lcd display screens news articles pictures videos lcd displa brands
There are plenty of new and confusing terms facing TV shoppers today, but when it comes down to the screen technology itself, there are only two: Nearly every TV sold today is either LCD or OLED.
The biggest between the two is in how they work. With OLED, each pixel provides its own illumination so there"s no separate backlight. With an LCD TV, all of the pixels are illuminated by an LED backlight. That difference leads to all kinds of picture quality effects, some of which favor LCD, but most of which benefit OLED.
LCDs are made by a number of companies across Asia. All current OLED TVs are built by LG Display, though companies like Sony and Vizio buy OLED panels from LG and then use their own electronics and aesthetic design.
So which one is better? Read on for their strengths and weaknesses. In general we"ll be comparing OLED to the best (read: most expensive) LCD has to offer, mainly because there"s no such thing as a cheap OLED TV (yet).
The better LCDs have local dimming, where parts of the screen can dim independently of others. This isn"t quite as good as per-pixel control because the black areas still aren"t absolutely black, but it"s better than nothing. The best LCDs have full-array local dimming, which provides even finer control over the contrast of what"s onscreen -- but even they can suffer from "blooming," where a bright area spoils the black of an adjacent dark area.
Here"s where it comes together. Contrast ratio is the difference between the brightest and the darkest a TV can be. OLED is the winner here because it can get extremely bright, plus it can produce absolute black with no blooming. It has the best contrast ratio of any modern display.
Contrast ratio is the most important aspect of picture quality. A high contrast-ratio display will look more realistic than one with a lower contrast ratio.
One of the main downsides of LCD TVs is a change in picture quality if you sit away from dead center (as in, off to the sides). How much this matters to you certainly depends on your seating arrangement, but also on how much you love your loved ones.
A few LCDs use in-plane switching (IPS) panels, which have better off-axis picture quality than other kinds of LCDs, but don"t look as good as other LCDs straight on (primarily due to a lower contrast ratio).
OLED doesn"t have the off-axis issue LCDs have; its image looks basically the same, even from extreme angles. So if you have a wide seating area, OLED is the better option.
Nearly all current TVs are HDR compatible, but that"s not the entire story. Just because a TV claims HDR compatibility doesn"t mean it can accurately display HDR content. All OLED TVs have the dynamic range to take advantage of HDR, but lower-priced LCDs, especially those without local-dimming backlights, do not. So if you want to see HDR content it all its dynamic, vibrant beauty, go for OLED or an LCD with local dimming.
In our tests comparing the best new OLED and LCD TVs with HDR games and movies, OLED usually looks better. Its superior contrast and lack of blooming win the day despite LCD"s brightness advantage. In other words LCD TVs can get brighter, especially in full-screen bright scenes and HDR highlights, but none of them can control that illumination as precisely as an OLED TV.
The energy consumption of LCD varies depending on the backlight setting. The lower the backlight, the lower the power consumption. A basic LED LCD with its backlight set low will draw less power than OLED.
LG has said their OLED TVs have a lifespan of 100,000 hours to half brightness, a figure that"s similar to LED LCDs. Generally speaking, all modern TVs are quite reliable.
Does that mean your new LCD or OLED will last for several decades like your parent"s last CRT (like the one pictured). Probably not, but then, why would you want it to? A 42-inch flat panel cost $14,000 in the late 90"s, and now a 65-inch TV with more than 16x the resolution and a million times better contrast ratio costs $1,400. Which is to say, by the time you"ll want/need to replace it, there will be something even better than what"s available now, for less money.
OLED TVs are available in sizes from 48 to 88 inches, but LCD TVs come in smaller and larger sizes than that -- with many more choices in between -- so LCD wins. At the high end of the size scale, however, the biggest "TVs" don"t use either technology.
If you want something even brighter, and don"t mind spending a literal fortune to get it, Samsung, Sony, and LG all sell direct-view LED displays. In most cases these are
You can get 4K resolution, 50-inch LCDs for around $400 -- or half that on sale. It"s going to be a long time before OLEDs are that price, but they have come down considerably.
LCD dominates the market because it"s cheap to manufacture and delivers good enough picture quality for just about everybody. But according to reviews at CNET and elsewhere, OLED wins for overall picture quality, largely due to the incredible contrast ratio. The price difference isn"t as severe as it used to be, and in the mid- to high-end of the market, there are lots of options.
Shopping for a new TV is like wading through a never-ending pool of tech jargon, display terminology, and head-spinning acronyms. It was one thing when 4K resolution landed in the homes of consumers, with TV brands touting the new UHD viewing spec as a major marketing grab. But over the last several years, the plot has only continued to thicken when it comes to three- and four-letter acronyms with the introduction of state-of-the-art lighting and screen technology. But between OLEDs, QLEDs, mini-LEDs, and now QD-OLEDs, there’s one battle of words that rests at the core of TV vocabulary: LED versus LCD.
Despite having a different acronym, LED TV is just a specific type of LCD TV, which uses a liquid crystal display (LCD) panel to control where light is displayed on your screen. These panels are typically composed of two sheets of polarizing material with a liquid crystal solution between them. When an electric current passes through the liquid, it causes the crystals to align, so that light can (or can’t) pass through. Think of it as a shutter, either allowing light to pass through or blocking it out.
Since both LED and LCD TVs are based around LCD technology, the question remains: what is the difference? Actually, it’s about what the difference was. Older LCD TVs used cold cathode fluorescent lamps (CCFLs) to provide lighting, whereas LED LCD TVs used an array of smaller, more efficient light-emitting diodes (LEDs) to illuminate the screen.
Since the technology is better, all LCD TVs now use LED lights and are colloquially considered LED TVs. For those interested, we’ll go deeper into backlighting below, or you can move onto the Local Dimming section.
Three basic illumination forms have been used in LCD TVs: CCFL backlighting, full-array LED backlighting, and LED edge lighting. Each of these illumination technologies is different from one another in important ways. Let’s dig into each.
