7 lcd touch screen display manufacturer

The USB Type-C Display offers a new generation of convenience, with just a single USB Type-C cable connected to your device, video input, power and touch input all happen at the same time.

VMD 1001 is a 7-inch TFT LCD monitor with 4 wire resistant touch screen sensor. With the high brightness display and automatically brightness control, it is designed for in-vehicle application. ...

... screen. End-cap shelf displays in retail settings or as personal gaming screens as part of a larger interactive gaming table benefit from the features and design of the 0700L. The 7" display utilizes ...

... mount monitor with a 7 inch 800 x 480 1000 nits high brightness industrial LED LCD with IP65 rated rugged metal front bezel, -20°C to 60°C wide working temperature, VGA + DVI, and 12VDC power input.

... LCD monitor with a 7-inch display monitor designed for military display application, aluminum enclosure with anti-corrosion chromate coating, D38999 connector and ANti-EMI AR glass to ...

... . This compact display is less than 8” wide and weighs only 1 kg, and the same model is available in screen sizes up to 21.5". This touchscreen monitor can be connected to any computer including a rugged ...

STONKAM® 7 inch HD Digital Wireless Monitor is easy to install. It supports quad view and auto pairing; good for truck, trailer, RV, etc. It can work with HD wireless cameras to form excellent Wireless ...

... ® Waterproof 7 inch HD Digital Wireless Vehicle Quad-view Monitor is easy to install. It supports quad view and auto pairing; good for truck, trailer, RV, etc. It can work with HD wireless cameras to ...

STONKAM 7 inch HD vehicle monitor supports 4CH HD cameras input which allows the driver to see directly the environment around the vehicle while driving. This can reduce the possibilities of scratch and ...

... made of glass, with excellent touch sensitive. LCD7 with 7" TFT(1024 x 600, max support resolution 1920 x1080), furthermore support headphone Drives, 46mW.

M-series industrial true flat touch monitors have two segments: small size from 7”, 8”, 10.1”, to 10.4”, and large size define from 15”, 17”, to 18.5”. All of M-series industrial monitors ...

The robust & digital monitor of the ArkVisionUnit family is in the screen diagonal of 7" our entry model into the digital display world. It is perfectly matched to our cameras of the ...

The 7” MD3071A is the premium monitor in Motec’s product line and can be used in all industry sectors. Developed and manufactured in Germany, it provides an extensive amount of intelligent functions for ...

7 lcd touch screen display manufacturer

Remanufacturer and distributor of liquid crystal, panel and touch screen displays. Available with 100 VAC to 240 VAC power supply. Features include front bezels, USB support, windows, auto-adjust buttons, built-in power supply and USB cable brackets. AutoCAD files accepted. Most items available in stock. 24/7 services provided. RoHS compliant. UL and cUL listed. CE certified. Two year warranty.

Manufacturer of custom rugged displays for military, marine, industrial, avionic, medical, transportation, commercial and other applications. Diverse engineering team able to design to fit any enclousure. Many types of touch screen technologies available, including surface capacitive, projected capacitive, resistive, SAW, infrared, optical, DST. Other features include sunlight readable, NVIS, waterproof, flip-up, flip-down, rack mount drawer, panel or rack mount, and much more. All sizes are available, from small to large. Suitable for workstations, cockpits, medical devices and other safety- or mission-critical applications. Manufactured, serviced, and supported in the USA.

Manufacturer of standard and custom liquid crystal display (LCD) displays. Thin film transistor (TFT) and graphical displays are available. Offered with LED backlight and integrated capacitive or resistive touchscreen. Suitable for medical devices, embedded systems, airplanes, amusement parks, golf carts and vehicles. Serves automotive, automation, gaming, security and OEM industries.

Distributor of touch screen panel liquid crystal displays (LCDs). Available in 10.1 in. sizes. Inventory management services are also offered. Serves the electronics, computer, telecommunications, aerospace, aviation, medical, automotive and transportation industries. ITAR registered. Stock items available.

Manufacturer of optically bonded, non-touch and touchscreen displays. Features vary depending upon model, including vision 2 display controllers with quad-core multimedia processors, liquid crystal displays, auto-dimmable display backlights, housings with powder-coated die-cast front, horizontal and vertical viewing angles, membrane keyboards, internal temperature sensors, programmable software and resistive touch screens. Meets ASME and OHSAS 18001 standards. CSA and NFPA approved. API registered. CE certified.

Manufacturer of flat-panel industrial monitors and displays rated for Division 1 and Division 2 environments. Custom engineered, designed, and manufactured to handle the dust, dirt, debris and chemical exposure common to rugged and hazardous applications in the oil and gas, pharmaceutical and food processing, manufacturing and chemical industries. Types of monitors include military grade, LCD, rugged, washdown, high definition, wide screen, panel mount, rack mount, flush mount, gas purged, and more.

Manufacturer of resistive touchscreen HMI displays with anodized aluminum housings, USB and Ethernet. Available in four screen sizes, 6.102 to 11.535 in. width, 2.283 in. depth and 5.315 to 8.78 in. height. Surrounding air operating temperature ranges up to +55 degrees C. Serves the automotive, railway system, power engineering, building, lighting, marine, offshore and process industries. Most items available in stock. RoHS compliant. UL listed. CE certified. JIT delivery.

Distributor of integrated touch screen displays. LCD, sunlight readable TFT, monochrome, chip on glass, TFT LCD, LED, automotive rear seat and OLED displays are also available. Vendor managed inventory (VMI) programs and stock items available. Meets AS9100 Rev C standards. Kanban and JIT delivery.

Manufacturer of Industrial touchscreen displays suitable for railway sign, airport control tower, digital signage, agriculture, factory automation, kiosk and retail applications. Available in 10.4 to 21.5 in. display size, -10 to 60 degrees C operating temperature and 9 to 50 volts DC voltage. Some monitors are offered with fanless and rugged design, LCD display, front panel IP65 waterproof, dual speakers, resistive and capacitive (PCAP) touch options available. EPA registered.

