lcd screen in sunlight manufacturer
It is a complex recipe that requires the right balance of key ingredients that include enhanced backlight, optimized internal film stack, front coverglass with correct index matched coatings all integrated into the ideal host LCD panel for the application.
Q-Vio began development of sunlight readable displays over a decade ago and we have continued to push the daylight readable display performance envelop to this day. We provide the highest quality outdoor imaging with the ability to tailor our display technology to your specific requirements. We feature Full HD small size models for portable applications, 4:3 aspect ratio long life panels for industrial, marine and military applications and larger full HD to 4K panels for outdoor digital signage.
For high performance display technology that can stand-up to the brightest sunlight conditions, look no further. Introducing Q-Vio’s family of sunlight readable displays ranging in size from 5”- 32” They “beat the daylight out of sunlight” with ultra bright, easy-to-read displays, even in direct sunlight. Built in a Class 1000 clean-room, these low power, RoHS compliant LED backlit displays offer superior uniformity and outstanding thermal management for fan-less operation.
With original factory display footprint, our high-bright display panels offer an easy upgrade path to sunlight readability. These low power displays are perfect for a wide range of products where size, weight, power and sharp readability in bright sunlight are essential. Outdoor Kiosks, Marine Console monitors, Aviation, monitors for industrial Machinery and Military Display Equipment are just a few of the many applications that can benefit from the power and brightness of Q-Vios truly sunlight readable displays.
To power and control the custom LED backlights, Q-Vio has developed a RoHS compliant LED driver board family that is specifically designed to power up the displays. Their wide dimming range offers a stable, uniform brightness from the extreme low end through true sunlight readable levels.
Sunlight readable TFT displays feature high brightness LCD backlights, making them an excellent option for bright ambient light or direct sunlight environments. Our sunlight readable TFT displays are available with or without touchscreen features and come with different formats and display modes to fit any application.
You need to reach the top manufacturer and provider of high brightness LCD displays. They are available in a variety of sizes and designs that you can get from the comfort of home. Leadtek Display, the professional display service provider based in China, offers you a broad range of high brightness LCD displays that are easy to use and come with a number of added features and benefits. Our broad range of such display modules is provided with precise information about their uses in different industrial domains. Choosing the best one depends on your requirement and industrial uses. They are offered with precise information about them to help you in finding something latest and unique. Our prices are competitive and backed by discounts; while you can get them delivered on time and in secure way to your address. Our broad ranges of displays are used largely in different industries and for different purposes. They are delivered with precise information about them, technical points and features along with a user guide.
Clients outside of the U.S.A. or Canada. Or, simply use our easy Product Information form (link below) to let us know more about your application and project needs.
TRU-Vu High Bright Sunlight Readable Monitors enable users to see clear, sharp video images even in direct sunlight with a bright screen. Our high brightness screens produce at least 1,000 nits brightness. Some go up to 2,500 nits of brightness. This makes them far brighter than standard LCD monitors. Specifically, consumer or commercial-grade monitors typically offer only 150 to 300 nits brightness. High brightness displays and sunlight readable touch screens will ensure crystal-clear video images even in bright sunlight. The result is better performance and bold colors in other high ambient light conditions as well. They are also available with optical bonding as monitors or touch screen displays.
In outdoor or bright conditions, it is imperative to increase the brightness of a display to ensure crisp images. The number of nits an LCD display emits is the main factor in determining the monitor’s perceived brightness. A monitor luminance of around 200-350 nits will work well indoors. Most LCD displays and monitors fall in this range. However, 400-700 nits would be required for use in daylight conditions. Most importantly, a Sunlight readable display requires at least 1,000 nits or more for viewing in direct, bright sunlight . These high brightness displays are available with 16:9 aspect ratio or 4:3 aspect ratio screens. All TRU-Vu Sunlight Readable monitors and high-brightness touch screens are TAA Compliant.
Some monitors feature a sheet of glass over the LCD panel to protect it from accidental or intentional damage. However, the glass also produces unwanted glare and reflections. Internal reflections in the air gap between the glass and the LCD panel diminish image quality even further. In order to combat this, monitors are optically bonded.
