point between RGB OLEDs and LCDs

In addition to the aforementioned six display metrics, other parameters are equally important. For example, high-resolution density has become a standard for all high-end display devices. Currently, LCD is taking the lead in consumer electronic products. Eight-hundred ppi or even >1000 ppi LCDs have already been demonstrated and commercialized, such as in the Sony 5.5″ 4k Smartphone Xperia Z5 Premium. The resolution of RGB OLEDs is limited by the physical dimension of the fine-pitch shadow mask. To compete with LCDs, most OLED displays use the PenTile RGB subpixel matrix scheme

The viewing angle is another important property that defines the viewing experience at large oblique angles, which is quite critical for multi-viewer applications. OLEDs are self-emissive and have an angular distribution that is much broader than that of LCDs. For instance, at a 30° viewing angle, the OLED brightness only decreases by 30%, whereas the LCD brightness decrease exceeds 50%. To widen an LCD’s viewing angle, three options can be used. (1) Remove the brightness-enhancement film in the backlight system. The tradeoff is decreased on-axis brightness

In addition to brightness, color, grayscale and the CR also vary with the viewing angle, known as color shift and gamma shift. In these aspects, LCDs and OLEDs have different mechanisms. For LCDs, they are induced by the anisotropic property of the LC material, which could be compensated for with uniaxial or biaxial films

Cost is another key factor for consumers. LCDs have been the topic of extensive investigation and investment, whereas OLED technology is emerging and its fabrication yield and capability are still far behind LCDs. As a result, the price of OLEDs is about twice as high as that of LCDs, especially for large displays. As more investment is made in OLEDs and more advanced fabrication technology is developed, such as ink-jet printing

which version phone 10 oled vs tft lcd free sample

OLED is the display technology that has everyone talking. Considering the inky shadows, vivid highlights, and lifelike colors that these panels can produce, it’s no wonder. For 2022, we’re offering this coveted display tech across a wide range of our ProArt Studiobook, Zenbook, and Vivobook families of laptops. From our affordable everyday laptops to our premium, luxury machines, you’ll find an OLED-equipped laptop that fits your needs and budget. So what sets these displays apart from the competition? Here, we’ll break down the LCD vs. OLED debate so that you can pick the best laptop for your needs.

If you bought a high-end smartphone in recent years, you likely already have an example of this premium panel tech ready to hand. Ever wonder why photos and videos seem to look better on your phone than your old laptop? That could be because OLED displays excel at producing lifelike images with vibrant colors and striking contrast.

Both LCD and OLED displays create the image on your screen using millions of individual pixels. However, on standard LCDs, those pixels are illuminated by an always-on backlight, usually an array of large LEDs, that light up the entire screen at once. It’s an efficient arrangement, but it hinders a display’s ability to produce inky shadows, since the black pixels still have some light behind them. On an OLED display, however, there is no backlight—instead, each pixel acts as its own light source, and can be turned on or off independently of the others. This means that black portions of an image can be truly black, because there’s no light source shining through behind them.

OLED panels also excel at displaying vibrant, lifelike colors. Typically, they offer wide color gamut coverage comparable with the color production of expensive studio-grade monitors. Between the intense colors, inky shadows, and striking highlights, OLED panels deliver an image that leaps off the screen. For media of all kinds, you’ll see the difference right away.

For folks who often use their laptops in well-lit rooms full of natural light, a display with a high peak brightness is crucial. Our Vivobook Pro 16X OLED, for example, offers a 550-nit peak brightness so that you can comfortably use the laptop wherever, whenever.

But a display’s low-light performance matters, too. You probably turn down the brightness when you’re in a dimly lit bedroom to conserve battery life—and so it doesn’t sear your eyes when you open a website with a white background. Unfortunately for LCD displays, their contrast and color production often suffer at low brightness levels, leading to a washed-out image where it’s hard to distinguish one color from another. An LCD might only cover 11% of the DCI-P3 color gamut at its lowest brightness setting. To make matters worse, many LCDs introduce distracting, annoying flicker at low brightness levels due to their use of pulse-width modulation (PWM) techniques.