Manufacturer of standard and custom thin film transistor liquid crystal displays (LCD) including human machine interface diagonal touchscreens. Available in 5 VDC power at 200 mA current, 4.3 in. screen sizes, 0.92 in. depth, 4.75 in. width and 3.70 in. height. Features include programmable, graphical operating systems, front panel mountable enclosures, protective overlays, built-in copy protection options and power management controllers. Serves the pharmaceutical packaging identification, instrumentation, emergency response service, recording and bioprocessing industries. Made in the USA.

Manufacturer of touchscreen panel displays for medical and industrial applications. Available in 10.1 to 27 in. display sizes. Features vary depending upon model, including LED backlights, plastic design, USB, flat, power connectors, optional side brackets, input video signal interfaces and terminals. Accessories such as power adaptors, cords, cables and stands offered. Meets EN 60601-1-2 standards. Custom options depending upon applications are also provided.

Manufacturer and distributor of touchscreen, sound, video and theatrical displays. Types include counter top, back-up, extension, dual USB charger, heads up and four sided color changing displays. Available in a variety of configurations. Features vary depending upon model and include LED light strips, wireless remote control, LCD widescreen rear view mirrors and license plate cameras.

ISO 9001 certified worldwide manufacturer of touchscreen terminals, monitors & displays. Graphics touchscreen terminals enable operating, monitoring & control of large scale projects with different PLC"s simultaneously. Features include plain text messages & graphical overview screens for user-friendly diagnostics. Touchscreen terminals are available in sizes of 5.7 in., 6.5 in., 10.4 in. 12.1 in. & 15 in. Terminal features also include Microsoft Windows ® CE.net operating system, USB interfaces, serial interfaces, Ethernet interface, IP65 front, IP20 back & PCMCIA slots.

Manufacturer of touchscreen displays for home automation, video intercom and door entry system. Features include up to 16 control functions, intuitive operation and capacitive touch display. Lifecycle management, engineering, consulting, installation, maintenance, replacement and training services are provided. Serves the automotive, chemical, marine, metal, food, beverage, mining, power generation or distribution, solar power, printing, aluminum, cement, automation, water, wind power, pulp and paper industries.

Manufacturer of alphanumeric, touchscreen and LCD displays. Features vary depending upon model, including built-in Ethernet ports, hand-held versions, single port multi access (SPMA), integrated simulation functions, analog resistive touch, multiple communications, compact flash memory cards and FTP web interfaces. Serves the automotive, food/packaging, electronics, life sciences, material handling, machine tool, oil and gas, water, wastewater, security, detection, entertainment and other industries. 24/7 predictive maintenance services also provided.

Six Sigma capable, ISO 9001:2008 & ISO 14000 certified manufacturer of touchscreen displays including flat panel monitors. Types of flat panel monitors include DVI/RGB and hazardous location compatible. Flat panel monitors feature front USB interface, 256K or 16 million color display, analog resistive touch panel, serial/USB touch interfaces, on-screen-display menu for brightness & contrast control, & VESA standard wall mounts. Available with a 2-year warranty. Markets served include industrial, automotive, oil & gas, water/wastewater, semiconductors & agriculture. Modbus-IDA, OMAC & ODVA affiliated. Products are UL® listed, CSA® approved, and ATEX & CE certified. Products are RoHS compliant.

Custom manufacturer of touchscreen displays for stationary storage, equipment, electric and hybrid vehicles. Battery management systems and vehicle control systems are offered. Fleet management software is also provided. Consulting is available as value added service. Serves the e-mobility, automotive and mobile robotics industries.

Precision CNC machining, sheet metal fabrication and assembly services. Repair services are also provided. Fiber optic junction boxes, converters, latches and switches are offered. Uninterruptible power supplies (UPS), liquid crystal displays (LCD), racks, consoles, multiplexers, control panels and quad-core processors and servers are also available. Serves aerospace and defense industries.

Manufacturer of LED/LCD displays for rugged, outdoor, touch embedded and industrial applications. Features vary depending upon model, including standard integrated frames, panel mount, USB interfaces, tempered smudge resistant protected glasses, backlights and LCD panels. Two year warranty.

Design, fabrication and installation of digital signage made from aluminum. Custom paint or graphic options available. Engineering, powder coating, silk screening, final assembly, testing and logistics services also available. Prototype to large volume production runs. Serves the retail, foodservice, aerospace, medical, telecommunication, automotive, electronics and other industries. Lean manufacturing capable. SBA HUBZone certified. Made in the USA.

Custom manufacturer of touchscreen LCD displays. Various capabilities include design, testing, engineering, cutting, plating and potting. Electronics, medical, telecommunications, gaming and other industries served. Meets IPC standards. JIT delivery.

Manufacturer of standard & custom LCD touch screen displays for industrial, medical & surgical applications. 5-wire resistive touch, capacitive, SAW & IR touch screen technologies. Sizes include 4.3 in. to 42 in. LCD panels, 4:3 & 16:9 aspect ratio, 12 vdc, 24 vdc, and 90-240 vac. Touchscreen displays are available with various video inputs including VGA, BNC, S-Video, component, composite, HDMI, DVI, & DisplayPort. Available in standard, rack mount, panel mount, sunlight readable, optically bonded & waterproof enclosures. UL, cUL, FCC, CE & RoHS approved. Three year warranty.

ISO 9001:2008 certified distributor of industrial automation and motion control products including touchscreen displays. Touch screens feature built-in Ethernet communications and live video input capabilities. Message displays feature password-protected screens and programmable function keys. Also available touch screens with integrated PLCs and built-in operating panels into a single compact device.

7 lcd touch screen display manufacturer

Asia has long dominated the display module TFT LCD manufacturers’ scene. After all, most major display module manufacturers can be found in countries like China, South Korea, Japan, and India.