CCFL backlighting is an older, now-abandoned form of display technology in which a series of cold cathode lamps sit across the inside of the TV behind the LCD. The lights illuminate the crystals fairly evenly, which means all regions of the picture will have similar brightness levels. This affects some aspects of picture quality, which we discuss in more detail below. Since CCFLs are larger than LED arrays, CCFL-based LCD TVs are thicker than LED-backlit LCD TVs.
Full-array backlighting swaps the outdated CCFLs for an array of LEDs spanning the back of the screen, comprising zones of LEDs that can be lit or dimmed in a process called local dimming. TVs using full-array LED backlighting to make up a healthy chunk of the high-end LED TV market, and with good reason — with more precise and even illumination, they can create better picture quality than CCFL LCD TVs were ever able to achieve, with better energy efficiency to boot.
Another form of LCD screen illumination is LED edge lighting. As the name implies, edge-lit TVs have LEDs along the edges of a screen. There are a few different configurations, including LEDs along just the bottom, LEDs on the top and bottom, LEDs left and right, and LEDs along all four edges. These different configurations result in picture quality differences, but the overall brightness capabilities still exceed what CCFL LCD TVs could achieve. While there are some drawbacks to edge lighting compared to full-array or direct backlight displays, the upshot is edge lighting that allows manufacturers to make thinner TVs that cost less to manufacture.
Local dimming is a feature of LED LCD TVs wherein the LED light source behind the LCD is dimmed and illuminated to match what the picture demands. LCDs can’t completely prevent light from passing through, even during dark scenes, so dimming the light source itself aids in creating deeper blacks and more impressive contrast in the picture. This is accomplished by selectively dimming the LEDs when that particular part of the picture — or region — is intended to be dark.
Local dimming helps LED/LCD TVs more closely match the quality of modern OLED displays, which feature better contrast levels by their nature — something CCFL LCD TVs couldn’t do. The quality of local dimming varies depending on which type of backlighting your LCD uses, how many individual zones of backlighting are employed, and the quality of the processing. Here’s an overview of how effective local dimming is on each type of LCD TV.
TVs with full-array backlighting have the most accurate local dimming and therefore tend to offer the best contrast. Since an array of LEDs spans the entire back of the LCD screen, regions can generally be dimmed with more finesse than on edge-lit TVs, and brightness tends to be uniform across the entire screen. Hisense’s impressive U7G TVs are great examples of relatively affordable models that use multiple-zone, full-array backlighting with local dimming.
“Direct local dimming” is essentially the same thing as full-array dimming, just with fewer LEDs spread further apart in the array. However, it’s worth noting that many manufacturers do not differentiate “direct local dimming” from full-array dimming as two separate forms of local dimming. We still feel it’s important to note the difference, as fewer, further-spaced LEDs will not have the same accuracy and consistency as full-array displays.
Because edge lighting employs LEDs positioned on the edge or edges of the screen to project light across the back of the LCD screen, as opposed to coming from directly behind it, it can result in very subtle blocks or bands of lighter pixels within or around areas that should be dark. The local dimming of edge-lit TVs can sometimes result in some murkiness in dark areas compared with full-array LED TVs. It should also be noted that not all LED edge-lit TVs offer local dimming, which is why it is not uncommon to see glowing strips of light at the edges of a TV and less brightness toward the center of the screen.
Since CCFL backlit TVs do not use LEDs, models with this lighting style do not have dimming abilities. Instead, the LCD panel of CCFL LCDs is constantly and evenly illuminated, making a noticeable difference in picture quality compared to LED LCDs. This is especially noticeable in scenes with high contrast, as the dark portions of the picture may appear too bright or washed out. When watching in a well-lit room, it’s easier to ignore or miss the difference, but in a dark room, it will be, well, glaring.
As if it wasn’t already confusing enough, once you begin exploring the world of modern display technology, new acronyms crop up. The two you’ll most commonly find are OLED and QLED.
An OLED display uses a panel of pixel-sized organic compounds that respond to electricity. Since each tiny pixel (millions of which are present in modern displays) can be turned on or off individually, OLED displays are called “emissive” displays (meaning they require no backlight). They offer incredibly deep contrast ratios and better per-pixel accuracy than any other display type on the market.
Because they don’t require a separate light source, OLED displays are also amazingly thin — often just a few millimeters. OLED panels are often found on high-end TVs in place of LED/LCD technology, but that doesn’t mean that LED/LCDs aren’t without their own premium technology.
QLED is a premium tier of LED/LCD TVs from Samsung. Unlike OLED displays, QLED is not a so-called emissive display technology (lights still illuminate QLED pixels from behind). However, QLED TVs feature an updated illumination technology over regular LED LCDs in the form of Quantum Dot material (hence the “Q” in QLED), which raises overall efficiency and brightness. This translates to better, brighter grayscale and color and enhances HDR (High Dynamic Range) abilities.
There are more even displays to become familiar with, too, including microLED and Mini-LED, which are lining up to be the latest head-to-head TV technologies. Consider checking out how the two features compare to current tech leaders in
In case you’ve been wondering if Direct View LED video wall vs LCD video wall is synonymous with ‘future vs past,’ you’ve come to the right place. The interest in video walls is only growing and we’ll be seeing more of those, especially within business environments, event solutions, and advertising industries. It all comes down to the technologies that drive both displays, so here’s some food for thought that’ll help with decision making.
Read on to learn about the difference between a Direct View LED video wall and an LCD video wall or go ahead and checkViewSonic’s LED video wall solutions now.
LED video wall vs LCD video wall comparison takeaways will be relevant for several forms of display technology and will help you make the right choice when exploring video wall options. Getting your message across to dozens if not hundreds of people daily is an important endeavor, and you want to make sure the display helps you connect with your audience, team, or community more easily.
