led vs lcd display difference quotation

LCD stands for “liquid crystal display” and technically, both LED and LCD TVs are liquid crystal displays. The basic technology is the same in that both television types have two layers of polarized glass through which the liquid crystals both block and pass light. So really, LED TVs are a subset of LCD TVs.

LED, which stands for “light emitting diodes,” differs from general LCD TVs in that LCDs use fluorescent lights while LEDs use those light emitting diodes. Also, the placement of the lights on an LED TV can differ. The fluorescent lights in an LCD TV are always behind the screen. On an LED TV, the light emitting diodes can be placed either behind the screen or around its edges. The difference in lights and in lighting placement has generally meant that LED TVs can be thinner than LCDs, although this is starting to change. It has also meant that LED TVs run with greater energy efficiency and can provide a clearer, better picture than the general LCD TVs.

LED TVs provide a better picture for two basic reasons. First, LED TVs work with a color wheel or distinct RGB-colored lights (red, green, blue) to produce more realistic and sharper colors. Second, light emitting diodes can be dimmed. The dimming capability on the back lighting in an LED TV allows the picture to display with a truer black by darkening the lights and blocking more light from passing through the panel. This capability is not present on edge-lit LED TVs; however, edge-lit LED TVs can display a truer white than the fluorescent LED TVs.

Because all these LCD TVs are thin-screen, each has particular angle-viewing and anti-glare issues. The backlit TVs provide better, cleaner angle viewing than the edge-lit LED TV. However, the backlit LED TV will usually have better angle viewing than the standard LCD TV. Both LED and LCD TVs have good reputations for their playback and gaming quality.

led vs lcd display difference quotation

LED stands for Light Emitting Diode. SMD refers to Surface Mounted Diode, a technology that utilizes a process of mounting each LED chip (pixel) directly to a printed circuit board (PCB). Mounting the diodes in this fashion allows displays to be thinner and sleeker than older LED technology. SMD also allows for finer pixel pitch. Simply put, pixel pitch refers to the distance between the diodes and is responsible for resolution. Fine pixel pitch translates into high resolution. Fine pixel pitch is what makes HD and UHD LED possible.

LCD panels are made of a layer of liquid crystal between two pieces of polarized glass. Liquid crystal can not emit light. Backlights are therefore used to illuminate the display. LCD panels are sleek in design, but typically limited to specific sets of dimensions.

LEDs are their own light source. This means that LED video walls are glare free and not subject to many of the problems ambient lighting creates for other video display types.

LED technology is modular in nature. This means that LED panels fit together seamlessly and can be used to make displays to fit any space. Custom cabinets can even be built to accommodate unusual shapes or dimensions.

LCD video walls on the other hand take on a tiled approach. This means that screens are jutted against one another. This approach creates bezels or seams and the final dimensions of the wall is directly dependent on the dimensions of the individual screens.

LED is a versatile display option. Thanks to various IP options, LED video walls can be displayed indoors or outdoors. LED video walls can be built with a variety of internal mechanisms as well. Quick refresh rates and dual power backup can ensure that LED video walls look great on camera. Various pixel pitches can ensure the proper resolution for the right context.

LCD is a more straightforward product and consumers are generally more familiar with LCD. LCD is used for cell phones, computer screens, and most TVs, but is it the best choice for video walls? Ultimately that choice is up to the consumer. LCD is cheaper, but generally less customizable. LCD does not work well for outdoor uses and is generally very limited in terms of size and shape.

LED technology has improved drastically in recent years improving quality while driving costs down. LED is a bigger investment up front but generally has a lifespan of about 100,000 hours.

Just like anything else, the best video wall product is largely dependant on context. If you like LED technology but are unsure of the process associated in obtaining a LED video wall read: How to Purchase a LED Video Wall Display.

led vs lcd display difference quotation

Light-Emitting Diodes (or LEDs) are electrical components that emit light when current flows through them, very similar to a common light bulb. You’ve probably seen these tiny lights around your home, in modern Christmas light strands, night lights, flashlights, lightbulbs, and more.

LED displays are a self-emitting display technology made up of a matrix of red, blue, and green LEDs forming the individual pixel elements. Standard LED displays have hundreds to thousands of LED pixels and project light directly to the viewer. These are often called “Direct View LEDs”, because there is no LCD layer at all in the display. MicroLED is one of the newest forms of these displays, which uses millions of microscopic LEDs producing a much higher-resolution image. However, they are still too expensive to be adopted by many applications. All types of LED displays provide excellent brightness and visibility both indoors and outdoors, but can also be heavy, bulky and require more complex installation. They tend to be expensive upfront but offer some cost savings over time since the light diodes that they rely on require little power. However, LEDs are at a higher risk for poor image retention or what many people refer to as “screen burn”.

Sometimes, LEDs are also used to form a backlight panel which is used to illuminate an LCD. These LED-backlit LCDs are frequently misnamed “LED displays”, however they are not true LED displays. True LED displays do not have an LCD layer.

led vs lcd display difference quotation

Then there are the technical words, such as LED TV, LCD TV, QLED TV, UHD TV, OLED TV, and others, that need to be understood. You may need to be a tech expert to play a game with a friend or watch your favorite TV show in the evening.

