tft lcd pixel size factory
The provided display driver example code is designed to work with Microchip, however it is generic enough to work with other micro-controllers. The code includes display reset sequence, initialization and example PutPixel() function.
Please see the DT028CTFT for reference designs. The schematics between the A and the C are the same with the exception that the A does not have the IPS interface.
Showcase high quality graphics and images on our 800 x 480 7” TFT display! The DT070CTFT LCD module is an upgraded version to our DT070ATFT module. Compared to the previous model, this new 7 inch display offers improved viewing angle and brighter LEDs. The DT070CTFT also uses the Himax HX8264E + HX8664B display drivers. This LCD display is available with a resistive or capacitive touchscreen panel.
Pixel, also called Picture Element, A pixel is the smallest unit of a digital image or graphic that can be displayed and represented on a digital display device. A pixel is the basic logical unit in digital graphics. Pixels are combined to form a complete image, video, text, or any visible thing on a computer display
LCD display doesn’t operate the same way as CRT displays , which fires electrons at a glass screen, a LCD display has individual pixels arranged in a rectangular grid. Each pixel has RGB(Red, Green, Blue) sub-pixel that can be turned on or off. When all of a pixel’s sub-pixels are turned off, it appears black. When all the sub-pixels are turned on 100%, it appears white. By adjusting the individual levels of red, green, and blue light, millions of color combinations are possible
The pixels of the LCD screen were made by circuitry and electrodes of the backplane. Each sub-pixel contains a TFT (Thin Film Transistor) element. These structures are formed by depositing various materials (metals and silicon) on to the glass substrate that will become one part of the complete display “stack,” and then making them through photolithography. For more information about TFT LCDs, please refer to “
The etched pixels by photolith process are the Native Resolution. Actually, all the flat panel displays, LCD, OLED, Plasma etc.) have native resolution which are different from CRT monitors
HD TV has 1280×720 = 921,600 pixels; Full HD has 1920x 1080=2,073,600 pixels; 8K TV has 7,680×4,320=33,177,600 pixels. he “K” in 8K stands for Kilo (1000), meaning a TV that has achieved a horizonal resolution of about 8,000 pixels.
Although we can define a LCD display with resolution, a Full HD resolution on screen size of a 15” monitor or a 27” monitor will show different. The screen “fineness” is very important for some application, like medical, or even our cell phone. If the display “fineness” is not enough, the display will look “pixelized” which is unable to show details.
PPI stands for number of pixels per inch. It is kind of pixel density. PPI describes the resolution of a digital image, not a print. PPI is used to resize images in preparation for printing
But you see other lower resolution available, that is because video cards are doing the trick. A video card can display a lower LCD screen resolution than the LCD’s built-in native resolution. The video cards can combine the pixels and turn a higher resolution into lower resolution, or just use part of the full screen. But video cards can’t do the magic to exceed the native resolution.
TFT displays are full color LCDs providing bright, vivid colors with the ability to show quick animations, complex graphics, and custom fonts with different touchscreen options. Available in industry standard sizes and resolutions. These displays come as standard, premium MVA, sunlight readable, or IPS display types with a variety of interface options including HDMI, SPI and LVDS. Our line of TFT modules include a custom PCB that support HDMI interface, audio support or HMI solutions with on-board FTDI Embedded Video Engine (EVE2).
Looking for a specific TFT resolution? We offer LCD TFTs varying in resolution from 128x160 pixels to 800x480 pixels. Many of our TFT LCDs also have carrier boards to make integrating them into your product as simple as possible. All of our TFT LCDs offer full color RGB. If you"re not finding the correct TFT LCD for your product or project, please contact our support team to see if they can help you find an appropriate TFT display module for you.
NMLCD-24QAis a colour active matrix LCD module incorporating amorphous silicon TFT (Thin Film Transistor). It is composed of a colour TFT-LCD panel, driver IC, FPC and a back light unit and with a Resistive Touch Panel (RTP). The module display area contains 240 x 320 pixels. This product accords with RoHS environmental criterion.