In the past, the most common display technology for video walls was LCD, but today’s large-format all-in-oneLED displays have many advantages that have helped them become the new industry standard very quickly. In this post, we’ll discuss the differences between LED and LCD large format displays in more detail, give a general overview of each technology, and delve into the reasons why a high-quality all-in-one LED displayis invariably the best option for large-format display requirements.
Historically, LCD video wall display technology has been the most popular and it’s a good place to start with technical insights. LCD stands forliquid crystal display. Liquid crystals are sandwiched between the polarizing filters and electrodes and topped withthe display surface (something we casually refer to as a screen). The bottom part of the video wall is made of fluorescent lighting which backlights the liquid crystals. The light passes through the crystals and those – powered by varying electric current – produce the desired color.
LCD video wall displays are usually constructed by linking together four or more LCD screens. That’s because individual panels are not big enough and have size limits. The downside is, the bigger number of panels will be assembled, the heavier the display will become. That makes delivery and installation more difficult.
A major benefit of LCD displays is the sharp, crystal-clear image quality, which is especially apparent when you come up close to the display. Besides, its long-standing status as the most popular technology for video walls has helped to ensure the product’s relatively low price.
LCD technology remains a perfectly viable display option, but, aside from challenging delivery and setup, it is no longer regarded as the go-to video wall solution. Keep reading to find out more reasons.
While LCD is a multi-layered thick device, the LED is much thinner and more effective. In contrast to LCD technology, LED video walls are typically constructed from modules of light-emitting diodes (LEDs) making the whole display slimmer and with higher brightness capability (discussed later in the post). Each diode works as the actual display pixel — emitting Red, Green or Blue (RGB) values to create any desired color. Since the LEDs produce the image for the display themselves, they don’t need any backlighting or filtering which considerably reduces the number of layers.
The emergence of all-in-one LED displayshas also helped to improve the technology’s popularity. A Direct View LED display eliminates the LCD panel, resulting in a brighter picture and greater color clarity. Most importantly, it eliminates the grid issue and image uniformity when combining multiple LCDpanelstogether, so there are no lines breaking up the displayed content. This is whyDirect ViewLED technology can now create much larger video walls. The very latest all-in-onesolutions also integrate power, display,image stitching,and control systems for the ultimate user experience.
At the heart of the LED display vs LCD display comparison, it’s all about the use, impact, and price. In the sections below, let’s explore some of the various elements that make up the user’s experience and the cost-effectiveness of a video wall. That includes some of the plus points and drawbacks of these two competing technologies.
Let’s tackle the overall viewing experience. This is an area whereDirect ViewLED technology excels. Rather than serving as a backlight, the LED display adopts red, green, and blue LEDs for each pixel, and adjusts the values of each of those colors to create billions of possible colors for use on the display itself. Coloring the image directly from the light emitted from the diodes helps to provide a truer depiction of color, which can work magic in terms of heightening the audience’s sensory receptiveness.
Calibrating and synchronizing all the LCD screens require specific software that will add, both in costs and complexity, to the overall system. Each LCD panel operates, and therefore degrades, on an individual basis, which means they require calibration at different times. Panel degradation definitely adds up to the total cost of ownership.
Finally, it should be noted that added thickness of LCD displays — imagine over 110 mm — can also look cumbersome or unwieldy in an indoor space. This can detract attention away from the content being shown on the screen. By contrast, a high-end,All-in-One LED displaywill have a thickness of 25 mm – 35 mm with a 5 mm frameless edge. This is substantially less thick than LCD video walls and positively influences ideal viewing distance and immersion.
Even if LCD video walls are made of high-end screens, still their lack of brightness invariably results in poor visibility as soon as they’re viewed from a distance or under strong ambient light. This means that there are clear limitations when it comes to using an LCD video wall to display content.
Prior to the emergence of Direct View LED video walls, these limitations may have been more acceptable to the average user, but that has started to change. The high-end LED displays provide higher brightness while also making it possible to adjust brightness levels on the device itself. This often may be essential for optimizing the specific settings of the video wall (as low brightness images won’t be clear even if you can adjust the display for the strong ambient light).
Resolution-wise, most LCD displays come with 1080p but 4K UHD is available, which is the same as LED’s. However, the Direct View LED’s fine pixel pitch means that the LEDs are ultra-close to each other, so even when you’re closer to the display than usual, you’d still be able to clearly see the visuals. This can have an extra impact when showing vivid landscapes, detailed product images, design sketches or mechanical drawings in spaces of various sizes.The real-to-life color depiction is made possible thanks to the light being directly seen by human eyes without going through different materials which is the case for LCD. LED also delivers a wider color gamut, and the very best options on the market offer 120% coverage of the Rec.709 color space.
ViewSonic All-in-One LED video walls address the challenges of the past with finesse thanks to the Direct View technology and, for the most advanced models, Chip on Board (COB) packaging. For example, the multi-award-winningAll-in-One LED Displayprovides up to 4,440Hz ultra-fast refresh rates and 600-nit adjustable high brightness, offering an unparalleled viewing experience in any space.
Another important thing to remember when comparing LED display vs LCD display is the difference in shipping, installation, and all-around maintenance of a video wall. This is one of the areas where all-in-one LED video walls really outperform LCD video walls in almost every way imaginable, resulting in a far better experience for end users and greatly reducing the amount of time and effort needed to set the video wall up.
LCD large-format displays will have significantly higher shipping and installation costs. This is partly because an LCD video wall installation will require at least three people, often taking more than 4 hours. Furthermore, on top of free-standing models, LCD video walls can only be installed on a wall.
By contrast, an All-in-One LED Display can be installed in around two hours, thanks to the all-in-one modular design. Individual modules will automatically configure and calibrate to their location relative to the rest during installation.