A lot of people are converting from LCD to LED televisions. The numerous advantages that LED screens provide are the driving force for conversion at most tv repair shops in Lawrence, KS.

First and first, it’s crucial to realize that the LED (Light Emitting Diode) monitor is an adapted form of the LCD (Liquid Crystal Display). Because of this, all LED monitors are, by definition, LCDs; however, not all are LED monitors.

LCD technology changed monitors by using cold cathode fluorescent lamps as backlighting to produce the image displayed on the screen. A small fluorescent bulb is a cold cathode fluorescent light (CCFL). This traditional style of CCFL LCD TVs is referred to as LCDs for this article.

By substituting LED backlighting for fluorescent lighting, LED monitors advanced the existing technology. And the absence of backlighting, thanks to OLED (organic light-emitting diode) technology, makes it even better.

This converts a single monitor into an endless modular collection of light-emitting LEDs. Additionally, this increases the size of the monitor without drastically increasing the price.

The pixel pitch is used to assess the performance of direct-view LED displays. The space between two neighboring LEDs on the show is known as the pixel pitch. The quality of the image increases with decreasing pixel pitch.

Due to the location of the light source, edge-lit LEDs have a little narrower viewing angle than LCDs. Direct-view LEDs, on the other hand, provide a better viewing angle than LCDs since the light source is dispersed uniformly throughout the display.

LED TVs use less energy than LCD TVs because they use light-emitting diodes instead of fluorescent bulbs. Compared to an LCD screen of the same size, a 32-inch LED TV uses 10 watts less power. As the display size increases, the power consumption difference grows.

LEDs are far more compact than the fluorescent bulbs used in LCD monitors. The thickness of fluorescent lights is substantial, but that of diodes is virtually nonexistent. The thickness of the array is also unaffected by the number of diodes because they are all arranged in the same plane.

Since LED displays use full-array LED backlighting instead of a single large backlight, LED TVs have a much higher contrast than LCDs. Since LED backlighting can emit the entire RGB spectrum, it can produce a deeper RGB difference than LCD backlighting technology, which can only display white and black.

Moreover, they are more beautiful. What better solution to the growing lack of space in new residential complexes than an ultra-thin LED display that offers a cinematic experience in the comfort of your home?

If you ask tv repair shops in Lawrence, KS, LED screens are the most popular option now among the general public. Everyone is choosing to move from LCD to LED to improve their lives and make them more fun.

If you’re wondering which display will last the longest, LED displays also prevail in this argument. LED televisions have an average lifespan of 50,000 hours compared to LCD televisions, which have a lifespan of 100,000 hours.

The ability to decrease the lighting is one of the eye-comfort advantages of an LED display. Additionally, it offers a broader viewing angle while maintaining the quality of the image. Therefore, compared to an LCD, an LED display is far better for your eyes.

led vs lcd display difference quotation

On home appliances, it is often necessary to display numbers and words to convey information, such as the current time displayed on the clock, the current temperature information on the kettle… etc. The two most commonly used displays are LED displays and LCD displays, this article will compare the advantages and disadvantages of LED displays and LCD displays, and provide a two-step quick way to quickly determine whether this product is an LCD or LED display.

LCD displays are the most common displays in daily life, from your mobile phone screen to home appliances, you can use LCD displays, but whether it is a color or black and white LCD display, in fact, the principle is the same. There are two main components within the LCD display:Backlight module

Black-and-white LCD displays are widely used in a variety of low-cost products, and the picture above is a black-and-white LCD display used in science calculator.

Advantages of monochrome LCD displays:Can show very compact information.Each display point of the calculator as shown below is very close to each other, and high-resolution text can be displayed

Power savingBlack and white LCD displays can operated without a lot of power compared to full-color LCD, when products that do not require full-color demand and need to control power consumption are often used.

CheapIf you just want to display a set of numbers or a few ICONs, the price of using a black-and-white LCD display is much cheaper than that of a full-color LCD, and it is often used in a large number of consumer products.

Disadvantages of monochrome LCD displays:Small viewing angle, not easy to use for outdoor application.Usually black and white liquid crystal display in the front view, the display is the clearest, but due to the LCD panel characteristics, as long as the side view, the clarity will be declined, outdoor will be affected by strong light, the viewing angle is not large, the clarity is not enough, LED display due to the word luminescence characteristics, there is no viewing angle problem.

Can only be used in monochromeIf you need multi-color applications, you can only upgrade to a full-color LCD display that is many times more expensive, and the LED display can simply add different colors to the LED display without significantly increasing the cost

The structure and basic introduction of the display in this article this article, compared with LCD displays, self-illumination characteristics, so that LED displays in the outdoor visibility is high, high brightness, but also no viewing angle problem. LED displays are the same as black and white LCD liquid crystals, and the display information must be designed in advance and cannot be arbitrarily transformed. The price of LED displays is between full-color LCDs and monochrome LCDs, and if properly designed, they can save the cost of achieving display performance.

