ili9341 tft display driver made in china
Long time enjoyer of this driver. Truly awesome. Generally I"m using it with an ILI9341 generic from Hiletgo Amazon, However I just got a new screen from China (an ST7789 according to specs) that"s an 8 pin SPI TFT OLED display. No matter my wiring or my command lines, it just does not want to work. I"ve got to the point where the Reset pin will light up the backlight but it wont" go any further.
Command: cmake -DST7789=ON -DGPIO_TFT_DATA_CONTROL=25 -DGPIO_TFT_RESET_PIN=24 -DGPIO_TFT_BACKLIGHT=23 -DSPI_BUS_CLOCK_DIVISOR=40 -DUSE_DMA_TRANSFERS=ON -DDISPLAY_BREAK_ASPECT_RATIO_WHEN_SCALING=ON ..
JT156TM001-V2.0, a Long supply 15.6 Inch LCD Touch Module. That product use a projected capacitive touch panel and tapes bonding with an original BOE medical display. The touch panel was manufactured by JuTouch. The LCD display was outsourced but we prepared an alternative solution for avoid source shortage or EOL problem. Then we could guarantee to our customer a stable and long time supply.
We continuously strengthen enterprise management, improve 2.4 Inch Resistive Touch LCD Screen Driver Board 16 Bit Module Ili9341 8/16 Bit Parallel Interface quality and service quality, and make the overall management of the enterprise reach a high level. Adhering to the professional, honest and trustworthy business philosophy, the company is committed to providing customers with high-quality, durable, beautiful and safe products and services. We attach great importance to responsibility and desire a good team competition atmosphere, so as to achieve continuous self-development and improvement.
ILI9341 is a 262,144-color single-chip SOC driver for a-TFT liquid crystal display with resolution of 240RGBx320 dots, comprising a 720-channel source driver, a 320-channel gate driver, 172,800 bytes GRAM for graphic display data of 240RGBx320 dots, and power supply circuit. ILI9341 supports parallel 8-/9-/16-/18-bit data bus MCU interface, 6-/16-/18-bit data bus RGB interface and 3-/4-line serial peripheral interface (SPI). The moving picture area can be specified in internal GRAM by window address function. The specified window area can be updated selectively, so that moving picture can be displayed simultaneously independent of still picture area.
You can find ILI9341-based TFT displays in various sizes on eBay and Aliexpress. The one I chose for this tutorial is 2.2″ length along the diagonal, 240×320 pixels resolution, supports SPI interface, and can be purchased for less than $10.
Note that we will be using the hardware SPI module of the ESP8266 to drive the TFT LCD. The SPI communication pins are multiplexed with I/O pins D5 (SCK), D6 (MISO), and D7 (MOSI). The chip select (CS) and Data/Command (DC) signal lines are configurable through software.
For ILI9341-based TFT displays, there are some options for choosing the library for your application. The most common one is using Bodmer. We will use this library in this tutorial. So go ahead and download the
The library is based on the Adafruit GFX and Adafruit ILI9341 libraries and the aim is to retain compatibility. Significant additions have been made to the library to boost the speed for ESP8266 processors (it is typically 3 to 10 times faster) and to add new features. The new graphics functions include different size proportional fonts and formatting features. There are a significant number of example sketches to demonstrate the different features.
Configuration of the library font selections, pins used to interface with the TFT and other features is made by editting the User_Setup.h file in the library folder. Fonts and features can easily be disabled by commenting out lines.
Now you are all set to try out tons of really cool built-in examples that come with the library. The following output corresponds to the TFT_Pie_Chart example.
My favorite example is TFT terminal, which implements a simple “Arduino IDE Serial Monitor” like serial receive terminal for monitoring debugging messages from another Arduino or ESP8266 board.
The TFT display is a kind of LCD that is connected to each pixel using a transistor and it features low current consumption, high-quality, high-resolution and backlight. This 2.8-inch full color LCD has a narrow PCB display. The resolution is 320×280 pixels and it has a four-wire SPI interface and white backlight.