One of the challenges associated with LCD video walls is the fact that each panel operates independently, so there is a realistic chance that one panel will wear out before the others. The core issue here is that if one panel wears out, the cost of tearing down the display to replace it and then deliver it will be high.Besides, the repair process takes around a month and during this time the LCD cannot be in use. After fixing, the display will need to be calibrated again. In the long term, this translates to high maintenance costs.
This is not true for LED video walls, thanks to the modular approach. In such cases, you would need to replace the single LED module without removing the whole screen. Besides, the LED modules can be swapped out while the display is powered on and in continuous use. This means anyone can replace a defective piece for quick and easy maintenance. The industry term for it would be “full front maintenance with no downtime”.
Each LCD display has different color and brightness, so calibration is needed upon installation. And each display will change over time (the degree of degradation of brightness and color performance also varies by each display), so users will take further time and effort to calibrate for maintenance.
LCD video walls have traditionally required an additional control box and a variety of other accessories and components to provide a smooth display and an acceptable user experience. Until relatively recently, this has also been true for LED displays and resulted in an unsatisfactory user experience, more complex maintenance, and day-to-day management. Often, a specialist technician would be needed to even get a large format display up and running.
Fortunately, the emergence ofAll-in-One Direct View LED displays has helped to change all of this. Such a comprehensive solution will combine everything the user needs in a single package. Imagine a control system, display system, and power supply that are all integrated together along with the image stitching technology. Crucially, such an approach results in a far superior and more user-friendly experience, with no need for specialist knowledge.
As the cherry on top, the all-in-one LED display can be turned on with just one click and is easy to operate with remote control. Additionally — aside from wireless content sharing — the display’s I/O port provides easy connection options.
These latest displays are compatible with AV control systems, includingCrestron, Extron, and AMX, providing excellent control and automation options without complicated setup. These devices also offer many connectivity options for maximum levels of convenience.
While LCD video walls have historically been the most popular option, improvements to LED technology and thus its greater affordability ensured a clear frontrunner of any Direct View LED wall vs LCD video wall debate. A high-quality, Direct View LED video wall will be easier to install, manage, and operate on a day-to-day basis. There are affordability benefits as well, and modern all-in-one solutions deliver excellent user-friendliness from the get-go.
A Direct View LED video wall, otherwise called LED display, will also offer a superior overall viewing experience, with improved brightness, color gamut, contrast, and all-around flexibility. Users will not need to worry about grid issues or irregular aspect ratios, and for these reasons, LED’s cutting-edge technology is widely regarded as the ultimate solution for large displays.
An LCD video wall is a large visualization surface that is built from multiple LCD displays (also known as ‘tiles’). These individual displays are designed specifically for use in these applications, and differ highly from normal television sets. The biggest differences are the bezel width, the mounting system, and the reliability. Normal television sets are designed to play a few hours per day, these specific panels are expected to play much more. Often even 24/7. And because the environments in which these video walls are deployed are sometimes critical, the uptime needs to be as high as possible.
Especially important for video walls, is a perfect calibration. This is not only restricted to a single panel. More critical, is that the color and brightness settings of the complete wall match. This means that the values of all panels need to be synchronized with the surrounding displays. If not, even the slightest deviation in color or brightness will make the wall seem out of balance.
High brightness: The light output of LCD video walls is generally quite high. Especially compared to LED-lit rear-projection cubes, LCD scores better. This allows the use in most lighting conditions - even in daylight.
Low real estate needs: Rear-projection cubes are quite deep, and (unless front access is available) need a rear maintenance area. As such, they need a lot of real estate space. LCD video walls only take the place on the wall of the panel depth and the wall mounting. This is usually less than 20 cm / 7.9”.
BoldVu® displays deliver unparalleled visual performance in outdoor environments. With luminance ratings up to 5000 nits, their high-efficiency LED backlight and obsessively engineered optical stack achieve incredibly bright imagery in the face of intense sunlight – and will do so day-in and day-out for 10 full years. So bring on the sun, BoldVu’s got it managed.
Nothing will destroy a display faster than inadequate thermal management. CoolVu® is BoldVu’s multi-patented thermal management technology that extracts and expels heat from inside the BoldVu®, without exposing display electronics to ambient air or environmental contaminants, like dust, dirt and moisture and without the use of air filters – which means typically no periodic maintenance required. With CoolVu®, BoldVu® displays can operate in environments up to 122°F (50°C) without any degradation in visual performance.
BoldVu® displays are designed to live in a world of turbulence. ToughVu® cover glass shields delicate electronic components from the effects of adverse weather and vandalism. And with its low diffuse reflection, low haze, and anisotropy and bi-refringence qualities, ToughVu® glass ensures that digital imagery shines with brilliance and delivers maximum contrast, color accuracy, color saturation, and viewing angles.
As an added layer of intelligence, BoldVu® displays are equipped with a MEMS sensor which detects and reports on shock and impact events, so in the event of attempted vandalism, you’ll be in the know.
At the heart of BoldVu® is a sophisticated logic controller that receives data from electronic components within the display and autonomously optimizes parameters affecting image quality, chassis thermals, and power draw. With built-in intelligence, BoldVu® takes care of itself so you don’t have to.
InfiniteTouch® is a next-gen PCAP touch sensor exclusively available on BoldVu® displays. Comprised of multiple layers of glass with index-matched sputter ITO conductors, containing no plastic films, InfiniteTouch® delivers high transmission, low reflection, and true tablet-like responsiveness, making it an incredible platform for delivering engaging interactive experiences.
BoldVu® is designed for integrating solar panels with configurations for reducing or eliminating reliance on grid power to drive the display. With BoldVu® Solar you can make strides toward your corporate social responsibility goals, while reducing operating costs and potentially leveraging tax incentives for your green investments.
When you place a display out in the world, you never know what to expect. BoldVu® displays self-monitor and report on over 150 operating parameters and settings to the SmartVu® Portal. Via the secure web interface you can see how displays are performing, adjust what they’re doing, and troubleshoot errant behavior, all from anywhere you can access the internet.