However, the United States doesn’t fall short of its display module manufacturers. Most American module companies may not be as well-known as their Asian counterparts, but they still produce high-quality display products for both consumers and industrial clients.

In this post, we’ll list down 7 best display module TFT LCD manufacturers in the USA. We’ll see why these companies deserve recognition as top players in the American display module industry.

STONE Technologies is a leading display module TFT LCD manufacturer in the world. The company is based in Beijing, China, and has been in operations since 2010. STONE quickly grew to become one of the most trusted display module manufacturers in 14 years.

Now, let’s move on to the list of the best display module manufacturers in the USA. These companies are your best picks if you need to find a display module TFT LCD manufacturer based in the United States:

Planar Systems is a digital display company headquartered in Hillsboro, Oregon. It specializes in providing digital display solutions such as LCD video walls and large format LCD displays.

Planar’s manufacturing facilities are located in Finland, France, and North America. Specifically, large-format displays are manufactured and assembled in Albi, France.

Another thing that makes Planar successful is its relentless focus on its customers. The company listens to what each customer requires so that they can come up with effective display solutions to address these needs.

Microtips Technology is a global electronics manufacturer based in Orlando, Florida. The company was established in 1990 and has grown into a strong fixture in the LCD industry.

What makes Microtips a great display module TFT LCD manufacturer in the USA lies in its close ties with all its customers. It does so by establishing a good rapport with its clients starting from the initial product discussions. Microtips manages to keep this exceptional rapport throughout the entire client relationship by:

Displaytech is an American display module TFT LCD manufacturer headquartered in Carlsbad, California. It was founded in 1989 and is part of several companies under the Seacomp group. The company specializes in manufacturing small to medium-sized LCD modules for various devices across all possible industries.

The company also manufactures embedded TFT devices, interface boards, and LCD development boards. Also, Displaytech offers design services for embedded products, display-based PCB assemblies, and turnkey products.

Displaytech makes it easy for clients to create their own customized LCD modules. There is a feature called Design Your Custom LCD Panel found on their site. Clients simply need to input their specifications such as their desired dimensions, LCD configuration, attributes, connector type, operating and storage temperature, and other pertinent information. Clients can then submit this form to Displaytech to get feedback, suggestions, and quotes.

Clients are assured of high-quality products from Displaytech. This is because of the numerous ISO certifications that the company holds for medical devices, automotive, and quality management. Displaytech also holds RoHS and REACH certifications.

A vast product range, good customization options, and responsive customer service – all these factors make Displaytech among the leading LCD manufacturers in the USA.

Products that Phoenix Display offers include standard, semi-custom, and fully-customized LCD modules. Specifically, these products comprise Phoenix Display’s offerings:

Phoenix Display also integrates the display design to all existing peripheral components, thereby lowering manufacturing costs, improving overall system reliability, and removes unnecessary interconnects.

Clients flock to Phoenix Display because of their decades-long experience in the display manufacturing field. The company also combines its technical expertise with its competitive manufacturing capabilities to produce the best possible LCD products for its clients.

True Vision Displays is an American display module TFT LCD manufacturing company located at Cerritos, California. It specializes in LCD display solutions for special applications in modern industries. Most of their clients come from highly-demanding fields such as aerospace, defense, medical, and financial industries.

The company produces several types of TFT LCD products. Most of them are industrial-grade and comes in various resolution types such as VGA, QVGA, XGA, and SXGA. Clients may also select product enclosures for these modules.

All products feature high-bright LCD systems that come from the company’s proprietary low-power LED backlight technology. The modules and screens also come in ruggedized forms perfect for highly-demanding outdoor industrial use.

Slow but steady growth has always been True Vision Display’s business strategy. And the company continues to be known globally through its excellent quality display products, robust research and development team, top-of-the-line manufacturing facilities, and straightforward client communication.

LXD Incorporated is among the earliest LCD manufacturers in the world. The company was founded in 1968 by James Fergason under the name International Liquid Xtal Company (ILIXCO). Its first headquarters was in Kent, Ohio. At present, LXD is based in Raleigh, North Carolina.

All of their display modules can be customized to fit any kind of specifications their clients may require. Display modules also pass through a series of reliability tests before leaving the manufacturing line. As such, LXD’s products can withstand extreme outdoor environments and operates on a wide range of temperature conditions.

Cystalfontz America is a leading supplier and manufacturer of HMI display solutions. The company is located in Spokane Valley, Washington. It has been in the display solutions business since 1998.

Crystalfontz takes pride in its ISO 9001 certification, meaning the company has effective quality control measures in place for all of its products. After all, providing high-quality products to all customers remains the company’s topmost priority. Hence, many clients from small hobbyists to large top-tier American companies partner with Crystalfontz for their display solution needs.

We’ve listed the top 7 display module TFT LCD manufacturers in the USA. All these companies may not be as well-known as other Asian manufacturers are, but they are equally competent and can deliver high-quality display products according to the client’s specifications. Contact any of them if you need a US-based manufacturer to service your display solutions needs.

We also briefly touched on STONE Technologies, another excellent LCD module manufacturer based in China. Consider partnering with STONE if you want top-of-the-line smart LCD products and you’re not necessarily looking for a US-based manufacturer. STONE will surely provide the right display solution for your needs anywhere you are on the globe.

7 lcd touch screen display manufacturer

Elo"s Touchscreen Display Modules combine industry-leading touch screens with liquid crystal displays (LCDs) - all in one embedded solution to help streamline your supply chain and simplify assembly.

The robust chemically strengthened cover glass with anti-glare treatment makes them well suited for deployment in a wide variety of commercial and industrial environments - from factory automation and medical displays to commercial kitchen equipment.

Available in standard sizes ranging from 7 to 15.6-inches and custom options up to 32-inches, Elo’s touchscreen display modules offer superior touch performance in harsh environments, excellent optical clarity, and robust EMI performance.