Optical bondingis the process of laminating protective glass or a touch screen panel to the LCD panel with an optical-grade resin. This completely fills the air gap between the glass and LCD panel. It not only eliminates the internal reflections, but also increases the contrast ratio. This makes the screen appear much brighter and more viewable in bright light conditions. Optical bonding also eliminates internal moisture and condensation. Moreover, it will make the monitor more rugged and durable. Lastly, an Anti-Reflective coating is applied to the outside of the glass. Consequently, this will drastically reduce glare and surface reflections.
For installations in indirect sunlight, or reflected bright light, our Daylight Viewable displays will most likely suffice. These are also more cost-effective than Sunlight Readable monitors with 1,000 nits brightness. Daylight viewable monitors feature LCD screens with 400 nits to 700 nits brightness. The LCD panels also include optical bonding.
Daylight-viewable touchscreens with optical bonding are also significantly brighter than standard touch screens. Consequently, they produce far better image quality in bright conditions. Although they are not as bright as Sunlight Readable touch screens, daylight readable touch screens do offer the benefit of lower power consumption. This may be useful in portable or mobile applications. We currently offer over 60 monitors with optical bonding; all are TAA-Compliant.
Our outdoor high brightness Sunlight Readable LCD monitors feature waterproof stainless steel enclosures. These are ideal for factory wash-down environments. Additionally, they are perfect for outside use in challenging weather. Our panel mount enclosures are made from steel, stainless steel, or aluminum. This enables them to be flush-mounted. Outdoor LCD monitors with high brightness work in a wider range of temperatures. Consequently, this broadens the environments in which they may be used. Additionally, temperature ranges are very important to consider when using outdoors. When we combine extreme operating temperatures with outdoor waterproof enclosures, we ensure your high brightness monitors will be able to function in even the harshest wet and hot environments. We will also modify or customize any model to meet your exact requirements.
In conclusion, we deploy TRU-Vu outdoor waterproof sunlight readable monitors and high brightness touch screens in a wide range of industries. For example, military, law enforcement, manufacturing plants benefit from high bright LCD displays. Amusement parks, sports stadiums, mass transit, and construction & heavy equipment also rely on high bright sunlight readable displays. In addition, outdoor high brightness LCD monitors are demanded in pipeline inspection, kiosks, marine, oil & gas, drones, security applications. When it counts, you can rely on TRU-Vu Monitors to deliver the optimal weather resistant high bright LCD monitor solution for your specific needs.
This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.
When an LCD is used in a high ambient lighting area, outdoors or even in direct sunlight a normal brightness display becomes almost unreadable. Most people have experienced this phenomenon using their mobile phones, tablets, and notebooks outdoors or when sitting near a window on a sunny day. The display looks hazy, dark, and may even have a halo over the screen. As an individual you have the option to turn the hand-held device to shade it from the bright light to read the information. Could you imagine passing at mid-day by a street-side shop with a display showing their products advertising sales items or specials, but the display can’t be read. The customer would not know what messages the shop is trying to deliver. A missed opportunity to make an impression on a potential customer. All the money spent on the advertisement and equipment but did not capture the attention of the customer because the display was too dark. A sunlight readable LCD displays, also known as a high brightness display are designed to operate in an outdoor setting or in direct sunlight. These products are designed to be very rugged and durable to meet the most the challenging environmental conditions. These are a must have requirement when developing industrial displays used in environments such as oil and gas, marine, military, agriculture where a product must perform for long periods of time.
There are several technical approaches and various enhancement methods to increase screen viewability and reliability in the sunlight. The primary enhancement is to develop a backlight system that increases the brightness of the LCD to overcome a brightly lit environment. There are other technologies that can be added to a high bright backlight such as transflective enhancement (Meaning both Transmissive and Reflective) that will use some of the ambient lighting to make the screen more readable in bright environments. Direct backlighting technology now includes local dimming. This feature concentrates the backlight only in an area where the image needs to be bright further increasing contrast of the LCD display. Other enhancement includes the use of Anti-Reflective and Anti-Glare (AR/AG) cover glass that is optically bonded to the LCD front surface to minimize reflective loss and improve contrast of the display.