BoldVu® LT Semi-Outdoor displays are designed for placement in areas protected from direct sun exposure, like in shopping malls and subway stations where its 850 nit operating luminance is bright but not overbearing.
BoldVu® outdoor displays are intended for deployment in areas out in the open and exposed to the elements. With a daytime operating luminance of 3500 nits BoldVu® is an excellent fit for a wide array of outdoor venues.
BoldVu® XT displays are for outdoor venues with big skies and ultra-bright sunlight like stadiums and raceways. When the sunglasses come out, the 5000 nit daytime luminance of BoldVu® XT still shines bright.
BoldVu® is built for as many components to be field replaceable as possible so in the event of part failure or vandalism, displays can be serviced in their installed position and back online with minimal downtime.
4 Power consumption based on full luminance with a white display field, averaged over 10 years of 24/7 use. All figures subject to change without notice.
BoldVu® displays deliver unparalleled visual performance in outdoor environments. With luminance ratings up to 5000 nits, their high-efficiency LED backlight and obsessively engineered optical stack achieve incredibly bright imagery in the face of intense sunlight – and will do so day-in and day-out for 10 full years. So bring on the sun, BoldVu’s got it managed.
Nothing will destroy a display faster than inadequate thermal management. CoolVu® is BoldVu’s multi-patented thermal management technology that extracts and expels heat from inside the BoldVu, without exposing display electronics to ambient air or environmental contaminants, like dust, dirt and moisture. With CoolVu®, BoldVu® displays can operate in environments up to 122°F (55°C) without any degradation in visual performance.
BoldVu® displays are designed to live in a world of turbulence. ToughVu® cover glass shields delicate electronic components from the effects of adverse weather and vandalism. And with its low diffuse reflection, low haze, and anisotropy and bi-refringence qualities, ToughVu® glass ensures that digital imagery shines with brilliance and delivers maximum contrast, color accuracy, color saturation, and viewing angles.
As an added layer of intelligence, BoldVu® displays are equipped with a MEMS sensor which detects and reports on shock and impact events, so in the event of attempted vandalism, you’ll be in the know.
At the heart of BoldVu® is a sophisticated logic controller that receives data from electronic components within the display and autonomously optimizes parameters affecting image quality, chassis thermals, and power draw. With built-in intelligence, BoldVu® takes care of itself so you don’t have to.
InfiniteTouch® is a next-gen PCAP touch sensor exclusively available on BoldVu® displays. Comprised of multiple layers of glass with index-matched sputter ITO conductors, containing no plastic films, InfiniteTouch® delivers high transmission, low reflection, and true tablet-like responsiveness, making it an incredible platform for delivering engaging interactive experiences.
BoldVu® is designed for integrating solar panels with configurations for reducing or eliminating reliance on grid power to drive the display. With BoldVu® Solar you can make strides toward your corporate social responsibility goals, while reducing operating costs and potentially leveraging tax incentives for your green investments.
When you place a display out in the world, you never know what to expect. BoldVu® displays self-monitor and report on over 150 operating parameters and settings to the SmartVu® Portal. Via the secure web interface you can see how displays are performing, adjust what they’re doing, and troubleshoot errant behavior, all from anywhere you can access the internet.
BoldVu® LT Semi-Outdoor displays are designed for placement in areas protected from direct sun exposure, like in shopping malls and subway stations where its 850 nit operating luminance is bright but not overbearing.
BoldVu® outdoor displays are intended for deployment in areas out in the open and exposed to the elements. With a daytime operating luminance of 3500 nits BoldVu® is an excellent fit for a wide array of outdoor venues.
BoldVu® XT displays are for outdoor venues with big skies and ultra-bright sunlight like stadiums and raceways. When the sunglasses come out, the 5000 nit daytime luminance of BoldVu® XT still shines bright.
BoldVu® is built for as many components to be field replaceable as possible so in the event of part failure or vandalism, displays can be serviced in their installed position and back online with minimal downtime.
4 Power consumption based on full luminance with a white display field, averaged over 10 years of 24/7 use. All figures subject to change without notice.
Planar® CarbonLight™ VX Series is comprised of carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility, available in 1.9 and 2.6mm pixel pitch (wall) and 2.6mm (floor).
From cinema content to motion-based digital art, Planar® Luxe MicroLED Displays offer a way to enrich distinctive spaces. HDR support and superior dynamic range create vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge MicroLED technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior décor.
From cinema content to motion-based digital art, Planar® Luxe Displays offer a way to enrich distinctive spaces. These professional-grade displays provide vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior decor.
From cinema content to motion-based digital art, Planar® Luxe MicroLED Displays offer a way to enrich distinctive spaces. HDR support and superior dynamic range create vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge MicroLED technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior décor.
Planar® CarbonLight™ VX Series is comprised of carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility, available in 1.9 and 2.6mm pixel pitch (wall) and 2.6mm (floor).
Carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility for various installations including virtual production and extended reality.
a line of extreme and ultra-narrow bezel LCD displays that provides a video wall solution for demanding requirements of 24x7 mission-critical applications and high ambient light environments
Since 1983, Planar display solutions have benefitted countless organizations in every application. Planar displays are usually front and center, dutifully delivering the visual experiences and critical information customers need, with proven technology that is built to withstand the rigors of constant use.
Planar® CarbonLight™ VX Series is comprised of carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility, available in 1.9 and 2.6mm pixel pitch (wall) and 2.6mm (floor).
From cinema content to motion-based digital art, Planar® Luxe MicroLED Displays offer a way to enrich distinctive spaces. HDR support and superior dynamic range create vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge MicroLED technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior décor.
From cinema content to motion-based digital art, Planar® Luxe Displays offer a way to enrich distinctive spaces. These professional-grade displays provide vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior decor.