7 lcd touch screen display manufacturer

They are smaller versions of 7-inch touchscreen and in the form of large tactile elements in film, while they are designed to display large tactile elements in the film of a choice. Small 7-inch touch screens are also used to display complex information and as large tactile elements in film, where they are used to display information aide from the screen. Large tactile elements in television games are becoming popular and because of the large tactile elements of the film they display.

You can find Pandora"s touch screen, which is the most popular 7-inch touchscreen type is the Pandora"s touchscreen. It allows the user to display a variety of products and services in a while, and others are both popular 7-inch touch screens and 7-inch touch screen displays.

Newer versions of 7-inch touchscreen displays use the torsile printing to display large-torsile printing, such as dye-sublimation printing, DTG, and heat transfer printing. For the largegested projector screen, the screen can be used to only color light as the image is printed onto the screen.

7 lcd touch screen display manufacturer

KWH070KQ38-F04 V.2 is 7 inch LCD Display With Resistive Touch Screen with 800x480 resolution.It can be used for embedded systems, automation, GPS, medical equipment, industrial device and security equipment, etc.It is equipmed with RGB data signal interface. You also can use it with HDMI LCD Controller Board.

7 lcd touch screen display manufacturer

Apex Material Technology Corporation (AMT), Taiwan, since 1998, is a manufacturer of Touch Screen Display Solution. Main products, including open frame touch screen monitor, optical bonding service, solutions for touch screen display, projected capacitive touch screen and resistive touch screen. Touch screen products and solutions particularly for industrial, medical, outdoor, public commercial and transportation applications.

Certified (ISO, UL, REACH, and RoHS) resistive, projected capacitive (PCAP) touch screens and PenMount touch screen controllers meeting international standards. All touch screen products are supplied with flexible production quantity and long term support.

AMT has been offering customers high-quality resistive and projected capacitive (PCAP) touch screens, and PenMount touch screen controllers, both with advanced technology and 20 years of experience, AMT ensures each customer"s demands are met.

7 lcd touch screen display manufacturer

A touchscreen or touch screen is the assembly of both an input ("touch panel") and output ("display") device. The touch panel is normally layered on the top of an electronic visual display of an information processing system. The display is often an LCD, AMOLED or OLED display while the system is usually used in a laptop, tablet, or smartphone. A user can give input or control the information processing system through simple or multi-touch gestures by touching the screen with a special stylus or one or more fingers.zooming to increase the text size.

The touchscreen enables the user to interact directly with what is displayed, rather than using a mouse, touchpad, or other such devices (other than a stylus, which is optional for most modern touchscreens).

Touchscreens are common in devices such as game consoles, personal computers, electronic voting machines, and point-of-sale (POS) systems. They can also be attached to computers or, as terminals, to networks. They play a prominent role in the design of digital appliances such as personal digital assistants (PDAs) and some e-readers. Touchscreens are also important in educational settings such as classrooms or on college campuses.

The popularity of smartphones, tablets, and many types of information appliances is driving the demand and acceptance of common touchscreens for portable and functional electronics. Touchscreens are found in the medical field, heavy industry, automated teller machines (ATMs), and kiosks such as museum displays or room automation, where keyboard and mouse systems do not allow a suitably intuitive, rapid, or accurate interaction by the user with the display"s content.

Historically, the touchscreen sensor and its accompanying controller-based firmware have been made available by a wide array of after-market system integrators, and not by display, chip, or motherboard manufacturers. Display manufacturers and chip manufacturers have acknowledged the trend toward acceptance of touchscreens as a user interface component and have begun to integrate touchscreens into the fundamental design of their products.

The prototypeCERNFrank Beck, a British electronics engineer, for the control room of CERN"s accelerator SPS (Super Proton Synchrotron). This was a further development of the self-capacitance screen (right), also developed by Stumpe at CERN

One predecessor of the modern touch screen includes stylus based systems. In 1946, a patent was filed by Philco Company for a stylus designed for sports telecasting which, when placed against an intermediate cathode ray tube display (CRT) would amplify and add to the original signal. Effectively, this was used for temporarily drawing arrows or circles onto a live television broadcast, as described in US 2487641A, Denk, William E, "Electronic pointer for television images", issued 1949-11-08. Later inventions built upon this system to free telewriting styli from their mechanical bindings. By transcribing what a user draws onto a computer, it could be saved for future use. See US 3089918A, Graham, Robert E, "Telewriting apparatus", issued 1963-05-14.

The first version of a touchscreen which operated independently of the light produced from the screen was patented by AT&T Corporation US 3016421A, Harmon, Leon D, "Electrographic transmitter", issued 1962-01-09. This touchscreen utilized a matrix of collimated lights shining orthogonally across the touch surface. When a beam is interrupted by a stylus, the photodetectors which no longer are receiving a signal can be used to determine where the interruption is. Later iterations of matrix based touchscreens built upon this by adding more emitters and detectors to improve resolution, pulsing emitters to improve optical signal to noise ratio, and a nonorthogonal matrix to remove shadow readings when using multi-touch.

The first finger driven touch screen was developed by Eric Johnson, of the Royal Radar Establishment located in Malvern, England, who described his work on capacitive touchscreens in a short article published in 1965Frank Beck and Bent Stumpe, engineers from CERN (European Organization for Nuclear Research), developed a transparent touchscreen in the early 1970s,In the mid-1960s, another precursor of touchscreens, an ultrasonic-curtain-based pointing device in front of a terminal display, had been developed by a team around Rainer Mallebrein[de] at Telefunken Konstanz for an air traffic control system.Einrichtung" ("touch input facility") for the SIG 50 terminal utilizing a conductively coated glass screen in front of the display.