Sunlight Readable displays is a core competence of Litemax since the company’s inception. Most displays offered from Litemax include at least a 1,000-nit backlight. Litemax proprietary backlight design, internal heat sinking of the LED junction allows their engineering teams to develop a bright backlight while minimizing over all power and internal heat. This is important for displays used outdoors as brightness is one concern, so is heat built up due to thermal loading caused by the sun. Custom backlights can be developed upon request to even higher brightness of 2,000, 2,500 or even 3,000 nits. The high brightness ensures perfect visual readability under any lighting condition. Below is a table that outlines a brightness that would be suitable based on the environment and application.
One of the methods for minimizing backlight heat and improving outdoor viewability is to enhance the LCD with a Transflective (transmissive-reflective) layer This layer allows ambient light to be reflected through the LCD display, re-directing the light to make the LCD viewable in a brightly lit situation. This enhancement improvement is one of the state-of-the-art technologies for high-performance color-reduced power consumption for displays used outdoors.
AOT (Advanced Optical Bonding) is one of Litemax’s many patents. Optical Bonding is an enhancement that improves readability by minimizing reflective surfaces. This combined with index matching the coatings of the cover element to the adhesive layers further reducing internal reflective surfaces to minimize reflective loss creates the brightest, clearest rich images available in an outdoor display product. AOT is the use of an optical-grade adhesive to laminate anti-reflection glass, touch screens, heaters, and EMI shields to the top surface of a display. This method eliminates the air gap between the cover glass and the display enhancing readability in sunlight. The other advantage of optical bonding is to fill in the air gap where moisture can accumulate in high humidity outdoor environments and the display’s ability to resist impact damage improves significantly. As the pioneer in sunlight readable displays, Litemax strives to develop new leading-edge products and processes for use in the most demanding market segments. These enhancements help overcome the challenges our customers face when deploying a display in a rugged outdoor environment.
The elimination of an air gap between the cover glass and the display preventing moisture from entering that could cause fogging on the display"s surface.
Most of the energy that reaches the Earth’s surface comes from the Sun. Solar radiation is in the visible light wavelengths that we can see. The Sun also emits infrared, ultraviolet, and other wavelengths of energy that is invisible. Of the solar energy that reaches the earth, UV wavelengths have the greatest energy. The remaining solar radiation is the longest wavelength, infrared. Most objects radiate infrared energy, which we feel as heat. This heat can be absorbed by a display when it is in direct sun light. This absorption of the external heat is known as solar loading or thermal loading. To combat solar loading Litemax has developed unique materials and process to add as enhancements to minimize the heat that can build up in the LCD from being exposed to direct sun light. One of the technologies is Anti UV/IR Coatings. Using these coating technologies improves the total solar energy rejection from a Litemax display. This can be up to 53% rejection of these invisible solar allowing the LCD to perform in the most demanding locations.
Local dimming technology has been widely popular in mainstream television for years. Litemax has brought the same technology to our large sized industrial-grade outdoor displays. Local dimming dims the LED backlight to optimize the heat and save energy. Litemax also achieves High Dynamic Range (HDR) through local dimming technology to enable the industry’s greatest color contrast in the industry.
The LED-backlit displays boast high-end features, such as lower electromagnetic noise, wide dimming range, and lower power consumption. These backlight systems are developed to output high brightness but also to increase the lifetime of the LED. This design approach and through testing means Litemax backlight systems are one of the most robust designs available in the market. These high bright backlight systems include a Mean Time Between Failures (MTBF) of 100,000 hours. This exceeds typical longevity requirements for industrial-grade applications that require continuous operation and minimal maintenance.
iTech Company’s line of Open Frame LCD Monitor displays enable you to communicate with your customers, even if they are outdoors. These monitors are equipped with extremely high brightness levels of up to 2400 nits along with high contrast ratios, allowing your messages to be delivered to your targeted audience in an impactful way even in bright outdoors. It also utilizes a LED backlight technology to deliver superior displays.