From cinema content to motion-based digital art, Planar® Luxe MicroLED Displays offer a way to enrich distinctive spaces. HDR support and superior dynamic range create vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge MicroLED technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior décor.
Planar® CarbonLight™ VX Series is comprised of carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility, available in 1.9 and 2.6mm pixel pitch (wall) and 2.6mm (floor).
Carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility for various installations including virtual production and extended reality.
a line of extreme and ultra-narrow bezel LCD displays that provides a video wall solution for demanding requirements of 24x7 mission-critical applications and high ambient light environments
Since 1983, Planar display solutions have benefitted countless organizations in every application. Planar displays are usually front and center, dutifully delivering the visual experiences and critical information customers need, with proven technology that is built to withstand the rigors of constant use.
Planar® CarbonLight™ VX Series is comprised of carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility, available in 1.9 and 2.6mm pixel pitch (wall) and 2.6mm (floor).
From cinema content to motion-based digital art, Planar® Luxe MicroLED Displays offer a way to enrich distinctive spaces. HDR support and superior dynamic range create vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge MicroLED technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior décor.
From cinema content to motion-based digital art, Planar® Luxe Displays offer a way to enrich distinctive spaces. These professional-grade displays provide vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior decor.
From cinema content to motion-based digital art, Planar® Luxe MicroLED Displays offer a way to enrich distinctive spaces. HDR support and superior dynamic range create vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge MicroLED technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior décor.
Planar® CarbonLight™ VX Series is comprised of carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility, available in 1.9 and 2.6mm pixel pitch (wall) and 2.6mm (floor).
Carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility for various installations including virtual production and extended reality.
a line of extreme and ultra-narrow bezel LCD displays that provides a video wall solution for demanding requirements of 24x7 mission-critical applications and high ambient light environments
Since 1983, Planar display solutions have benefitted countless organizations in every application. Planar displays are usually front and center, dutifully delivering the visual experiences and critical information customers need, with proven technology that is built to withstand the rigors of constant use.
Our new line of 10.1” TFT displays with IPS technology are now available! These 10.1” IPS displays offer three interface options to choose from including RGB, LVDS, and HDMI interface, each with two touchscreen options as capacitive or without a touchscreen.
The new line of 3.5” TFT displays with IPS technology is now available! Three touchscreen options are available: capacitive, resistive, or without a touchscreen.
Plasma screens contain tiny pockets of gas that get excited when voltage is applied to them, turning them into a state of plasma. In that state, the voltage then strikes electrons of mercury, turning them into ultraviolet (UV) light, which isn"t visible to the human eye. The UV light then passes through phosphor cells; each pixel contains red, green, and blue phosphor cells. Thanks to these phosphor cells, the TV can turn the UV light into colors that are visible on the light spectrum. Essentially, plasma TVs don"t require a light, and each pixel is self-emissive, so how one pixel displays itself is independent of the next pixel.
Since each pixel emits its own light, blacks are really deep. When the television wants to display black, it simply emits no light at all for the selected pixels. However, these aren"t perfect blacks because each pixel retains a bit of voltage, leaving a bit of light to pass through. Each pixel emits light in all directions, creating wide viewing angles, so the image remains accurate when viewing from the side.
One of the downsides of plasmas was how they suffered from occasional image retention if they displayed the same image for a long period. So if you watched the news for about an hour, with all of its static displays, then switch channels, you"d still see the outline of the static elements. Eventually, they disappeared, but it could have been particularly annoying. Also, after several years in use, plasmas suffered from permanent burn-in. This happened when the phosphor cells simply stayed stuck in one color and couldn"t display any colors. Unfortunately, there was no way to avoid eventual burn-in, and almost every plasma TV suffered from it.
OLED TVs have similar characteristics to plasmas with their infinite contrast ratio, wide viewing angles, near-instant response time, and to a lesser extent, the risk of permanent burn-in. Since 2012, they"ve replaced plasma as a competitor to LCD TVs, and to learn more about OLEDs and how they differ from LCD TVs, see here.
An LCD screen is composed of two parts: the actual liquid crystal display and a light source at the back of the screen (called backlight). A light diffuser is placed between the backlight and the LCD screen to make the source of light uniform across the screen.
The LCD panel doesn"t emit light by itself, and this is why it needs a backlight; it only acts as a filter to block the light on a per-pixel basis. The backlight is always on, and the pixels in the display rotate to allow light through, creating the colors needed for the image. If the screen wants to display black, the LCD pixels rotate to try to block the light completely. If it wants to display white, it lets all light through. Since the display is only a filter, the blacks will not be as deep as with a plasma screen because an LCD panel will always let a small portion of light through.
There are different types of LCD panels, each with its unique characteristics. Vertical Alignment (VA) panels generally have a high contrast ratio and narrow viewing angles, while In-Plane Switching (IPS) panels have a low contrast ratio with wide viewing angles. You can read about their differences here.
By using a backlight, LCD TVs use much less power than plasmas, which you can read about here. Also, LCD TVs tend to get much brighter than plasmas, making them more suitable for well-lit rooms. There are two main types of backlights used in LCD screens: CCFL and LEDs.
When someone refers to an LCD TV, they usually mean a Cold-Cathode Fluorescent Lamp (CCFL) backlit LCD screen. The first LCD TVs were lit by CCFLs, but they"re extremely rare as of the start of the 2020s. The backlight is a series of light tubes placed behind the screen. These tubes are very similar to fluorescent lamps used in buildings but smaller.
CCFL-backlit LCD TVs were eventually replaced by LED TVs because they cost less, were made thinner, and required less power. Also, LED TVs have more control over their backlight, resulting in vivid colors and better picture quality.
An LED (Light-Emitting Diode) screen is an LCD screen, but instead of having a normal CCFL backlight, it uses LEDs as the source of light behind the screen. Companies label their TVs as LED, even though they"re technically LCD; it can be confusing at times, but if you see an LED TV, you know it has an LCD panel. These TVs are more energy-efficient and a lot smaller than CCFLs, enabling a thinner television screen.