Shenzhen SLS Industrial Co.,ltd established in 2003, is a professional LCD module manufacturer and solution provider. We have 1 full-auto COG assembly line, 2 semi-auto assembly line, backlight assembly line, no dust TP bonding line and manufacturing tech support, we can provide unique, innovative and cost effective LCD module development and manufacturing. Our product range includes: middle-small size TFT LCD, industrial capacitive touch panel... Our LCD products have been widely used in communications, GPS, Equipment, electronic audio-visual, instrumentation, household appliances, PDA and other industries.
TFT displays are now used in a wide range of products, including TVs, computers, appliances, medical equipment, instruments, mobile, and other gadgets. The utilization of LCDs in all market segments was significantly enhanced by incorporating thin film transistors into LCD architecture.
The liquid crystal display (LCD) uses TFT (thin-film transistor) technology and contains a transistor for each pixel (that is, for each of the tiny elements that control the illumination of your display). Since each pixel has a transistor, the current that initiates pixel lighting may be reduced and turned on and off more quickly. The active matrix display technology is another name for TFT (and contrasts with the "passive matrix," which does not have a transistor at each pixel).
The materials required to make a TFT display include ITO glass, liquid crystal, polarizer, sealing glue, and intermediate powder. These components themselves are simple enough, but the manufacturing process can often involve heavy investment in tooling, sourcing, and research. Each step of the process requires a unique line and space in the factory, along with dedicated design, engineering, and manufacturing staffing.
A custom sized TFT display will likely need to be designed such that each component fits into an appropriately sized housing that the project will require; this will often require experimentation and creative resources.
Finally, economies of scale play a massive role in cost and pricing. Economies of scale relate to the cost-benefit a company has when it raises its output level for a specific screen size—the benefit results from the inverse connection between the amount produced and the fixed cost per unit. The fixed cost per unit decreases as production volume increases.
Therefore, it may not make sense for a small project scope if you need a small number of TFTs with custom sizes. While the overall cost may be lower due to unit price reductions as the number of displays purchased leads to a decreased cost per unit, this price reduction will not be feasible with a smaller purchase size of custom-size displays. Additionally, when considering the tooling cost, this is not able to be spread over a smaller number of custom displays purchased, leading to limited cost savings on small purchase orders. Custom can be cheaper if your project falls within mid-range volumes, but this is not the case for small projects.
Consequently, due to design, sourcing of materials, manufacturing considerations, and cost and time of quality assessment, it can be impractical to order a custom TFT configuration for smaller projects. Fortunately, FocusLCDs offers a wide variety of mass-produced screen sizes that allows you to benefit from economies of scale and may even be a perfect fit for your specific project.
A thin-film-transistor liquid-crystal display (TFT LCD) is a variant of a liquid-crystal display that uses thin-film-transistor technologyactive matrix LCD, in contrast to passive matrix LCDs or simple, direct-driven (i.e. with segments directly connected to electronics outside the LCD) LCDs with a few segments.
In February 1957, John Wallmark of RCA filed a patent for a thin film MOSFET. Paul K. Weimer, also of RCA implemented Wallmark"s ideas and developed the thin-film transistor (TFT) in 1962, a type of MOSFET distinct from the standard bulk MOSFET. It was made with thin films of cadmium selenide and cadmium sulfide. The idea of a TFT-based liquid-crystal display (LCD) was conceived by Bernard Lechner of RCA Laboratories in 1968. In 1971, Lechner, F. J. Marlowe, E. O. Nester and J. Tults demonstrated a 2-by-18 matrix display driven by a hybrid circuit using the dynamic scattering mode of LCDs.T. Peter Brody, J. A. Asars and G. D. Dixon at Westinghouse Research Laboratories developed a CdSe (cadmium selenide) TFT, which they used to demonstrate the first CdSe thin-film-transistor liquid-crystal display (TFT LCD).active-matrix liquid-crystal display (AM LCD) using CdSe TFTs in 1974, and then Brody coined the term "active matrix" in 1975.high-resolution and high-quality electronic visual display devices use TFT-based active matrix displays.