Various connectivity options are being supported with this device including VGA, DVI, BNC, S-Video, CVBS, Component and HDMI, giving more flexibility to the device. It also offers network connectivity, for you to control your content more easily over your network without a need to install a dedicated CPU at each display’s location. Moreover, an optional touchscreen feature is available for ease of use and for interactive applications as well.
With the wide range of available sizes, resolutions, and brightness levels, iTech Company’s open frame LCDdisplays can be integrated into any industrial or commercial application. These products are also made of high quality components, ensuring their reliability and longer years of service.
From panels to mounts to weather proofing options, our line of sunlight readable monitors are as diverse as the clients we serve. These monitor displays feature a rugged construction, water proof and other environmental protections, and high-contrast screens in order to best serve outdoor-based operations. Along with these features, these products also deliver sharp and clear displays. These rugged displays are available in various sizes and resolutions.
Our sunlight readable displays are ideal for use in direct sunlight and high ambient light conditions, as it delivers the intensity and brilliance that any application may require. The brightness levels of our products vary and you can choose which is most appropriate for your application. This ensures that the display won"t washout in high light conditions.
In order to service our broad base of clientele, our display monitors support Windows and Linux operating systems. Each product also comes with a unique list of components while some of these are optional, including the touch screen functionality, high resolution, direct video feed, all weather operation, sub-zero heater, and night vision goggle filter, among others.
If you need help in finding the right sunlight readable monitor for your business, iTech Company has a customer service team available at all times. We also provides fast and secure 24-hour online checkout. If you have questions about our high brightness LCD monitors, do not hesitate to live chat with one of our expert customer service representatives. You can also call us at 1(888) 483-2418 to place an order or request more information.
When display devices are brought outside, oftentimes they face the brightness of sunlight or any other form of high ambient light sources reflecting off of and overwhelming the LED backlight’s image.
With the growth of the LCD panel industry as a whole, it has become more important than ever to prevent the sun’s wash out of displays used outdoors, such as automobile displays, digital signage, and public kiosks. Hence, the sunlight readable display was invented.
One solution would be to increase the luminance of the TFT LCD monitor’s LED backlight to overpower the bright sunlight and eliminate glare. On average, TFT LCD screens have a brightness of about 250 to 450 Nits, but when this is increased to about 800 to 1000 (1000 is the most common) Nits, the device becomes a high bright LCDand a sunlight readable display.
Doing this is an affordable option for enhancement of image quality in the outdoors, including features like contrast ratio and viewing angle, in a common use setting like with phones.
Since many of today’s TFT LCD display devices have shifted to touchscreens, the touch panels on the surface of LCD screens already block a small percentage of backlighting, decreasing the surface brightness and making it so that the sunlight can even more easily wash out the display. Resistive touch panels use two transparent layers above the glass substrate, but the transparent layers can still block up to 5% of the light.
In order to optimize the high brightness of the backlight, a different type of touchscreen can be used: the capacitive touchscreen. Though it is more expensive than the resistive touch screen, this technology is more ideal for sunlight readable displays than the resistive due to its usage of a thinner film or even in-cell technologies rather than two layers above the glass of the display, and therefore, light can pass more efficiently.
However, with this method comes a list of potential problems. Firstly, high brightness displays result in much greater power consumption and shorter battery life. In order to shed more light, more power will be needed which can also consequently result in device overheating which can also shorten battery life. If the backlight’s power is increased, the LED’s half-life may also be reduced.
While in bright exterior light settings, these devices reduce eye strain as the user attempts to view the image on screen, the brightness of the display itself can also cause eye strain, seen as the brightness may overwhelm your eyes. Many devices allow the user to adjust brightness, so this concern is oftentimes not too severe.
A recent technology falling into the sunlight readable display category is the transflective TFT LCD, coming from a combination of the word transmissive and reflective. By using a transflective polarizer, a significant percentage of sunlight is reflected away from the screen to aid in the reduction of wash out. This optical layer is known as the transflector.