In 1972, a group at the University of Illinois filed for a patent on an optical touchscreenMagnavox Plato IV Student Terminal and thousands were built for this purpose. These touchscreens had a crossed array of 16×16 infrared position sensors, each composed of an LED on one edge of the screen and a matched phototransistor on the other edge, all mounted in front of a monochrome plasma display panel. This arrangement could sense any fingertip-sized opaque object in close proximity to the screen. A similar touchscreen was used on the HP-150 starting in 1983. The HP 150 was one of the world"s earliest commercial touchscreen computers.infrared transmitters and receivers around the bezel of a 9-inch Sony cathode ray tube (CRT).

In 1977, an American company, Elographics – in partnership with Siemens – began work on developing a transparent implementation of an existing opaque touchpad technology, U.S. patent No. 3,911,215, October 7, 1975, which had been developed by Elographics" founder George Samuel Hurst.World"s Fair at Knoxville in 1982.

In 1984, Fujitsu released a touch pad for the Micro 16 to accommodate the complexity of kanji characters, which were stored as tiled graphics.Sega released the Terebi Oekaki, also known as the Sega Graphic Board, for the SG-1000 video game console and SC-3000 home computer. It consisted of a plastic pen and a plastic board with a transparent window where pen presses are detected. It was used primarily with a drawing software application.

Touch-sensitive control-display units (CDUs) were evaluated for commercial aircraft flight decks in the early 1980s. Initial research showed that a touch interface would reduce pilot workload as the crew could then select waypoints, functions and actions, rather than be "head down" typing latitudes, longitudes, and waypoint codes on a keyboard. An effective integration of this technology was aimed at helping flight crews maintain a high level of situational awareness of all major aspects of the vehicle operations including the flight path, the functioning of various aircraft systems, and moment-to-moment human interactions.

In the early 1980s, General Motors tasked its Delco Electronics division with a project aimed at replacing an automobile"s non-essential functions (i.e. other than throttle, transmission, braking, and steering) from mechanical or electro-mechanical systems with solid state alternatives wherever possible. The finished device was dubbed the ECC for "Electronic Control Center", a digital computer and software control system hardwired to various peripheral sensors, servos, solenoids, antenna and a monochrome CRT touchscreen that functioned both as display and sole method of input.stereo, fan, heater and air conditioner controls and displays, and was capable of providing very detailed and specific information about the vehicle"s cumulative and current operating status in real time. The ECC was standard equipment on the 1985–1989 Buick Riviera and later the 1988–1989 Buick Reatta, but was unpopular with consumers—partly due to the technophobia of some traditional Buick customers, but mostly because of costly technical problems suffered by the ECC"s touchscreen which would render climate control or stereo operation impossible.

Multi-touch technology began in 1982, when the University of Toronto"s Input Research Group developed the first human-input multi-touch system, using a frosted-glass panel with a camera placed behind the glass. In 1985, the University of Toronto group, including Bill Buxton, developed a multi-touch tablet that used capacitance rather than bulky camera-based optical sensing systems (see History of multi-touch).

The first commercially available graphical point-of-sale (POS) software was demonstrated on the 16-bit Atari 520ST color computer. It featured a color touchscreen widget-driven interface.COMDEX expo in 1986.

In 1987, Casio launched the Casio PB-1000 pocket computer with a touchscreen consisting of a 4×4 matrix, resulting in 16 touch areas in its small LCD graphic screen.

Touchscreens had a bad reputation of being imprecise until 1988. Most user-interface books would state that touchscreen selections were limited to targets larger than the average finger. At the time, selections were done in such a way that a target was selected as soon as the finger came over it, and the corresponding action was performed immediately. Errors were common, due to parallax or calibration problems, leading to user frustration. "Lift-off strategy"University of Maryland Human–Computer Interaction Lab (HCIL). As users touch the screen, feedback is provided as to what will be selected: users can adjust the position of the finger, and the action takes place only when the finger is lifted off the screen. This allowed the selection of small targets, down to a single pixel on a 640×480 Video Graphics Array (VGA) screen (a standard of that time).

Sears et al. (1990)human–computer interaction of the time, describing gestures such as rotating knobs, adjusting sliders, and swiping the screen to activate a switch (or a U-shaped gesture for a toggle switch). The HCIL team developed and studied small touchscreen keyboards (including a study that showed users could type at 25 wpm on a touchscreen keyboard), aiding their introduction on mobile devices. They also designed and implemented multi-touch gestures such as selecting a range of a line, connecting objects, and a "tap-click" gesture to select while maintaining location with another finger.

In 1990, HCIL demonstrated a touchscreen slider,lock screen patent litigation between Apple and other touchscreen mobile phone vendors (in relation to

An early attempt at a handheld game console with touchscreen controls was Sega"s intended successor to the Game Gear, though the device was ultimately shelved and never released due to the expensive cost of touchscreen technology in the early 1990s.

Touchscreens would not be popularly used for video games until the release of the Nintendo DS in 2004.Apple Watch being released with a force-sensitive display in April 2015.

In 2007, 93% of touchscreens shipped were resistive and only 4% were projected capacitance. In 2013, 3% of touchscreens shipped were resistive and 90% were projected capacitance.

A resistive touchscreen panel comprises several thin layers, the most important of which are two transparent electrically resistive layers facing each other with a thin gap between. The top layer (that which is touched) has a coating on the underside surface; just beneath it is a similar resistive layer on top of its substrate. One layer has conductive connections along its sides, the other along top and bottom. A voltage is applied to one layer and sensed by the other. When an object, such as a fingertip or stylus tip, presses down onto the outer surface, the two layers touch to become connected at that point.voltage dividers, one axis at a time. By rapidly switching between each layer, the position of pressure on the screen can be detected.

Resistive touch is used in restaurants, factories and hospitals due to its high tolerance for liquids and contaminants. A major benefit of resistive-touch technology is its low cost. Additionally, as only sufficient pressure is necessary for the touch to be sensed, they may be used with gloves on, or by using anything rigid as a finger substitute. Disadvantages include the need to press down, and a risk of damage by sharp objects. Resistive touchscreens also suffer from poorer contrast, due to having additional reflections (i.e. glare) from the layers of material placed over the screen.3DS family, and the Wii U GamePad.