The liquid crystal displays used in calculators and other devices with similarly simple displays have direct-driven image elements, and therefore a voltage can be easily applied across just one segment of these types of displays without interfering with the other segments. This would be impractical for a large display, because it would have a large number of (color) picture elements (pixels), and thus it would require millions of connections, both top and bottom for each one of the three colors (red, green and blue) of every pixel. To avoid this issue, the pixels are addressed in rows and columns, reducing the connection count from millions down to thousands. The column and row wires attach to transistor switches, one for each pixel. The one-way current passing characteristic of the transistor prevents the charge that is being applied to each pixel from being drained between refreshes to a display"s image. Each pixel is a small capacitor with a layer of insulating liquid crystal sandwiched between transparent conductive ITO layers.
The circuit layout process of a TFT-LCD is very similar to that of semiconductor products. However, rather than fabricating the transistors from silicon, that is formed into a crystalline silicon wafer, they are made from a thin film of amorphous silicon that is deposited on a glass panel. The silicon layer for TFT-LCDs is typically deposited using the PECVD process.
Polycrystalline silicon is sometimes used in displays requiring higher TFT performance. Examples include small high-resolution displays such as those found in projectors or viewfinders. Amorphous silicon-based TFTs are by far the most common, due to their lower production cost, whereas polycrystalline silicon TFTs are more costly and much more difficult to produce.
The twisted nematic display is one of the oldest and frequently cheapest kind of LCD display technologies available. TN displays benefit from fast pixel response times and less smearing than other LCD display technology, but suffer from poor color reproduction and limited viewing angles, especially in the vertical direction. Colors will shift, potentially to the point of completely inverting, when viewed at an angle that is not perpendicular to the display. Modern, high end consumer products have developed methods to overcome the technology"s shortcomings, such as RTC (Response Time Compensation / Overdrive) technologies. Modern TN displays can look significantly better than older TN displays from decades earlier, but overall TN has inferior viewing angles and poor color in comparison to other technology.
Most TN panels can represent colors using only six bits per RGB channel, or 18 bit in total, and are unable to display the 16.7 million color shades (24-bit truecolor) that are available using 24-bit color. Instead, these panels display interpolated 24-bit color using a dithering method that combines adjacent pixels to simulate the desired shade. They can also use a form of temporal dithering called Frame Rate Control (FRC), which cycles between different shades with each new frame to simulate an intermediate shade. Such 18 bit panels with dithering are sometimes advertised as having "16.2 million colors". These color simulation methods are noticeable to many people and highly bothersome to some.gamut (often referred to as a percentage of the NTSC 1953 color gamut) are also due to backlighting technology. It is not uncommon for older displays to range from 10% to 26% of the NTSC color gamut, whereas other kind of displays, utilizing more complicated CCFL or LED phosphor formulations or RGB LED backlights, may extend past 100% of the NTSC color gamut, a difference quite perceivable by the human eye.
The transmittance of a pixel of an LCD panel typically does not change linearly with the applied voltage,sRGB standard for computer monitors requires a specific nonlinear dependence of the amount of emitted light as a function of the RGB value.
IPS has since been superseded by S-IPS (Super-IPS, Hitachi Ltd. in 1998), which has all the benefits of IPS technology with the addition of improved pixel refresh timing.
It achieved pixel response which was fast for its time, wide viewing angles, and high contrast at the cost of brightness and color reproduction.Response Time Compensation) technologies.
Less expensive PVA panels often use dithering and FRC, whereas super-PVA (S-PVA) panels all use at least 8 bits per color component and do not use color simulation methods.BRAVIA LCD TVs offer 10-bit and xvYCC color support, for example, the Bravia X4500 series. S-PVA also offers fast response times using modern RTC technologies.
When the field is on, the liquid crystal molecules start to tilt towards the center of the sub-pixels because of the electric field; as a result, a continuous pinwheel alignment (CPA) is formed; the azimuthal angle rotates 360 degrees continuously resulting in an excellent viewing angle. The ASV mode is also called CPA mode.
TFT dual-transistor pixel or cell technology is a reflective-display technology for use in very-low-power-consumption applications such as electronic shelf labels (ESL), digital watches, or metering. DTP involves adding a secondary transistor gate in the single TFT cell to maintain the display of a pixel during a period of 1s without loss of image or without degrading the TFT transistors over time. By slowing the refresh rate of the standard frequency from 60 Hz to 1 Hz, DTP claims to increase the power efficiency by multiple orders of magnitude.