In transflective TFT LCDs, sunlight can reflect off the display but can also pass through the TFT cell layer and be reflected back out off a somewhat transparent rear reflector in front of the backlight, illuminating the display without as much demand and power usage from the transmissive nature of the backlight. This addresses both the issues of wash out and the disadvantages of high brightness TFT LCDs in high ambient light environments. Because of its transmissive and reflective modes, this type of device is very useful for devices that will be used outdoors but also indoors.
While it does greatly reduce power consumption, transflective LCDs are much more expensive than high brightness LCDs. In recent years, the cost has decreased, but transflective LCDs continue to be more costly.
In addition to adjustments to the internal mechanics of LCDs, it is possible to make devices more sunlight-readable using surface treatments. The most common are anti-reflective (A/R) films/coatings and anti-glare processing.
Anti-reflective focuses on depositing multiple transparent thin film layers. With the thicknesses, structures, and properties of each individual layer composing the film, reflecting light wavelengths are changed, and thus less light is reflected.
When anti-glare is used, reflected light is fragmented. Using a rough surface as opposed to a smooth one, anti-glare treatments can reduce the reflection’s disruption of the actual image of the display.
Often paired with other methods of creating sunlight readable displays is optical bonding. By gluing the glass of a display to the TFT LCD cells beneath it, optical bonding eliminates the air gap that traditional LCD displays have in them using an optical grade adhesive.
This adhesive reduces the amount of reflection between the glass and LCD cell as well as the reflection of external ambient light. Doing this helps provide a clearer image with an increased contrast ratio, or the difference in the light intensity of the brightest white pixel color and darkest black pixel color.
With this contrast ratio improvement, optical bonding addresses the root issue with unreadable outdoor displays: the contrast. Though an increase in brightness can improve contrast, by fixing the contrast itself, LCD display images in outdoor environments will not be as washed out and will require less power consumption.
Besides the visual display advantages that optical bonding provides, this adhesive improves the display in many other ways. The first being durability, optical bonding eliminates the air gap within the device and replaces it with a hardened adhesive that can act as a shock absorber.
Touch screens with optical bonding gain, accuracy in where the point of contact is between the touch and screen. What is known as parallax, the refraction angle of light, can make it seem that the point of contact and the actual point on the display are different. When the adhesive is used, this refraction is minimized, if not reduced.
The optical bonding adhesive’s elimination of the air gap also protects the LCD from moisture/fogging and dust, as there is no space for impurities to penetrate and remain under the glass layer. This especially helps with maintaining the state of LCDs in transport, storage, and humid environments.
Compiling the various methods of improving LCD screens for sunlight readability, these devices can be optimized in high ambient light settings. An anti-glare coating is applied to the surface of the glass and anti-reflective coatings are applied to both the front and back. The transflector is also used in front of the backlight. These features can result in 1000 Nit or more display lighting, without the excessive power consumption and heat production through a high brightness backlight, consequently allowing for a longer lasting and better performing LCD
Unfortunately, the process of building a reflector inside TFT LCD is complicated and transflective TFT LCD is normally several times higher cost compared with normal transmissive TFT LCD.
To further improve and enhance the qualities of the LCD, LED and cold cathode fluorescent lamp (CCFL) backlights are used. Both these create bright displays, but the LED specifically can do so without as much power consumption and heat generation as compared to the CCFL option. Optical bonding is also applied in order to improve display contrast, leading to a more efficient and better quality sunlight readable display.
Xenarc Technologies Corp. is one of the first display manufacturers to introduce a 7" LED LCD display with a brightness rating of 1,000NIT. The high brightness of this monitor makes it ideal for outdoor applications under direct sunlight, as well as any other applications where a bright, non-reflective display may be effective. This popular product offers superior readability under sunlight. With their proprietary technology, they are able to increase the brightness rating to 1,000NIT, and the Contrast Ratio to 500:1. Sunlight readability is further enhanced by it"s advanced Anti-Reflective coating. The monitor also comes with a detachable aluminum front bezel, suitable for flush installations, that can easily be put back into place.
There are more and more TFT displays used in outdoor applications, such as automobile display, digital signage and kiosks. High ambient light in outdoor environment often causes wash-out image and renders the screen not readable. Readability & sustainability of TFT display under direct sunlight is becoming vital. Topway Display has been developing sunlight readable LCD display solution for years. The company understands the ins and outs of sunlight readable TFT LCD.