This article briefly introduces the basic principles and advantages and disadvantages of two common LCD displays, and provides two steps to quickly determine whether the display in hand is an LED display, and product designers can follow these two steps to understand which display the product is used when observing the product.

led vs lcd display difference quotation

Outdoor displays need to withstand wear and tear, as they are often exposed to the elements. Sun, wind, rain, snow – you name it, an outdoor display has to be able to handle it.

Yaham LED displays are an excellent option for businesses who want a high-quality display that is flexible, durable, and energy-efficient. In addition, our LED displays use less power than LCDs, making them an eco-friendly choice for your business.

On the other hand, LCD screens are preferred for displays that are needed up close because of their high resolution—for example, handheld gadgets such as smartphones or TV screens. In addition, LCD screens can produce 4K displays which are perfect for watching vivid displays or videos from a closer perspective.

LED screens are flexible, so they can fit various forms and shapes, even fitting round edges. This is why you can see LED displays on corners of buildings or spaces uneven in the area and dynamic in form.

That is why you will not see an LCD screen used on round edges. LCDs are sleek and lightweight which is perfect for mobile devices making them look more attractive and feel handier.

The LCD screens commonly found in outdoor uses can be problematic because they struggle to withstand the elements. On the other hand, LEDs have been improving steadily with higher quality and lower costs, making them a better option for long-term use.

LED technology is more expensive upfront but provides an illuminated life span of up 100 thousand hours or about 4-5 years without any significant drops (based upon current models).

Energy-efficient backlighting indeed allows LED televisions to have an almost 40% lower power consumption than LCD screens and significantly less than a plasma television.

The energy efficiency of LED backlighting translates into significant reductions in power consumption and, as such, can help your business save money on your electric bill.

LED technology has become popular because they’re not as easily damaged by weather fluctuations, making them the perfect choice for outdoor advertising needs!

led vs lcd display difference quotation

A video wall is not a one-size-fits-all solution. There are many options to choose from when designing a commercial building video wall display: the size and shape of the digital canvas, what type of content will be displayed and the purpose of the video wall. Operationally, you may focus on desired reliability, maintenance and serviceability of the equipment. Hardware and technology decisions ensure the video wall will deliver both the desired viewing and ownership experience.

One of these choices is deciding between an LCD display or an LED video wall. Continue reading to find out more about the basics, as well as the advantages and disadvantages of each solution.

Most people are familiar with LCD technology, which stands for Liquid Crystal Display. These types of displays have a massive presence in this world, used in living rooms to watch movies, fast-food restaurants to showcase menus, airports to show flight schedules, and everything in between. LCD technology was developed in the 1960s and has been used worldwide as a standard for roughly 20 years. It is a tried-and-true technology that has stood the test of time and will be around for the foreseeable future.

On an LCD screen, the panel is illuminated by a light source and works through reflection or transmission of light. Overall, LCD displays have better viewing angles and less glare than LED screens. This technology was designed to be energy efficient and tends to be lighter in weight.

An LCD video wall is made up of multiple LCD panel monitors mounted on a surface to create a digital canvas, which then work together to create a unified experience. They operate 24/7 at a high brightness and have thin bezels that help create a seamless look when the displays are placed next to one another.

Bezel thickness and the brightness rating are among key attributes to consider for an LCD video wall display. Here is what each of these means and why.

Bezel:Bezel thicknesses for video wall displays are measured in “bezel-to-bezel” thickness.This is the thickness of the bezel when two displays are placed next to one another. Displays can be either large bezel or thin bezel.

Nits:Brightness is measured in Nits. A higher Nit value means the display will be brighter. A brighter display is necessary in a room that sees plenty of direct sunlight, or if the intent is to draw in visitors from far away. With LCD video walls, the price of the hardware goes up as the display size and brightness increase, and the bezel width decreases.

The next item to consider is the type of content that will be displayed on your video wall. LCD displays have high resolution screens — modern 4K displays have over 8 million pixels! This means that the content being displayed is highly detailed and crystal-clear. A viewer could stand less than 1 foot away from the screen and be able to see exactly what is being shown on the screen.

Like previously mentioned with LCD video walls, an important consideration in the decision-making process is the type of content that will be displayed on the video wall. LED video walls suffer from image degradation and pixilation from up close, so fine details will be lost, and text will be illegible. If detail from up close is important, LCD displays are much better suited for that situation.Content examples that are well-suited for an LCD video wall:

Video walls are relatively new. But LCD technology has had decades of mainstream adoption, and with that comes both familiarity and lower costs. If those are important to you, then an LCD video wall is likely the right choice.

LED video walls are similar to LCD video walls, but the digital canvas is built using LED panels. Individual LED panels can be anywhere from 12”x12” to 36”x18”, which is much smaller than LCD displays. LED panels have a larger presence in this world than most might think—they are found indoors and outdoors at stadiums, arenas, concert venues, airports, and in use as large digital advertisements in iconic places such as Times Square.

The module is a small rectangular board that contains all the individual LEDs (light-emitting diodes).Unlike LCD, there is no glass or color filter on the LED video wall panels. The individual diodes that are placed on the modules produce both color and light.