Due to the very high cost of building TFT factories, there are few major OEM panel vendors for large display panels. The glass panel suppliers are as follows:
External consumer display devices like a TFT LCD feature one or more analog VGA, DVI, HDMI, or DisplayPort interface, with many featuring a selection of these interfaces. Inside external display devices there is a controller board that will convert the video signal using color mapping and image scaling usually employing the discrete cosine transform (DCT) in order to convert any video source like CVBS, VGA, DVI, HDMI, etc. into digital RGB at the native resolution of the display panel. In a laptop the graphics chip will directly produce a signal suitable for connection to the built-in TFT display. A control mechanism for the backlight is usually included on the same controller board.
The low level interface of STN, DSTN, or TFT display panels use either single ended TTL 5 V signal for older displays or TTL 3.3 V for slightly newer displays that transmits the pixel clock, horizontal sync, vertical sync, digital red, digital green, digital blue in parallel. Some models (for example the AT070TN92) also feature input/display enable, horizontal scan direction and vertical scan direction signals.
New and large (>15") TFT displays often use LVDS signaling that transmits the same contents as the parallel interface (Hsync, Vsync, RGB) but will put control and RGB bits into a number of serial transmission lines synchronized to a clock whose rate is equal to the pixel rate. LVDS transmits seven bits per clock per data line, with six bits being data and one bit used to signal if the other six bits need to be inverted in order to maintain DC balance. Low-cost TFT displays often have three data lines and therefore only directly support 18 bits per pixel. Upscale displays have four or five data lines to support 24 bits per pixel (truecolor) or 30 bits per pixel respectively. Panel manufacturers are slowly replacing LVDS with Internal DisplayPort and Embedded DisplayPort, which allow sixfold reduction of the number of differential pairs.
The bare display panel will only accept a digital video signal at the resolution determined by the panel pixel matrix designed at manufacture. Some screen panels will ignore the LSB bits of the color information to present a consistent interface (8 bit -> 6 bit/color x3).
Kawamoto, H. (2012). "The Inventors of TFT Active-Matrix LCD Receive the 2011 IEEE Nishizawa Medal". Journal of Display Technology. 8 (1): 3–4. Bibcode:2012JDisT...8....3K. doi:10.1109/JDT.2011.2177740. ISSN 1551-319X.
K. H. Lee; H. Y. Kim; K. H. Park; S. J. Jang; I. C. Park & J. Y. Lee (June 2006). "A Novel Outdoor Readability of Portable TFT-LCD with AFFS Technology". SID Symposium Digest of Technical Papers. AIP. 37 (1): 1079–82. doi:10.1889/1.2433159. S2CID 129569963.
Products»All Products»Power & UPS»Batteries & Ultracapacitors»Standard DC-DC Power»Smart DC-DC Power»Smart Battery Chargers»Galvanically Isolated Power Supplies»24V Output Supplies»Ultracapacitor Chargers»Adjustable Output Power Supplies»Universal Chargers»Uninterruptible Power Supplies»Embedded Boards»I/O & Communication»Embedded CAN bus Modules»Embedded Ethernet Switches»Embedded Digital IO Modules»Embedded Analog IO Modules»Embedded Serial IO Modules»PCIe Mini Cards»Embedded Power Supplies»Standard Embedded Power»Smart Embedded Power»PC/104 Power Supplies»Embedded UPS Modules»Embedded Motherboards»PC/104 Motherboards»ETX Motherboards»COM Express Motherboards»EPIC Motherboards»EBX