Visibility is the ease with which a viewer can detect an object, or in more scientific term: the relationship between luminance contrast and human eye’s threshold. Therefore, the higher an object’s contrast is, the better is its visibility.
For an LCD to be readable in outdoor environment with very bright ambient light, the LCD screen’s brightness needs to exceed the intensity of light that is reflected from the display surface. To be comfortably viewed by human eyes, the LCD’s brightness needs to exceed its reflected light by a factor of 2.5 at minimum. Naturally, to make an LCD sunlight readable, we can work on two areas, increasing brightness or reducing reflectance.
On a clear day in direct sunlight, the ambient brightness is about 6000 cd/m2. And a typical TFT LCD with touch screen reflects about 14% of ambient light, which is around 840 cd/m2. These days, most LCD displays use LED backlight as light source. It is not too difficult to increase an LCD’s brightness to 800 ~ 1000 Nits, to overpower the bright reflected sunlight. Thus, you have a sunlight readable TFT LCD.
However, this method requires more backlight LEDs and/or higher driving current. The drawbacks are high power consumption, more heat dissipation, increased product size and shorter LED backlight lifespan. Apparently, increasing backlight to make TFT LCD sunlight-readable is not a very good solution.
Transflective TFT LCD is a TFT LCD with both transmissive and reflective characteristics. A partially reflective mirror layer is added between LCD and backlight. This change turns part of the reflected ambient light into LCD’s light source, increasing the TFT display’s brightness. However, transflective TFT LCD is more expensive than transmissive one. At the same time, the partially reflective mirror layer will block some of the backlight, making it not ideal in indoor or low ambient light environment.
What causes light reflection? When light traveling in one transparent medium encounters a boundary with another transparent medium, a portion of the light bounces off the border. Through the simplest version of Fresnel’s equation, we can calculate the amount of reflected light.
The total reflectance on a TFT LCD with touch panel is the sum of reflected light on any interface where two materials meet. As an example, between polarizer and display glass, the difference in index of refractions for the two materials is very small, around 0.1. So the reflected light on this interface is only 0.1%. As Fresnel’s equation points out, we should focus reflection reduction on air interfaces. For air, its index of refraction is 1; for glass, it is 1.5. And that results in a reflectance of 4.5%. Therefore, the three air interfaces contribute majority of TFT LCD’s reflectance, at about 13%.
The quick and easiest thing we can do to reduce air-glass interface reflectance is to use an Anti-Reflection and Anti-Glare film or apply AR coating. An external film with AR properties not only reduces reflected light, but also brings other benefits.
For food industry application, shattered glass is a serious problem. An LCD screen with external film solves this issue nicely. As for automotive applications, in an accident, broken LCD with top AR film won’t produce sharp edge glass that could harms auto occupant. Nevertheless, a top film always reduces TFT LCD’s surface hardness. And it is susceptible to scratches. On the other hand, AR coating retains LCD’s hardness and touch performance. But it comes with a bigger price tag.
Another quick and easy way to tackle reflectance is to affix a linear polarizer on the top of TFT screen. When ambient light gets to the top polarizer, only half of the light passes through. Which results in reflection light cutting to half. This is a very low cost way to increase TFT LCD’s contrast, such that making it more sunlight readable.
Laminating a circular polarizer in TFT LCD will get rid of a lot of reflectance. That is because when ambient light passes through circular polarizer it gets circularly polarized. And when it is reflected, the polarization direction flips by 180 degrees. So when reflected light comes back to the circular polarizer, nothing goes through to viewer’s eyes.
This method is very effective for an LCD display with resistive touch panel. We know resistive touch LCD has two air gaps: air gap between two ITO layers and air gap between touch panel and LCD display. Reflectance caused by the two air gaps is very high. Applying circular polarizer blocks off most of the reflected light, and makes the LCD display sunlight readable.