One of the most impressive features of LED panels is that they can be combined to create almost any shape, without a bezel interrupting the digital canvas. LED video wall panels can be placed on curved surfaces, 90-degree edges, and other non-standard surfaces. The smaller size of the panels in relation to LCD video wall displays means they can fill more space on a surface—they aren’t limited to standard 46” and 55” sizes as are LCD video wall displays.

The most important factor to consider when scoping LED panels for a video wall is what is referred to as “pixel pitch.” The pixel pitch is effectively the distance between each pixel on the LED panel—a pixel pitch of 6mm means each pixel is spaced 6 millimeters away from the adjacent pixel. The smaller the pixel pitch, the smaller the distance is between each pixel, which means there are more pixels per square inch on the digital canvas.

Pixel pitch factors into viewing distance. When the pixels are close together, the image is more detailed and can be viewed comfortably by others from a close distance. But when the pixels are spaced further apart, a viewer needs to stand further away to view the image clearly.

Lastly, pixel pitch impacts the price of the LED video wall more than any other factor. For example, a 2mm pixel pitch LED video wall costs significantly more than its 10mm pixel pitch counterpart.

As is the case with an LCD video wall, an LED video wall will add exciting drama and premium value to showcase spaces. LED panel displays don’t enjoy the benefit of decades of mainstream adoption as do their LCD counterparts. However, the technology curve is increasing their availability and lowering their costs. At this time, an LED video wall will have higher upfront costs compared to an LCD video wall. If cost is the main concern, then an LED video wall system will not likely fit into your budget

An LED video wall would be well-suited and cost-justified if the intent of the video wall is to provide an immersive viewing experience from a further distance. This could be content with lots of movement, animation, imagery, and bright colors to draw viewers into your space or provide a unique experience.

Aside from LED video wall cost, there are other factors to consider which could make an LED video wall system the frontrunner for your project. Here are the advantages and disadvantages to consider:

Limitless shapes and sizes:the smaller size of LED panels allows them to be combined to create unique canvases, including curved, 90-degree edge, and other combinations not possible with LCD displays

Easy maintenance and service; high reliability:LED module replacement takes seconds with little effort; LED panels are rated with a lifetime of 80,000-100,000 hours, depending on the product

led vs lcd display difference quotation

With its first electronics-based applications appearing back in 1962, LED involves the use of a two-lead semiconductor to produce light. The technology is based on a simple principle in which the activation of a pn-junction diode generates light when activated. Voltage is applied to the leads, at which point electrons fill electron gaps or holes within the device, causing it to release photon (light) energy.

As the name suggests, liquid crystal displays use lighted, liquid crystals to produce the display. Contrary to what some people may believe, however, the actual crystals do not emit light. Instead, light is created through an alternative source, such as a back-lit display, and projected through the crystals. Within an LCD, you’ll find a layer of molecules that are aligned with two transparent electrodes and polarizing filters. The polarizing filters allow the light to pass through without being be blocked.

One of the advantages of LCD is its efficient use of energy. LCD is often used in battery-powered watches, alarm clocks, and other devices for this very reason. While LED or other types of display technology could technically be used for such purposes, the device would die faster and thus require more frequent recharging or replacing of the batteries. LCD solves this problem by using minimal energy when compared to other types of display technology.

There’s really no easy answer to this question, as it depends on the application for which the technology will be used. LED has become the go-to choice for most consumers looking for a new high-definition television, whereas LCD remains a popular choice for touchscreen devices and computer monitors. Regardless, you can’t go wrong with either LED or LCD. They are both two versatile forms of electronic display technology that can deliver incredibly images.

led vs lcd display difference quotation

For all the new technologies that have come our way in recent times, it’s worth taking a minute to consider an old battle going on between two display types. Two display types that can be found across monitors, TVs, mobile phones, cameras and pretty much any other device that has a screen.

In one corner is LED (light-emitting diode). It’s the most common type of display on the market, however, it might be unfamiliar because there’s slight labelling confusion with LCD (liquid crystal display).

For display purposes the two are the same, and if you see a TV or smartphone that states it has an ‘LED’ screen, it’s an LCD. The LED part just refers to the lighting source, not the display itself.

In a nutshell, LED LCD screens use a backlight to illuminate their pixels, while OLED’s pixels produce their own light. You might hear OLED’s pixels called ‘self-emissive’, while LCD tech is ‘transmissive’.

The light of an OLED display can be controlled on a pixel-by-pixel basis. This sort of dexterity isn’t possible with an LED LCD – but there are drawbacks to this approach, which we’ll come to later.

In cheaper TVs and LCD-screen phones, LED LCD displays tend to use ‘edge lighting’, where LEDs sit to the side of the display, not behind it. The light from these LEDs is fired through a matrix that feeds it through the red, green and blue pixels and into our eyes.

LED LCD screens can go brighter than OLED. That’s a big deal in the TV world, but even more so for smartphones, which are often used outdoors and in bright sunlight.