Motherboards»Mini-ITX Motherboards»Micro-ATX Motherboards»Industrial ATX Motherboards»Embedded GPS Modules»GPS Receiver Modules»Embedded GPS Antennas»CPU Boards & SBC»PC/104 SBC»EPIC SBC»ETX SBC»EBX SBC»Mini-ITX SBC»ARM CPU Modules»Micro-ATX SBC»Embedded ATX SBC»Com Express SBC»Embedded Ultracapacitor Modules»Embedded Battery Modules»Embedded Video Cards»Systems»Fanless Box PC»Wide Temperature»Industrial Automation Computers»Rugged Vehicle Computers»Railway Computers»Vehicle Tracking Systems»Industrial Rackmount Computers»Wide Temperature Systems»Digital Displays»Marine Monitors»Rugged LCD Displays»Wide Temperature LCD Displays»Waterproof LCD Panels»Advertising LCD Displays»Stretched Bar LCD»Sunlight Readable LCD Displays»Public Transportation LCD Displays»Railway LCD Displays»Outdoor LCD Displays»High Brightness LCD Displays»Extended Temperature LCD Displays»Industrial Monitors»Panel Computing»Marine Panel PC»Infotainment Panel PC»Wide Temperature Panel PC»HMI Panel PC»Modular Panel PC»Mobile Computing»Rugged Tablets»Rugged Windows Tablets»Rugged Android Tablets»Rugged PDA»Antennas»GPS Antennas»External GPS Antennas»Passive GPS Antennas»Active GPS Antennas»Marine GPS Antennas»Internal GPS Antennas»GNSS Antennas»GLONASS Antennas»Multi-Band Antennas»GPS-GLONASS Antennas»Iridium Antennas»GPS & RF Signal Distribution»GPS Amplifiers»Low Noise Amplifiers»GPS Receivers»Marine GPS Receivers»GPS Attenuators»GPS Combiners»GPS Splitters»Active GPS Splitters»Military GPS Splitters»Rackmount GPS Splitters»Passive GPS Splitters»Repeaters»GPS Repeaters»GLONASS Repeaters»GPS Filters»Enclosures & Chassis»PC/104 Chassis»Rugged Mini-ITX Cases»EPIC Enclosures»EBX Enclosures»Memory & Storage»Memory»Flash Storage»Industrial SSD»SATA Disk On Modules»Industrial Micro SD Cards»Industrial SD Cards»Industrial CompactFlash Cards»Sensors»Industrial Networking»Manufactured by Tri-M»Power & UPS»Standard Power Supplies»HE104: 60 Watt»HE104-DX: 60 Watt»HE104-75W: 75 Watt»HE104+DX: 108 Watt»HE-HP: 100 Watt»Smart Power Supplies (PowerOS)»HESC-SERD: 60 Watt»HESC104+: 108 Watt»HPS3512: 203 Watt»HPSP-XYZ: 240W Programmable»V12SC-SER[-UPS]»TPS1000: 35 Watt, 42 Watt»TPSi1075: 75 Watt, Isolated»TPSi1085: 85 Watt, Isolated»HPSC104-SER: 160 Watt»HESC104: 60 Watt»TPS1035»TPC1000»HPS3524»Smart UPS (PowerOS)»TUP1000: Ultracapacitor UPS»V5SC-SER-UPS: NiMh Battery UPS»UltraUPS»V12SC-SER[-UPS]»Ultra Capacitor Packs»TBP4xxx»Battery Backup Packs»BAT-NiMh45»BAT104-NiMh»BAT104-NiCd»BAT-SLA(25/45)»UltraUPS»Heavy Duty Transient Stopper»CPU Modules»I/O & Communication»Input / Output»IO104-60IN: PC104 I/O Board»IR104 PC/104 Relay Module»Communication»TCB1000 PC/104 Com Board»FlexCom104-GPS»Enclosures»VersaTainer: PC104 & EBX»CanTainer: PC104»FlexTainer: EPIC, MITX, EBX»GPS & Networking»GPS & Networking Boards»FlexCom104-GPS»Antennas»Mighty Mouse: Small GPS Antenna»Micro Mouse: Micro GPS Antenna»Big Brother»Re-Radiators»Super-Radiator»Xtreme-Radiator»Vehicle GPS Repeater»Complete System Solutions»HECS1000 System»UltraUPS Complete Backup Solution»Support Products & Accessories»PC104-T AC Termination Modules»Extract104»TS-I2C Temperature Sensor»DA104»VSX-2812 Video Modules»ISA104X1»Postcode104»Legacy Products»Distributed by Tri-M»Diamond Systems»Single Board Computers»Aurora PC/104 SBC»Helios PC/104 SBC»Neptune EPIC SBC»Pluto ETX SBC»Hercules III EBX SBC»IEI»IEI Mobile»MicroMax Computer Intelligence»San Jose Technology (SANAV)»GNSS Repeaters»RK-306»RK-106»Innodisk»GPS Networking»Litemax»Spanpixel»Durapixel»Navpixel»Aaeon Electronics»Systems»Fanless Embedded Computers»Entry-Level Box PC»ICOP Technology»ICOP-2811»VDX2-6554»VEX-6254»VSX-2812S»86Duino Enjoy Desktop 3D Printer»MPLSelector Guides»Power Selector Guide»Backup Power SelectorServices»Conformal Coating»HumiSeal 1B31»Laser Engraving & EtchingTri-M Rugged»PowerOS»Mining Applications»Mining Application Story»Rail & ITS Applications»Automation & Manufacturing»Mil-Aero Defence & Aerospace»Aerospace Application StorySupportAbout Us»About Us»Privacy PolicywebstoreTriple Programmable PSUQuote Request