Surface acoustic wave (SAW) technology uses ultrasonic waves that pass over the touchscreen panel. When the panel is touched, a portion of the wave is absorbed. The change in ultrasonic waves is processed by the controller to determine the position of the touch event. Surface acoustic wave touchscreen panels can be damaged by outside elements. Contaminants on the surface can also interfere with the functionality of the touchscreen.

The Casio TC500 Capacitive touch sensor watch from 1983, with angled light exposing the touch sensor pads and traces etched onto the top watch glass surface.

A capacitive touchscreen panel consists of an insulator, such as glass, coated with a transparent conductor, such as indium tin oxide (ITO).electrostatic field, measurable as a change in capacitance. Different technologies may be used to determine the location of the touch. The location is then sent to the controller for processing. Touchscreens that use silver instead of ITO exist, as ITO causes several environmental problems due to the use of indium.complementary metal-oxide-semiconductor (CMOS) application-specific integrated circuit (ASIC) chip, which in turn usually sends the signals to a CMOS digital signal processor (DSP) for processing.

Unlike a resistive touchscreen, some capacitive touchscreens cannot be used to detect a finger through electrically insulating material, such as gloves. This disadvantage especially affects usability in consumer electronics, such as touch tablet PCs and capacitive smartphones in cold weather when people may be wearing gloves. It can be overcome with a special capacitive stylus, or a special-application glove with an embroidered patch of conductive thread allowing electrical contact with the user"s fingertip.

A low-quality switching-mode power supply unit with an accordingly unstable, noisy voltage may temporarily interfere with the precision, accuracy and sensitivity of capacitive touch screens.

Some capacitive display manufacturers continue to develop thinner and more accurate touchscreens. Those for mobile devices are now being produced with "in-cell" technology, such as in Samsung"s Super AMOLED screens, that eliminates a layer by building the capacitors inside the display itself. This type of touchscreen reduces the visible distance between the user"s finger and what the user is touching on the screen, reducing the thickness and weight of the display, which is desirable in smartphones.

In this basic technology, only one side of the insulator is coated with a conductive layer. A small voltage is applied to the layer, resulting in a uniform electrostatic field. When a conductor, such as a human finger, touches the uncoated surface, a capacitor is dynamically formed. The sensor"s controller can determine the location of the touch indirectly from the change in the capacitance as measured from the four corners of the panel. As it has no moving parts, it is moderately durable but has limited resolution, is prone to false signals from parasitic capacitive coupling, and needs calibration during manufacture. It is therefore most often used in simple applications such as industrial controls and kiosks.

This diagram shows how eight inputs to a lattice touchscreen or keypad creates 28 unique intersections, as opposed to 16 intersections created using a standard x/y multiplexed touchscreen .

Projected capacitive touch (PCT; also PCAP) technology is a variant of capacitive touch technology but where sensitivity to touch, accuracy, resolution and speed of touch have been greatly improved by the use of a simple form of

Some modern PCT touch screens are composed of thousands of discrete keys,etching a single conductive layer to form a grid pattern of electrodes, by etching two separate, perpendicular layers of conductive material with parallel lines or tracks to form a grid, or by forming an x/y grid of fine, insulation coated wires in a single layer . The number of fingers that can be detected simultaneously is determined by the number of cross-over points (x * y) . However, the number of cross-over points can be almost doubled by using a diagonal lattice layout, where, instead of x elements only ever crossing y elements, each conductive element crosses every other element .

In some designs, voltage applied to this grid creates a uniform electrostatic field, which can be measured. When a conductive object, such as a finger, comes into contact with a PCT panel, it distorts the local electrostatic field at that point. This is measurable as a change in capacitance. If a finger bridges the gap between two of the "tracks", the charge field is further interrupted and detected by the controller. The capacitance can be changed and measured at every individual point on the grid. This system is able to accurately track touches.

Unlike traditional capacitive touch technology, it is possible for a PCT system to sense a passive stylus or gloved finger. However, moisture on the surface of the panel, high humidity, or collected dust can interfere with performance.

These environmental factors, however, are not a problem with "fine wire" based touchscreens due to the fact that wire based touchscreens have a much lower "parasitic" capacitance, and there is greater distance between neighbouring conductors.

This is a common PCT approach, which makes use of the fact that most conductive objects are able to hold a charge if they are very close together. In mutual capacitive sensors, a capacitor is inherently formed by the row trace and column trace at each intersection of the grid. A 16×14 array, for example, would have 224 independent capacitors. A voltage is applied to the rows or columns. Bringing a finger or conductive stylus close to the surface of the sensor changes the local electrostatic field, which in turn reduces the mutual capacitance. The capacitance change at every individual point on the grid can be measured to accurately determine the touch location by measuring the voltage in the other axis. Mutual capacitance allows multi-touch operation where multiple fingers, palms or styli can be accurately tracked at the same time.

Self-capacitive touch screen layers are used on mobile phones such as the Sony Xperia Sola,Samsung Galaxy S4, Galaxy Note 3, Galaxy S5, and Galaxy Alpha.

Self capacitance is far more sensitive than mutual capacitance and is mainly used for single touch, simple gesturing and proximity sensing where the finger does not even have to touch the glass surface.

Capacitive touchscreens do not necessarily need to be operated by a finger, but until recently the special styli required could be quite expensive to purchase. The cost of this technology has fallen greatly in recent years and capacitive styli are now widely available for a nominal charge, and often given away free with mobile accessories. These consist of an electrically conductive shaft with a soft conductive rubber tip, thereby resistively connecting the fingers to the tip of the stylus.

Infrared sensors mounted around the display watch for a user"s touchscreen input on this PLATO V terminal in 1981. The monochromatic plasma display"s characteristic orange glow is illustrated.