The disadvantage of such solution is its cost. Since we need not only a circular polarizer, but also a retarder film on the top of LCD display, making sure light originates from within LCD is not blocked by external circular polarizer.
Add AR films on both interfaces of internal air gap. The add-ons can reduce this area’s reflection from 8.5% to 2%. And since the AR films are not outside facing, they are much cheaper than the one used outside. Keeping the air gap also retains the ease of service, in case either touch panel or LCD display needs to be repaired.
The most effective way is to eliminate air gap totally, by using optical bonding. In plain language, we fill air gap with special optical adhesive, to smooth out the area’s refraction index differences. Such that reflectance caused by internal air gap drops from 8.5% to 0.5%. Optical bonding is expensive but effective way to improve TFT LCD sunlight readability. It enhances durability and resistance to impact. Moreover, no air gap means no moisture condensation and fogging.
There are many ways to make TFT LCDsunlight readable. They all have their own pros and cons. With 20+ years" LCD design and manufacturing experience, Topway knows how to create the best sunlight readable TFT LCD for challenging environments. Leave us a message and let"s start the conversation of creating suitable sunlight readable TFT LCD for your project.
Alibaba.com offers 149 sunlight readable tft lcd screen 6 inch products. About 87% % of these are lcd modules, 8%% are lcd touch screen, and 2%% are touch screen monitors.
Products»All Products»Power & UPS»Batteries & Ultracapacitors»Standard DC-DC Power»Smart DC-DC Power»Smart Battery Chargers»Galvanically Isolated Power Supplies»24V Output Supplies»Ultracapacitor Chargers»Adjustable Output Power Supplies»Universal Chargers»Uninterruptible Power Supplies»Embedded Boards»I/O & Communication»Embedded CAN bus Modules»Embedded Ethernet Switches»Embedded Digital IO Modules»Embedded Analog IO Modules»Embedded Serial IO Modules»PCIe Mini Cards»Embedded Power Supplies»Standard Embedded Power»Smart Embedded Power»PC/104 Power Supplies»Embedded UPS Modules»Embedded Motherboards»PC/104 Motherboards»ETX Motherboards»COM Express Motherboards»EPIC Motherboards»EBX Motherboards»Mini-ITX Motherboards»Micro-ATX Motherboards»Industrial ATX Motherboards»Embedded GPS Modules»GPS Receiver Modules»Embedded GPS Antennas»CPU Boards & SBC»PC/104 SBC»EPIC SBC»ETX SBC»EBX SBC»Mini-ITX SBC»ARM CPU Modules»Micro-ATX SBC»Embedded ATX SBC»Com Express SBC»Embedded Ultracapacitor Modules»Embedded Battery Modules»Embedded Video Cards»Systems»Fanless Box PC»Wide Temperature»Industrial Automation Computers»Rugged Vehicle Computers»Railway Computers»Vehicle Tracking Systems»Industrial Rackmount Computers»Wide Temperature Systems»Digital Displays»Marine Monitors»Rugged LCD Displays»Wide Temperature LCD Displays»Waterproof LCD Panels»Advertising LCD Displays»Stretched Bar LCD»Sunlight Readable LCD Displays»Public Transportation LCD Displays»Railway LCD Displays»Outdoor LCD Displays»High Brightness LCD Displays»Extended Temperature LCD Displays»Industrial Monitors»Panel Computing»Marine Panel PC»Infotainment Panel PC»Wide Temperature Panel PC»HMI Panel PC»Modular Panel PC»Mobile Computing»Rugged Tablets»Rugged Windows Tablets»Rugged Android Tablets»Rugged PDA»Antennas»GPS Antennas»External GPS Antennas»Passive GPS Antennas»Active