Brightness is generally measured as ‘nits’ – roughly the light of a candle per square metre. Brightness is important when viewing content in ambient light or sunlight, but also for high dynamic range video. This applies more to TVs, but phones boast credible video performance, and so it matters in that market too. The higher the level of brightness, the greater the visual impact.

Take an LCD screen into a darkened room and you may notice that parts of a purely black image aren’t black, because you can still see the backlighting (or edge lighting) showing through.

Being able to see unwanted backlighting affects a display’s contrast, which is the difference between its brightest highlights and its darkest shadows.

You’ll often see a contrast ratio quoted in a product’s specification, particularly when it comes to TVs and monitors. This tells you how much brighter a display’s whites are compared to its blacks. A decent LCD screen might have a contrast ratio of 1,000:1, which means the whites are a thousand times brighter than the blacks.

Contrast on an OLED display is far higher. When an OLED screen goes black, its pixels produce no light whatsoever. That means an infinite contrast ratio, although how great it looks will depend on how bright the screen can go. In general, OLED screens are best suited for use in darker rooms, and this is certainly the case where TVs are concerned.

OLED panels enjoy excellent viewing angles, primarily because the technology is so thin, and the pixels are so close to the surface. You can walk around an OLED TV or spread out in different spots in your living room, and you won’t lose out on contrast. For phones, viewing angles are extra important because you don’t tend to hold your hand perfectly parallel to your face.

Viewing angles are generally worse in LCDs, but this varies hugely depending on the display technology used. And there are lots of different kinds of LCD panel.

Perhaps the most basic is twisted nematic (TN). This is the type used in budget computer monitors, cheaper laptops, and very low-cost phones, and it offers poor angled viewing. If you’ve ever noticed that your computer screen looks all shadowy from a certain angle, it’s more than likely it uses a twisted nematic panel.

Thankfully, a lot of LCD devices use IPS panels these days. This stands for ‘in-plane switching’ and it generally provides better colour performance and dramatically improved viewing angles.

IPS is used in most smartphones and tablets, plenty of computer monitors and lots of TVs. It’s important to note that IPS and LED LCD aren’t mutually exclusive; it’s just another bit of jargon to tack on. Beware of the marketing blurb and head straight to the spec sheet.

The latest LCD screens can produce fantastic natural-looking colours. However, as is the case with viewing angles, it depends on the specific technology used.

OLED’s colours have fewer issues with pop and vibrancy, but early OLED TVs and phones had problems reining in colours and keeping them realistic. These days, the situation is better, Panasonic’s flagship OLEDs are used in the grading of Hollywood films.

Where OLED struggles is in colour volume. That is, bright scenes may challenge an OLED panel’s ability to maintain levels of colour saturation. It’s a weakness that LCD-favouring manufacturers enjoy pointing out.

Both have been the subject of further advancements in recent years. For LCD there’s Quantum Dot and Mini LED. The former uses a quantum-dot screen with blue LEDs rather than white LEDs and ‘nanocrystals’ of various sizes to convert light into different colours by altering its wavelength. Several TV manufacturers have jumped onboard Quantum Dot technology, but the most popular has been Samsung’s QLED branded TVs.

Mini LED is another derivation of LED LCD panels, employing smaller-sized LEDs that can emit more light than standard versions, increasing brightness output of the TV. And as they are smaller, more can be fitted into a screen, leading to greater control over brightness and contrast. This type of TV is becoming more popular, though in the UK and Europe it’s still relatively expensive. You can read more about Mini LED and its advantages in our explainer.

OLED, meanwhile, hasn’t stood still either. LG is the biggest manufacturer of large-sized OLED panels and has produced panels branded as evo OLED that are brighter than older versions. It uses a different material for its blue OLED material layer within the panel (deuterium), which can last for longer and can have more electrical current passed through it, increasing the brightness of the screen, and elevating the colour volume (range of colours it can display).

Another development is the eagerly anticipated QD-OLED. This display technology merges Quantum Dot backlights with an OLED panel, increasing the brightness, colour accuracy and volume, while retaining OLED’s perfect blacks, infinite contrast and potentially even wider viewing angles, so viewers can spread out anywhere in a room and see pretty much the same image. Samsung and Sonyare the two companies launching QD-OLED TVs in 2022.

And for smartphones there’s been a move towards AMOLED (Active-Matrix Organic Light Emitting Diode) screens for Android screens, while Apple has moved towards OLED for its smartphones and tried Mini LED with its iPad Pro. Technologies are consistently evolving with Superand Dynamic AMOLED versions available, more performance is being eked out.

While LED LCD has been around for much longer and is cheaper to make, manufacturers are beginning to move away from it, at least in the sense of the ‘standard’ LCD LED displays, opting to explore the likes of Mini LED and Quantum Dot variations.

OLED has gained momentum and become cheaper, with prices dipping well below the £1000 price point. OLED is much better than LED LCD at handling darkness and lighting precision, and offers much wider viewing angles, which is great for when large groups of people are watching TV. Refresh rates and motion processing are also better with OLED though there is the spectre of image retention.