An infrared touchscreen uses an array of X-Y infrared LED and photodetector pairs around the edges of the screen to detect a disruption in the pattern of LED beams. These LED beams cross each other in vertical and horizontal patterns. This helps the sensors pick up the exact location of the touch. A major benefit of such a system is that it can detect essentially any opaque object including a finger, gloved finger, stylus or pen. It is generally used in outdoor applications and POS systems that cannot rely on a conductor (such as a bare finger) to activate the touchscreen. Unlike capacitive touchscreens, infrared touchscreens do not require any patterning on the glass which increases durability and optical clarity of the overall system. Infrared touchscreens are sensitive to dirt and dust that can interfere with the infrared beams, and suffer from parallax in curved surfaces and accidental press when the user hovers a finger over the screen while searching for the item to be selected.

A translucent acrylic sheet is used as a rear-projection screen to display information. The edges of the acrylic sheet are illuminated by infrared LEDs, and infrared cameras are focused on the back of the sheet. Objects placed on the sheet are detectable by the cameras. When the sheet is touched by the user, frustrated total internal reflection results in leakage of infrared light which peaks at the points of maximum pressure, indicating the user"s touch location. Microsoft"s PixelSense tablets use this technology.

Optical touchscreens are a relatively modern development in touchscreen technology, in which two or more image sensors (such as CMOS sensors) are placed around the edges (mostly the corners) of the screen. Infrared backlights are placed in the sensor"s field of view on the opposite side of the screen. A touch blocks some lights from the sensors, and the location and size of the touching object can be calculated (see visual hull). This technology is growing in popularity due to its scalability, versatility, and affordability for larger touchscreens.

Introduced in 2002 by 3M, this system detects a touch by using sensors to measure the piezoelectricity in the glass. Complex algorithms interpret this information and provide the actual location of the touch.

The key to this technology is that a touch at any one position on the surface generates a sound wave in the substrate which then produces a unique combined signal as measured by three or more tiny transducers attached to the edges of the touchscreen. The digitized signal is compared to a list corresponding to every position on the surface, determining the touch location. A moving touch is tracked by rapid repetition of this process. Extraneous and ambient sounds are ignored since they do not match any stored sound profile. The technology differs from other sound-based technologies by using a simple look-up method rather than expensive signal-processing hardware. As with the dispersive signal technology system, a motionless finger cannot be detected after the initial touch. However, for the same reason, the touch recognition is not disrupted by any resting objects. The technology was created by SoundTouch Ltd in the early 2000s, as described by the patent family EP1852772, and introduced to the market by Tyco International"s Elo division in 2006 as Acoustic Pulse Recognition.

There are several principal ways to build a touchscreen. The key goals are to recognize one or more fingers touching a display, to interpret the command that this represents, and to communicate the command to the appropriate application.

Dispersive-signal technology measures the piezoelectric effect—the voltage generated when mechanical force is applied to a material—that occurs chemically when a strengthened glass substrate is touched.

There are two infrared-based approaches. In one, an array of sensors detects a finger touching or almost touching the display, thereby interrupting infrared light beams projected over the screen. In the other, bottom-mounted infrared cameras record heat from screen touches.

The development of multi-touch screens facilitated the tracking of more than one finger on the screen; thus, operations that require more than one finger are possible. These devices also allow multiple users to interact with the touchscreen simultaneously.

With the growing use of touchscreens, the cost of touchscreen technology is routinely absorbed into the products that incorporate it and is nearly eliminated. Touchscreen technology has demonstrated reliability and is found in airplanes, automobiles, gaming consoles, machine control systems, appliances, and handheld display devices including cellphones; the touchscreen market for mobile devices was projected to produce US$5 billion by 2009.

The ability to accurately point on the screen itself is also advancing with the emerging graphics tablet-screen hybrids. Polyvinylidene fluoride (PVDF) plays a major role in this innovation due its high piezoelectric properties, which allow the tablet to sense pressure, making such things as digital painting behave more like paper and pencil.

TapSense, announced in October 2011, allows touchscreens to distinguish what part of the hand was used for input, such as the fingertip, knuckle and fingernail. This could be used in a variety of ways, for example, to copy and paste, to capitalize letters, to activate different drawing modes, etc.

For touchscreens to be effective input devices, users must be able to accurately select targets and avoid accidental selection of adjacent targets. The design of touchscreen interfaces should reflect technical capabilities of the system, ergonomics, cognitive psychology and human physiology.

Guidelines for touchscreen designs were first developed in the 2000s, based on early research and actual use of older systems, typically using infrared grids—which were highly dependent on the size of the user"s fingers. These guidelines are less relevant for the bulk of modern touch devices which use capacitive or resistive touch technology.

Much more important is the accuracy humans have in selecting targets with their finger or a pen stylus. The accuracy of user selection varies by position on the screen: users are most accurate at the center, less so at the left and right edges, and least accurate at the top edge and especially the bottom edge. The R95 accuracy (required radius for 95% target accuracy) varies from 7 mm (0.28 in) in the center to 12 mm (0.47 in) in the lower corners.

This user inaccuracy is a result of parallax, visual acuity and the speed of the feedback loop between the eyes and fingers. The precision of the human finger alone is much, much higher than this, so when assistive technologies are provided—such as on-screen magnifiers—users can move their finger (once in contact with the screen) with precision as small as 0.1 mm (0.004 in).

Users of handheld and portable touchscreen devices hold them in a variety of ways, and routinely change their method of holding and selection to suit the position and type of input. There are four basic types of handheld interaction:

Touchscreens are often used with haptic response systems. A common example of this technology is the vibratory feedback provided when a button on the touchscreen is tapped. Haptics are used to improve the user"s experience with touchscreens by providing simulated tactile feedback, and can be designed to react immediately, partly countering on-screen response latency. Research from the University of Glasgow (Brewster, Chohan, and Brown, 2007; and more recently Hogan) demonstrates that touchscreen users reduce input errors (by 20%), increase input speed (by 20%), and lower their cognitive load (by 40%) when touchscreens are combined with haptics or tactile feedback. On top of this, a study conducted in 2013 by Boston College explored the effects that touchscreens haptic stimulation had on triggering psychological ownership of a product. Their research concluded that a touchscreens ability to incorporate high amounts of haptic involvement resulted in customers feeling more endowment to the products they were designing or buying. The study also reported that consumers using a touchscreen were willing to accept a higher price point for the items they were purchasing.