ER-TFT050-3 is 800x480 dots 5" color tft lcd module display with ILI6122 driver IC,optional 5 points capacitive multi-touch panel with controller GSL1680 and optional 4-wire resistive touch panel screen,superior display quality,super wide view angle and easily controlled by MCU such as 8051, PIC, AVR, ARDUINO, ARM and Raspberry PI.
※Price Increase NotificationThe TFT glass cell makers such as Tianma,Hanstar,BOE,Innolux has reduced or stopped the production of small and medium-sized tft glass cell from August-2020 due to the low profit and focus on the size of LCD TV,Tablet PC and Smart Phone .It results the glass cell price in the market is extremely high,and the same situation happens in IC industry.We deeply regret that rapidly rising costs for glass cell and controller IC necessitate our raising the price of tft display.We have made every attempt to avoid the increase, we could accept no profit from the beginning,but the price is going up frequently ,we"re now losing a lot of money. We have no choice if we want to survive. There is no certain answer for when the price would go back to the normal.We guess it will take at least 6 months until these glass cell and semiconductor manufacturing companies recover the production schedule. (May-22-2021)
ER-TFT065-1 is 800x320 dots 6.5"color bar tft lcd display with EK9713 driver ic and optional 4-wire resistive touch panel, superior display quality,super wide view angle and easily controlled by MCU such as 8051, PIC, AVR, ARDUINO, ARM and Raspberry PI.
Bibuke is a global leading Manufacturer of TFT LCD display based in Taiwan and China. Bibuke offers a wide product range of small to medium sizes TFT display modules in sizes ranging such as 2.4" TFT LCD, 2.8" TFT LCD, 3.2" TFT LCD, 3.5" TFT Display, 4.3 inch TFT LCD, 5 TFT LCD, 5.6 TFT LCD, 5.7 inch Display, 7 " TFT LCD, 8" TFT, 9" TFT, 10.1" TFT LCD, 10.2" TFT LCD, 12.1" TFT LCD , 12.3" TFT LCD (diagonal size of the active area) and so on . There are more than 200 TFT standard models listed on this website; furthermore, almost each item is acceptable to derivate from the standard items to meet the customers" requirement.
Bibuke TFT displays are qualified under industrial standard including standard TFT-LCD modules, IPS TFT, High brightness TFT LCD (sunlight readable display), TFT panels with controller boards, Bar Type TFT, Wide Temperature TFT LCD, Bibuke Clever System TFT and Touch screen display. These displays include landscape or portrait modes. Bibuke has Mono TFT displays and full color TFTs in line, these displays are available in various resolutions as well as touch screen optional in resistive and projected capacitive (PCAP touch screen) technology. Many of our TFT display modules have more than one interface available including MCU, RGB, TTL, LVDS, MIPI DSI and HDMI. Bibuke TFT modules are perfect for a number of applications including industrial control, coffee machine, medical equipment, POS system, automation, GPS navigator, white goods, energy control, telecoms, medical equipment and etc.