GPS Antennas»Marine GPS Antennas»Internal GPS Antennas»GNSS Antennas»GLONASS Antennas»Multi-Band Antennas»GPS-GLONASS Antennas»Iridium Antennas»GPS & RF Signal Distribution»GPS Amplifiers»Low Noise Amplifiers»GPS Receivers»Marine GPS Receivers»GPS Attenuators»GPS Combiners»GPS Splitters»Active GPS Splitters»Military GPS Splitters»Rackmount GPS Splitters»Passive GPS Splitters»Repeaters»GPS Repeaters»GLONASS Repeaters»GPS Filters»Enclosures & Chassis»PC/104 Chassis»Rugged Mini-ITX Cases»EPIC Enclosures»EBX Enclosures»Memory & Storage»Memory»Flash Storage»Industrial SSD»SATA Disk On Modules»Industrial Micro SD Cards»Industrial SD Cards»Industrial CompactFlash Cards»Sensors»Industrial Networking»Manufactured by Tri-M»Power & UPS»Standard Power Supplies»HE104: 60 Watt»HE104-DX: 60 Watt»HE104-75W: 75 Watt»HE104+DX: 108 Watt»HE-HP: 100 Watt»Smart Power Supplies (PowerOS)»HESC-SERD: 60 Watt»HESC104+: 108 Watt»HPS3512: 203 Watt»HPSP-XYZ: 240W Programmable»V12SC-SER[-UPS]»TPS1000: 35 Watt, 42 Watt»TPSi1075: 75 Watt, Isolated»TPSi1085: 85 Watt, Isolated»HPSC104-SER: 160 Watt»HESC104: 60 Watt»TPS1035»TPC1000»HPS3524»Smart UPS (PowerOS)»TUP1000: Ultracapacitor UPS»V5SC-SER-UPS: NiMh Battery UPS»UltraUPS»V12SC-SER[-UPS]»Ultra Capacitor Packs»TBP4xxx»Battery Backup Packs»BAT-NiMh45»BAT104-NiMh»BAT104-NiCd»BAT-SLA(25/45)»UltraUPS»Heavy Duty Transient Stopper»CPU Modules»I/O & Communication»Input / Output»IO104-60IN: PC104 I/O Board»IR104 PC/104 Relay Module»Communication»TCB1000 PC/104 Com Board»FlexCom104-GPS»Enclosures»VersaTainer: PC104 & EBX»CanTainer: PC104»FlexTainer: EPIC, MITX, EBX»GPS & Networking»GPS & Networking Boards»FlexCom104-GPS»Antennas»Mighty Mouse: Small GPS Antenna»Micro Mouse: Micro GPS Antenna»Big Brother»Re-Radiators»Super-Radiator»Xtreme-Radiator»Vehicle GPS Repeater»Complete System Solutions»HECS1000 System»UltraUPS Complete Backup Solution»Support Products & Accessories»PC104-T AC Termination Modules»Extract104»TS-I2C Temperature Sensor»DA104»VSX-2812 Video Modules»ISA104X1»Postcode104»Legacy Products»Distributed by Tri-M»Diamond Systems»Single Board Computers»Aurora PC/104 SBC»Helios PC/104 SBC»Neptune EPIC SBC»Pluto ETX SBC»Hercules III EBX SBC»IEI»IEI Mobile»MicroMax Computer Intelligence»San Jose Technology (SANAV)»GNSS Repeaters»RK-306»RK-106»Innodisk»GPS Networking»Litemax»Spanpixel»Durapixel»Navpixel»Aaeon Electronics»Systems»Fanless Embedded Computers»Entry-Level Box PC»ICOP Technology»ICOP-2811»VDX2-6554»VEX-6254»VSX-2812S»86Duino Enjoy Desktop 3D Printer»MPLSelector Guides»Power Selector Guide»Backup Power SelectorServices»Conformal Coating»HumiSeal 1B31»Laser Engraving & EtchingTri-M Rugged»PowerOS»Mining Applications»Mining Application Story»Rail & ITS Applications»Automation & Manufacturing»Mil-Aero Defence & Aerospace»Aerospace Application StorySupportAbout Us»About Us»Privacy PolicywebstoreTriple Programmable PSUQuote Request
Sun Vision Display panels are100% reflective, meaning they have no backlight whatsoever. This makes them an excellent computer monitor solution for people looking to reduce blue light exposure or other common issues reported by people withcomputer-related vision syndromes. It also makes them an incredible solution for advertising in sunny places, where it can be difficult to view other display technologies - all without racking up hefty energy costs.
This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.