If you’re dealing with a limited budget, whether you’re buying a phone, a monitor, a laptop or a TV, you’ll almost certainly end up with an LCD-based screen. OLED, meanwhile, incurs more of a premium but is getting cheaper, appearing in handheld gaming devices, laptops, some of the best smartphones as well as TVs

Which is better? Even if you eliminate money from the equation, it really comes down to personal taste. Neither OLED nor LCD LED is perfect. Some extol OLED’s skill in handling darkness, and its lighting precision. Others prefer LCD’s ability to go brighter and maintain colours at bright levels.

How do you decide? Stop reading this and go to a shop to check it out for yourself. While a shop floor isn’t the best environment in which to evaluate ultimate picture quality, it will at least provide an opportunity for you to realise your priorities. Whether you choose to side with LCD or OLED, you can take comfort in the fact that both technologies have matured considerably, making this is a safe time to invest.

led vs lcd display difference quotation

If you’re in the market to rent a video wall, you’ve probably run into all sorts of confusing info. Here’s the lowdown on LCD vs. LED video walls so you can make the right choice for your next conference, trade show, or other event.

We’re about to throw a whole lot of info at you. So let’s first take a second to remember why both LED and LCD video walls are a good investment in the first place.

The old adage, “the bigger the better,” is definitely true when it comes to AV. A video wall immediately symbolizes your company is established, and sends a subconscious message that people should take your business seriously. Video walls help you stand out, and compete with all the other businesses who are investing in splashy, eye-catching displays.

Once reserved for stadiums and shopping malls, LED walls have become much more accessible for corporate events in recent years. An LED wall is made of many smaller LED panels. Each panel has hundreds of tiny light sources called “light emitting diodes” that can change color to create a large, seamless image.

Technicians can add panels until the LED wall is as massive as you need it to be. Random fact: The Suzhou Sky Screen in China is the largest LED video wall in the world, measuring 1,640 feet long — about 4.5 football fields.

Meanwhile, an LCD video wall is a large surface for video or images built from many LCD screens. You’ve interacted with an LCD screen before — they’re on your laptop, TV monitor, and more. However, the LCD video wall screens are designed to run longer and have thinner edges, called bezels.

Technicians use special hardware and tools to stack the LCD screens on top of one another, and calibrate the wall so that an image shows up across every screen. Temporary LCD walls can usually only be about five screens across and five screens high.

Temporary LCD walls can be configured to be in many different sizes and shapes, both large and small, but typically don’t go larger than five screens across and five screens high.

Our most popular LCD walls are about 16’ wide by 10’ tall. Also, when measuring your ceiling height, keep in mind that most walls don’t go all the way down to the floor. So you’ll need to add that into your total height need.

People need to view LED walls from a distance to get the full picture. Think of them like a Lite Brite, or an impressionist painting — you get the full picture when you’re further away. Though made of LED panels, there are no seams.

The image on an LCD wall will be sharper than on LED walls, especially while standing nearby, since it’s made from HD panels. Will have very thin seams between each LCD screen, called bezels.

Since an LCD Wall are basically fancy computer monitors, it’s typically easier to create content. If your content looks great on a standard computer monitor with a 16:9 aspect ratio, it will look good on an LCD wall. Your AV provider will give you dimensions and resolution requirements once you decide on the size you need, and can also help you determine where the seams (or “bezels”) will be so none of your image gets cut off.

Much lower than LCD — but you’ll still need to make sure your venue has enough power capabilities. Your video wall provider can tell you how much power you’ll need.

Imagine an LCD video wall is like a tray of lasagna. Reliable, beautiful, and sturdy — but you can only increase the size of a tray of lasagna so much. Affordable, but it has a limit in size.

Meanwhile, imagine an LED wall like a limitless, footlong sub. It might not be quite as satisfying and vibrant as a steaming tray of lasagna, but you can keep adding to it until it’s as massive as you’d like.

led vs lcd display difference quotation

Selecting an ideal video wall solution can be a complex task because of the wide range of options that are available. One of the most important components of a video wall solution is the display type, and the common types that people look at are LCD video walls and LED video walls. Most often than not, it becomes fairly difficult to choose the right one and this article attempts to help you identify the right display type based on your needs.

In the late 1990s, RGB light hit the market and changed the game to LED screens forever. RGB stands for “red, green, and blue”, meaning that with these colors LED lights are capable of producing tens of thousands of different colors and shades. Considering this, LED screens have a bit of an advantage over LCD. Colors are brighter, bolder, and sharper. LCD screens are made out of liquid crystal that has the same volume and density throughout the screen. Additionally, optimal screen brightness of over 12,000 nits (measure for luminance) for outdoor use-cases and large distance viewing is enabled with LEDs.

While power usage is roughly proportional to screen size, LED screens offer greater energy efficiency per pixel than LCDs. This is largely due to LED displays utilizing newer technology, and their ability to dim backlights (such as for absolute black). When dark colors are displayed for a long time, software management has the option to completely turn off the backlight, diminishing the consumption of power even more. LCD screens use more energy since they have to be illuminated at all times to project an image. However, you will still need to make sure your venue has enough power capabilities for both LCD and LED video walls.