Table of Contents Company and Production Products and Services Company Statement Milestones Company Overview Market Share Manufacturing Lines Quality Verification Processes Key Product Lines Product and Service We Offer Industries We Serve Product Features Feature Products: - Round LCD modules - Square LCD modules - Stretched Bar LCD modules - Industrial Quality modules - High Brightness modules - Touch Screen LCD modules Service: Custom and Standard Standard Product Lists Project Share/ Application
Set up automatic production lines: Backlight, COG, FOG, LCM and Touch Screen Established a Hong Kong company for overseas markets LCD technology became mainstream of display market in China, we entered the business. ISO9001/ISO14001 quality system certificated; Entered the industries of beauty equipment and vehicle instrument. Production lines expansion to increase the capacity and meet the business growth
Product and Service We Offer 2 Major Display Types: TN and IPS Custom Solution in Products and Services Full Size Range: 0.96-30 inch Multiple Interface Options Solution for Unique Shape and Feature Optional Touch Screen
Unique Shape Features High Brightness: 2000 cd/m2 Product Features High Resolution: 1920x1080 pixels Touch Screen LCD with Resistive Touch Screen LCD with Capacitive Touch Screen
Diagonal (inch) Resolution (pixel) Display Type Size: 1.09″/ 1.28″/ 1.3″/ 1.6″/ 2.1″/ 5″ High resolution, smooth outline Designed for consumer products, such as wearables, home appliances
Small square outline makes the most of the available space, Popular choice: wearables; portable gadget; smart home controller Resolution (pixel) Display Type Resolution (pixel) Transflective/ Sunlight-readable Display Type IPS/Full View 3.95 inch, TTS395HSG-01 Resolution (pixel) Display Type IPS/Full View
Stretched Bar LCD Modules Size: 6.86”/ 7.84” Aspect ratio ≈ 1:3 Stretched outline displays more information Application: home appliances, car nevigation panels Resolution (pixel) Resolution (pixel) Display Type IPS/Full View Display Type IPS/Full View
Industrial Quality Displays Robust structure: anti-vibration and impact resistance; Fulfill the outdoor operation: sunlight-readable and wide temperature tolerance. Model Diagonal (inch) Resolution (pixel) Operation Temperature Display Type Industrial Quality Wide Temperature High Brightness
High Brightness Displays The modules can display clear content in the sun/highlight ambiance Model Diagonal (inch) Resolution (pixel) Display Type Custom your display: Choose display size and resolution Tell us terminal"s application enviroment (indoor/outdoor) We will review and p
Touch Screen Displays Capacitive and Resistive options Custom cover screen: design and finish Model Diagonal (inch) Resolution (pixel) Touch Screen Display Type
60% of projects Custom products - in-house engineering team support from product development to production - safety inventory of 1,000- 5,000pcs, support NO MOQ - custom options: LCM, interface, touch screen, cover glass, controller boards - cover small to medium size: 0.96 - 16 inch - custom service: flexible to integrate resources in the mature electronic supply chain in China to find solutions and support projects
Project Share MEDICAL INDUSTRIAL FACILITY 4.3 inch TN TFT + capacitive touch screen + enhanced cover glass surface treament and thickness 9 inch IPS TFT + resistive touch screen + high brightness + enhance the lifecycle 5.0 inch IPS TFT + capacitive touch screen + high brightness + wide temperature + anti-vibration SMART LIFE 2.1 inch IPS TFT + capacitive touch screen + custom cover glass with allin-black finish
The main lines of LCD modules are size in 0.96-inch, 2-inch, 2.3-inch, 2.4-inch, 3-inch, 3.5-inch, 4.3-inch, 5-inch, 7-inch, 8-inch, 10.1-inch, 13.3-inch, 15.6-inch, and ancillary products.
RFF700G-AIW-DNN is a 7-inch 800x480 TFT LCD display module. The dimension size of this module is 165x100 mm, size of active area is 154.08x85.92 mm (7” diagonal), and its resolution is 800x480 pixels. This 7-inch TFT LCD 800x480 module supports RGB interface. The brightness is 460 cd/m2 with contrast ratio 500:1. RFF700G-AIW-DNN TFT LCD module power supply voltage is 3~3.6V. The module works within temperature -20 to +70℃, storage temperature ranges from-30 to +80℃.