With an edge-lit LED screen, the LEDs are placed at the edges of the screen. Depending on the display, it can be all around the screen, on the left and right sides, or at the top and bottom. This allows the screen to be very thin.
However, it can cause some spots on the screen to be brighter than others, like the edges. This problem is called flashlighting or clouding. It can be seen when watching a dark scene in a dark environment. Also, edge-lit screens usually don"t result in good local dimming as they don"t have control over the dimming zones.
As TV companies attempt to improve their technology, a new type of LED backlighting has emerged: Mini LED. It uses the same traditional LED backlighting behind an LCD panel, except the LED lights are even smaller. This allows for more lights, creating a brighter image and more control over local dimming. Only a handful of Mini LED TVs were produced before 2021, but it now seems that manufacturers are starting to use the technology more often. The Samsung QN90A QLED is an example of a Mini LED TV.
Another technology, Micro LED, is only in its initial phases of development. This doesn"t even have an LCD panel as each LED pixel is self-emissive, similar to OLEDs, but without the burn-in risk. Currently, there aren"t any Micro LED TVs available at the consumer level; Samsung has produced large Micro LED TVs (over 100 inches), and they"re very expensive. However, we may begin to see Micro LED technology in the consumer TV market soon.
Plasma and LCD each present advantages and disadvantages when it comes to picture quality. Plasma TVs generally offer better contrast, wider viewing angles, and improved response times, while LCD TVs get much brighter and have better reflection handling. LCDs also cost less and can be much thinner, which are two of the main reasons why they took over the market share from plasmas in the mid-2000s. Plasma TVs are now extinct, and although OLEDs share many of the same characteristics, LED-backlight LCD TVs are now the norm, and it"s likely your next TV purchase will have an LCD panel.
For companies interested in jumping into the world of video walls, or even upgrading your existing technology, the biggest question you’ll have to deal with is whether LED or LCD is right for your video wall.
Figuring out which type of display is right for you doesn’t need to be arduous. We’ve rounded up a number of considerations to help you make the most informed decision.
Technically, LED displays are just LCD displays. Both use Liquid Crystal Display (LCD) technology and a series of lamps placed at the back of the screen to produce the images we see on our screens.
The main difference between the two technologies is that for LCD displays, the lamps at the back of the screen are fluorescent, whereas LED displays use Light Emitting Diodes.
There are two types of LED backlighting technologies; edge lighting and full array lighting. In edge lighting – as the name suggests – the LEDs are placed along the edge of the screen whereas in full-array lighting, an array of LEDs spans the back of the LED screen. In both cases, local dimming may or may not be used. The majority of LED displays are edge-lit without local dimming.
Image quality is one of the most contentious issues when it comes to the LED vs. LCD video wall debate. LED displays generally have better picture quality compared to their LCD counterparts. From black levels to contrast and even colour accuracy, LED displays usually come out on top. Among LED screens, full-array back-lit displays with local dimming provide the best picture quality. There is usually no difference in terms of viewing angle. This instead depends on the quality of glass panel used.
The question of viewing distance may crop up in LED vs. LCD discussions. In general there is not a huge distance between the two technologies. If viewers will be watching from up close the screen needs a high pixel density regardless of whether your video wall uses LED or LCD technology.
It’s generally accepted that LED displays have the lowest energy consumption levels of all displays. LCD displays commonly consume more energy than plasma and CRT displays, neither of which are in production.
In their research, CNET found that “No question, LED LCDs have the lowest energy consumption” in a comparative test between plasma, LCD and LED displays.
LED displays also win in terms of thickness, or lack thereof The reason, once again, being the advanced lighting technology. To start with, light emitting diodes are much smaller compared to the fluorescent lamps used in LCD displays.
Secondly, when the LEDs are placed at the edges as opposed to the back end of the display, the resulting screen will obviously be thinner. This explains why edge-lit LED screens are the slimmest displays available.
If your main concern is budget, then LCD is the obvious choice. As this article points out, you can usually buy a much bigger LCD display for vastly less money than an LED. LCD video walls are generally much cheaper compared to similar sized LED displays.
LCD software allows you to select the right amount of output for a video wall. You can plug a media player into a video wall processor or a daisy chain of displays. With LED displays, however, all cabinets have to plug directly from the video encoder or player. Either that or all cabinets have to be daisy chained together.
Having considered all of these factors, you should now be excellently equipped to pick a display for your video wall. Be sure to take good care of your screen for maximum longevity.
Considering a flat-panel TV? The latest LED-LCD and plasma TVs deliver outstanding picture quality, and both display technologies get a little better every year. Each type has a different set of strengths that make it more suitable for certain viewing situations.
Some people mistakenly believe that so-called "LED TVs" use a new display technology. The term is frequently used by TV manufacturers and many retailers, but LED TVs are just LCD TVs that use an LED backlight instead of a fluorescent one. LED-LCD TVs generally have better contrast and more accurate colors than fluorescent-backlit models, and the LEDs are also very energy efficient.
At this point (9/13), nearly all LCD TVs from major brands use LED backlights, except for very basic models and TVs designed for outdoor use. For more information, see our video on LCD backlighting.