When it comes to a video wall solution, LCDs have been the popular option for years, and an ultra-narrow bezel LCD is one of the best suited for the job. LCD stands for “liquid crystal display” and chances are, you use this technology every day with your smartphone. LCD panels in a video display are composed of a layer of liquid crystal that is sandwiched between two polarized pieces of glass. When electricity is applied, the liquid shifts to create an image. Since the crystals in this liquid do not produce their own light, a backlight is created to illuminate the display. LEDs are the most common means of backlighting LCDs, and the technologies are often advertised as a package deal, i.e., “LED-LCD.”

Although LCD video walls are tiled like LEDs, there are spaces in-between the displays known as “bezels.” The ultra-narrow bezel design is the most ideal for video walls because it creates the smallest seams. In fact, with liquid technology and a narrow bezel, video walls can display a highly uniform brightness.

One of the significant differences between LCD and LED displays is the pixel pitch, which is defined as the distance between each pixel. The bigger the pixel pitch is, the further away you have to be to see it clearly. LED video walls have fewer pixels than LCD video walls, so the pixel pitch is greater for LEDs. Typically, LCD displays are installed more frequently than LED displays due to their lower cost and higher resolution when viewed from close distances. However, moving forward, you can expect to see LED video walls more frequently in command centers as both the pixel pitch and price continue to decrease.

Though LEDs have greater pixel pitch and are frequently more expensive, there are some advantages to choosing LEDs over LCDs. LCD displays, though they have greater clarity from a close distance, have bezels that can be seen between the panels of a video wall. The LCD video walls installed have very thin bezels, as thin as 5 or 3mm, but with LED displays you don’t have that visible edge. With a thin bezel, you will still see the lines on an LCD display wall, but with LED there are no visible seams in the wall. The margins in LED displays are smaller, and more facets can be used for a more precise, tight curve when creating curved video walls.

Comparing the hardware of LED and LCD screens to the old-fashioned TV screens is incomparable. The hardware of the latest screens is durable, able to withstand extreme temperatures and physical damage. However, when it comes to software, there are a few potential problems, with the first of them being security.Video walls often display the sensitive content of personal data. Protecting the information has become vital, especially for larger corporations. Getting hacked is every engineer’s nightmare.

Switching cables and outputs all the time is not practical, and even if it did, the hardware couldn’t keep up with the software technology. Hence, many video walls, regardless of whether they are built of LED or LCDs, implement software management to control data sharing and prevent any interruptions and cyber hacks.

LED video walls are much more applicable in indoor applications where ambient light is bright. For example, they can be used in malls, multiplexes, stock tickers, product displays, clubs, and corporate lobbies. They can also be used in all outdoor applications as they are completely weatherproof and viewable under direct sunlight. No other digital medium is more suited for the following purpose: billboards, sports arenas, petrol pumps, or airports. LCD video walls can only be used for indoor applications where display resolution is important, such as control rooms and board rooms.

Choosing suitable LED or LCD screens for corporate deployments can be challenging in an ever-changing market. The type of technology you should choose depends on your needs, applications, and budget. At VSGi we will have all your needs covered. We design, deploy and support user-friendly, hassle-free AV systems so you can focus on growing your business, not struggling with technology. Contact us today to get more information about this technology and get started.

led vs lcd display difference quotation

If you’re thinking about shopping for a new TV you’ve probably noticed that there are a few options out there. The big question is…”What’s the difference?”. We can spend hours upon hours going over every feature and covering all of those technical acronyms but for this article, we’re going to cover one of the questions we get the most. “What’s the difference between an LED, OLED or QLED TV?”.

A traditional “old school” LCD flat panel TV uses a liquid-crystal display as a screen. An LCD screen does not emit it’s own light so relies on a light source behind the screen to make the picture visible. The older generation LCD TVs used cold cathode fluorescent lamps (CCFLs) to generate the necessary light. This resulted in fairly uniform lighting but made the TV cabinet rather thick and bulky. One of the biggest negatives of a backlit LCD screen is that it’s pretty much impossible to get a true black. Some TVs do a better job of getting closer than others, but with an LCD screen, “really dark grey” is about as good as it gets.

Many people think that when LED TVs came on the scene it marked a shift to entirely new TV technology. That is not at all the case. Really, the only fundamental difference between the two is the backlight. An “LED” TV is really just an LCD TV with a different type of backlight. In these TVs, either an LED panel array or LED edge lights are used to provide the light for the LCD screen. This results in more uniform lighting, longer-lasting backlights, thinner TV cabinets, lower energy consumption, and less heat production. The LED in LED TV has absolutely nothing to do with the part of the screen that actually generates the picture.

OLED TVs have been around for a little while now. While their price used to put them out of reach for most people, they have become much more attainable in recent years. One of the more recent additions to the market is the QLED TV by Samsung. Many people make the mistake of thinking that these two types of TVs are essentially the same. Those people are VERYwrong.