OLED panels, on the other hand, shine in this scenario. Much more than LCDs, they can deliver the vibrant colors and striking contrast that makes your content immersive and text easy to read. ASUS OLED panels maintain 100% DCI-P3 color gamut coverage at both high and low brightness levels, giving you accurate, lifelike colors across the board. Our OLED panels are certified for flicker-free performance by TÜV Rheinland, too. For comfortable use in a wide range of scenarios, OLED panels are the way to go.

When many of us think about using our laptop, we imagine ourselves sitting directly in front of the screen. While this is how folks commonly use a laptop, it’s not the entire story. You’ve probably watched a movie on your laptop with a loved one, collaborated with a classmate on a project, or followed an online recipe as you cooked dinner. Look at an LCD display from a sharp angle, as you likely had to do in any of these instances, and you’ll often see an ugly, color-shifted image.

This is another circumstance where OLED panels stand out from the other options. While some types of LEDs, notably IPS panels, offer wide viewing angles, OLED displays tend to offer wider viewing angles than even the best LEDs. With an OLED-equipped laptop, you’ll always have a clear view of the screen, even in those regular moments when you’re not looking at it straight-on.

An LCD display has a single, always-on backlight that emits broad-spectrum white light similar to what you see during the daytime. That’s fine during typical working hours, but prolonged exposure to blue wavelengths in the evening hours can disrupt your circadian rhythm and make it harder for you to fall asleep.* That’s why we offer a range of Eye Care monitors that give you tools for reducing your exposure to blue light.

Another option is an OLED display. Since each pixel in an OLED panel is its own light source, these displays automatically emit less blue light than LCD options under almost all conditions—about 70% less, compared with standard LCD displays.** You’ll be much more able to browse your TikTok feed or catch a show before bedtime without throwing off your sleep schedule. And your eyes will get fatigued more slowly when you use your PC, making you better able to finish a creative project while you’re still feeling the inspiration.

There are LCD displays that deliver a credible HDR experience, but OLED displays are a more natural fit for the content. The infinite contrast of an OLED display lets you have a brightly shining pixel right next to a perfectly black one, perfect for displaying high-contrast scenes. Bright stars in the infinite blackness of space, fireworks bursting across a night sky, and the sun setting behind a natural landscape never looked so good as they do on an OLED display. Look for laptops with Dolby Vision support and a VESA DisplayHDR 400 True Black or DisplayHDR 500 True Black certification to ensure the best experience.

That said, you certainly can get an LCD display that’s primed and ready for HDR. Our ROG Zephyrus Duo 16 includes a display option with a full-array local-dimming (FALD) backlight comprising 512 Mini LEDs that approximate the contrast ratio that an OLED panel can achieve. On top of that, it offers an 1100-nit peak brightness and a VESA DisplayHDR 1000 certification. That increased high-end luminance means that you can see more detail in bright images than you would on an HDR display with lower peak brightness.

When you’re watching an action movie, cheering on your favorite athletes during March Madness, playing a round of Fortnite with your friends, or simply tracking the movement of your mouse cursor across the screen as you get some work done, the clarity of moving objects on your display matters. The key spec here is response time. Each pixel on any display takes a small but noticeable amount of time to transition from one color to the next. On a display with poor response time, this appears as a distracting blur that resolves and goes away when the image stops moving. Our OLED panels offer an exceptional 0.2ms response time that gives you absolute clarity in moving images. Comparable LCD displays can take up to 10ms to switch colors.

It’s not just the sharpness of any given image that’s improved by low response time. The accuracy of any given pixel is affected, as well. A typical 60Hz panel refreshes the content on the screen every 16.67 milliseconds. If a pixel takes 10ms to transition to the correct color, then it only actually spends 6.67ms displaying the correct color. A pixel that only needs 0.2ms to transition to the correct color displays that color for almost the entirety of the refresh cycle. Whether you’re watching an action-packed movie, cheering on your favorite sports team, or digging into a great nature documentary, you’ll see a clear image throughout instead of blurry motion.

However, not all LCD displays are built the same. Purchase a gaming laptop equipped with one of our ROG Nebula Displays, and you’ll enjoy a speedy 3ms response time. What’s more, LCD panels are capable of reaching refresh rates that OLED can’t currently match. Our ROG Strix SCAR laptops, for example, can be equipped with a lightning-quick 360Hz display. If you’re shopping for a laptop primarily for fast-paced competitive gaming, a high-refresh-rate LCD display is likely a better fit for you. Click here