If you poke around the Internet you"ll find a ton of information (and some misinformation) about today"s flat-panel TVs. The chart below provides a quick comparison of plasma and LED LCD. Display
Plasma Pros: excellent contrast and black levels; effortless motion; uniform illumination over the entire screen area, good picture depth; often priced lower than LED-LCD models with similar screen size and features
Cons: limited screen sizes: 42"-65"; some models not as bright as most LED-LCD TVs; not as energy-efficient as LED-LCDs and typically generate more heat; a plasma panel is usually a bit heavier and thicker than an LED-LCD panel
LED-LCD Pros: models with advanced local dimming backlights can have black levels rivaling plasma; LED-LCD panels are thin and lightweight — especially models with edge-lit backlights; this is the most energy-efficient display technology
There are two basic ways to increase a TV"s picture contrast: either make whites look brighter, or blacks look blacker. LED-LCD TVs are typically brighter than plasmas, while plasmas are known for producing deeper black levels. And for that reason we have tended to recommend LED-LCD TVs for use in rooms where the TV is competing with lots of other light sources in the room, like windows or lamps. Plasma"s blacker blacks can be best appreciated in a room with the lights dimmed or darkened.
The reason plasmas excel at picture contrast is that each pixel — actually each subpixel — is self-illuminated, allowing very precise, controlled lighting. On the LED-LCD side, higher-performing models use sophisticated LED backlighting that can switch clusters of LEDs on and off based on the picture content. The general name for this ability is "local dimming." Originally, local dimming only referred to expensive high-end models that used a full-array backlight — a grid of LEDs that covered the back of the screen. Only a couple LED-LCD TVs still employ that technology, and local dimming is used to describe edge-lit displays that have a less precise but still effective form of dimming.
Viewing angle limitations are more of an issue for LED-LCD TVs than for plasmas. All LCDs use a backlight, and the LCD pixels act like shutters, opening and closing to let light through or block it. This shutter effect causes increasing variations in picture brightness as viewers move further off axis.
All 1080p HDTVs have the same screen resolution — 1920 x 1080 pixels — but they don"t always deliver equal picture clarity. Most sets can display flawless still images, but moving objects on screen are more difficult to display cleanly. This can be especially apparent if you watch lots of things with fast action, like video games or sports.
For LED-LCD TVs, motion handling has been more of a challenge because of the way they create the picture. But many of today"s LCD TVs are better equipped to display fast motion without blur. If you want smoother motion with an LCD, look for a model with a 120Hz or 240Hz refresh rate. These sets include sophisticated processing that can virtually eliminate motion blur.
To watch 3D TV, you"ll need a TV with a screen capable of displaying 3D video — it can be a plasma or LED-LCD. You"ll also need compatible 3D glasses, either "active" or "passive" to match the type of 3D TV you have. For the most theater-like 3D experience, you"ll need a source of 3D video, like a 3D Blu-ray player or 3D channels from your cable or satellite TV provider. But if you don"t have a source of 3D content, you can still get a taste of 3D because nearly all current 3D TVs include built-in 2D-to-3D conversion. The feature adds a bit of 3D-like depth to regular 2D material. For more info, see our intro to 3D, watch our video about 3D TV, or check out our in-depth 3D TV FAQ.
TV makers don"t mention longevity much anymore, but the last time we checked, both plasma and LED-LCD TVs from major brands have a rated lifespan of 100,000 hours. And that doesn"t mean that if your TV reaches the 100,000-hour mark it will simply stop working. That number represents the estimated time when the TV"s display panel will produce a picture that"s only half as bright as when it was new. After the "half brightness" point the TV will still be usable, just somewhat dimmer.
But logging 100,000 hours of use takes a longtime. If you were to watch for 6 hours a day, every day, it would take over 45 years! There are other parts in a TV other than the illumination component that could fail over time, but over the years the TV manufacturing process has grown more precise and consistent. The bottom line is that a new LCD or plasma TV should last at least as long as a typical tube TV.
You do a lot of daytime viewing in a room with windows lacking blinds, curtains or drapes. An LED-LCD"s bright picture will still look crisp and colorful in bright light; some LCD screens also resist glare.
An LCD TV is sometimes referred to as a "transmissive" display. Light isn"t created by the liquid crystals themselves; instead, a light source behind the LCD panel shines through the display. A diffusion panel behind the LCD redirects and scatters the light evenly to ensure a uniform image.
The display consists of two polarizing transparent panels and a liquid crystal solution sandwiched in between. The screen"s front layer of glass is etched on the inside surface in a grid pattern to form a template for the layer of liquid crystals. Liquid crystals are rod-shaped molecules that twist when an electric current is applied to them. Each crystal acts like a shutter, either allowing light to pass through or blocking the light. The pattern of transparent and dark crystals forms the image.
The multi-layered structure of a typical LCD panel. Because they use red, green and blue color filters in place of phosphor dots, LCD TVs are completely immune to screen burn-in.
LCD TVs use the most advanced type of LCD, known as an "active-matrix" LCD. This design is based on thin film transistors (TFT) — basically, tiny switching transistors and capacitors that are arranged in a matrix on a glass substrate. Their job is to rapidly switch the LCD"s pixels on and off. In an HDTV"s LCD, each color pixel is created by three sub-pixels with red, green and blue color filters.
An important difference between plasma and LCD technology is that an LCD screen doesn"t have a coating of phosphor dots (colors are created through the use of filters). That means you"ll never have to worry about screen burn-in, which is great news, especially for anyone planning to connect a PC or video game system.
A plasma TV is sometimes called an "emissive" display — the panel is actually self-lighting. The display consists of two transparent glass panels with a thin layer of pixels sandwiched in between. Each pixel is composed of three gas-filled cells or sub-pixels (one each for red, green and blue). A grid of tiny electrodes applies an electric current to the individual cells, causing the gas (a mix of neon and xenon) in the cells to ionize. This ionized gas (plasma) emits high-frequency UV rays, which stimulate the cells" phosphors, causing them to glow the desired color.
Because a plasma panel is illuminated at the sub-pixel level, light output is very consistent across the entire screen area. Plasmas produce the widest horizontal and vertical viewing angles available — pictures look crisp and bright from virtually anywhere in the room.
Because plasma TV screens use a phosphor coating like CRT-based TVs, the possibility of screen burn-in exists, though it"s unlikely to happen with current models. To reduce the chance of burn-in, be sure to follow the manufacturer"s recommendations on setup and use.