QLED TVs are still just LED-lit LCD panels with a “quantum dot” layer thrown in. This technology allows the QLED TVs to achieve a wider color spectrum and higher brightness than traditional LED TVs.

OLED (or Organic LED) TVs are an entirely different beast altogether. An OLED TV does not have an LCD panel or a backlight. Instead, you have a true LED panel where every single pixel is an individual LED that emits its own light, can turn on, turn off or display whatever color it needs to. This along with the ability to control images down to the pixel level produces an extremely bright picture with more clarity, unlimited contrast, true blacks, eye-popping color, and lightning-fast response times.

That depends. Are you shopping for the TV with absolutely the best picture or the best TV for your budget? If you want the best and can afford the higher price tag, go OLED all the way. The difference in picture quality is truly staggering. You can only get OLED TVs from LG or Sony.

led vs lcd display difference quotation

Light Emitting Diode (LED): LED is a type of LCD that actually accompanies the advancement of technology. This replaces the fluorescent tube with backlight technology, which produces a clearer picture than the LCD. LED have wider viewing angle than the LCD. It have better black level and contrast in comparison to LCD LCD display. LED delivers better color accuracy in comparison to the LCD. Advantage:LED have very long life.

Liquid Crystal Display (LCD): An LCD is a passive device, which means that it does not deliver any light to display characters, animations, videos, etc. LCD uses fluorescent tubes to lighten the picture, but can’t provide a clearer picture as LED delivers. It delivers good color accuracy, but we can notice the difference if we compare LED and LCD color accuracy. In LCD, the wide-angle decreases with 30 degrees from the center in the image then the contrast ratio.

6.LED delivers better color accuracy in comparison to the LCD.While it also delivers good color accuracy, we can notice the difference if we compare these two.

7.LED has a wider viewing angle than the LCD.While in LCD, the wide-angle decreases with 30 degrees from the center in the image then the contrast ratio.

led vs lcd display difference quotation

If you’re designing a display application or deciding what type of TV to get, you’ll probably have to choose between an OLED or LCD as your display type.

Not sure which one will be best for you? Don’t worry! We’re here to help you figure out the right display for your project or application. In this post we’ll break down the pros and cons of these display types so you can decide which one is right for you.

LCDs utilize liquid crystals that produce an image when light is passed through the display. OLED displays generate images by applying electricity to organic materials inside the display.OLED and LCD Main Difference:

These different technological approaches to display technology have big impact in some features including contrast, brightness, viewing angles, lifespan, black levels, image burn-in, and price.

Everything from the environment your display will be used in, your budget, to the lighting conditions and the required durability will play a part in this decision.

Contrast refers to the difference between the lightest and darkest parts of an image. High contrast will produce sharper images and more easily readable text. It’s a crucial quality for high fidelity graphics and images or to make sure that a message on a display is very visible.

graphics and images visible. This is the reason you’re still able to see light coming through on images that are meant to be dark on an LCD monitor, display, or television.

OLEDs by comparison, deliver a drastically higher contrast by dynamically managing their individual pixels. When an image on an OLED display uses the color black, the pixel shuts off completely and renders a much higher contrast than that of LCDs.OLED vs LCD - Who is better at contrast?

Having a high brightness level is important if your display is going to be used in direct sunlight or somewhere with high ambient brightness. The display"s brightness level isn"t as important if it’s going to be used indoors or in a low light setting.OLED vs LCD - Who is better at Brightness?

This means the display is much thinner than LCD displays and their pixels are much closer to the surface of the display, giving them an inherently wider viewing angle.

You’ll often notice images becoming distorted or losing their colors when tilting an LCD or when you view it from different angles. However, many LCDs now include technology to compensate for this – specifically In-Plane Switching (IPS).

LCDs with IPS are significantly brighter than standard LCDs and offer viewing angles that are on-par with OLEDs.OLED vs LCD - Who is better at Viewing Angles?

LCDs have been on the market much longer than OLEDs, so there is more data to support their longevity. On average LCDs have proven to perform for around 60,000 hours (2,500) days of operation.

With most LCDs you can expect about 7 years of consistent performance. Some dimming of the backlight has been observed but it is not significant to the quality of the display.

OLEDs are a newer technology in the display market, which makes them harder to fully review. Not only does OLED technology continue to improve at a rapid pace, but there also hasn’t been enough time to thoroughly observe their performance.

You must also consider OLED’s vulnerability to image burn-in. The organic material in these displays can leave a permanent afterimage on the display if a static image is displayed for too long.

So depending on how your OLED is used, this can greatly affect its lifespan. An OLED being used to show static images for long periods of time will not have the same longevity as one displaying dynamic, constantly moving images.OLED vs LCD - Which one last longer?

There is not yet a clear winner when it comes to lifespans between LCD and OLED displays. Each have their advantages depending on their use-cases. It’s a tie!

For a display application requiring the best colors, contrast, and viewing angles – especially for small and lightweight wearable devices – we would suggest an OLED display.

led vs lcd display difference quotation

• Provide electrical emergency/unscheduled diagnostics, repairs of production equipment during production and performs scheduled electrical maintenance repairs of production equipment during machine service.