Unsupported touchscreens are still fairly common in applications such as ATMs and data kiosks, but are not an issue as the typical user only engages for brief and widely spaced periods.

Touchscreens can suffer from the problem of fingerprints on the display. This can be mitigated by the use of materials with optical coatings designed to reduce the visible effects of fingerprint oils. Most modern smartphones have oleophobic coatings, which lessen the amount of oil residue. Another option is to install a matte-finish anti-glare screen protector, which creates a slightly roughened surface that does not easily retain smudges.

Touchscreens do not work most of the time when the user wears gloves. The thickness of the glove and the material they are made of play a significant role on that and the ability of a touchscreen to pick up a touch.

Walker, Geoff (August 2012). "A review of technologies for sensing contact location on the surface of a display: Review of touch technologies". Journal of the Society for Information Display. 20 (8): 413–440. doi:10.1002/jsid.100. S2CID 40545665.

"The first capacitative touch screens at CERN". CERN Courrier. 31 March 2010. Archived from the original on 4 September 2010. Retrieved 2010-05-25. Cite journal requires |journal= (help)

Beck, Frank; Stumpe, Bent (May 24, 1973). Two devices for operator interaction in the central control of the new CERN accelerator (Report). CERN. CERN-73-06. Retrieved 2017-09-14.

Johnson, E.A. (1965). "Touch Display - A novel input/output device for computers". Electronics Letters. 1 (8): 219–220. Bibcode:1965ElL.....1..219J. doi:10.1049/el:19650200.

Stumpe, Bent; Sutton, Christine (1 June 2010). "CERN touch screen". Symmetry Magazine. A joint Fermilab/SLAC publication. Archived from the original on 2016-11-16. Retrieved 16 November 2016.

Mallebrein, Rainer (2018-02-18). "Oral History of Rainer Mallebrein" (PDF) (Interview). Interviewed by Steinbach, Günter. Singen am Hohentwiel, Germany: Computer History Museum. CHM Ref: X8517.2018. Archived (PDF) from the original on 2021-01-27. Retrieved 2021-08-23. (18 pages)

Biferno, M. A., Stanley, D. L. (1983). The Touch-Sensitive Control/Display Unit: A Promising Computer Interface. Technical Paper 831532, Aerospace Congress & Exposition, Long Beach, CA: Society of Automotive Engineers.

Potter, R.; Weldon, L.; Shneiderman, B. (1988). "Improving the accuracy of touch screens: an experimental evaluation of three strategies". Proceedings of the SIGCHI conference on Human factors in computing systems - CHI "88. Proc. of the Conference on Human Factors in Computing Systems, CHI "88. Washington, DC. pp. 27–32. doi:10.1145/57167.57171. ISBN 0201142376. Archived from the original on 2015-12-08.

Sears, Andrew; Plaisant, Catherine; Shneiderman, Ben (June 1990). "A new era for high-precision touchscreens". In Hartson, R.; Hix, D. (eds.). Advances in Human-Computer Interaction. Vol. 3. Ablex (1992). ISBN 978-0-89391-751-7. Archived from the original on October 9, 2014.

Apple touch-screen patent war comes to the UK (2011). Event occurs at 1:24 min in video. Archived from the original on 8 December 2015. Retrieved 3 December 2015.

Hong, Chan-Hwa; Shin, Jae-Heon; Ju, Byeong-Kwon; Kim, Kyung-Hyun; Park, Nae-Man; Kim, Bo-Sul; Cheong, Woo-Seok (1 November 2013). "Index-Matched Indium Tin Oxide Electrodes for Capacitive Touch Screen Panel Applications". Journal of Nanoscience and Nanotechnology. 13 (11): 7756–7759. doi:10.1166/jnn.2013.7814. PMID 24245328. S2CID 24281861.

Kent, Joel (May 2010). "Touchscreen technology basics & a new development". CMOS Emerging Technologies Conference. CMOS Emerging Technologies Research. 6: 1–13. ISBN 9781927500057.

Ganapati, Priya (5 March 2010). "Finger Fail: Why Most Touchscreens Miss the Point". Archived from the original on 2014-05-11. Retrieved 9 November 2019.

Beyers, Tim (2008-02-13). "Innovation Series: Touchscreen Technology". The Motley Fool. Archived from the original on 2009-03-24. Retrieved 2009-03-16.

"Acoustic Pulse Recognition Touchscreens" (PDF). Elo Touch Systems. 2006: 3. Archived (PDF) from the original on 2011-09-05. Retrieved 2011-09-27. Cite journal requires |journal= (help)

"Ergonomic Requirements for Office Work with Visual Display Terminals (VDTs)–Part 9: Requirements for Non-keyboard Input Devices". International Organization for Standardization. Geneva, Switzerland. 2000.

Hoober, Steven (2013-11-11). "Design for Fingers and Thumbs Instead of Touch". UXmatters. Archived from the original on 2014-08-26. Retrieved 2014-08-24.

Henze, Niels; Rukzio, Enrico; Boll, Susanne (2011). "100,000,000 Taps: Analysis and Improvement of Touch Performance in the Large". Proceedings of the 13th International Conference on Human Computer Interaction with Mobile Devices and Services. New York.

Lee, Seungyons; Zhai, Shumin (2009). "The Performance of Touch Screen Soft Buttons". Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York: 309. doi:10.1145/1518701.1518750. ISBN 9781605582467. S2CID 2468830.

Bérard, François (2012). "Measuring the Linear and Rotational User Precision in Touch Pointing". Proceedings of the 2012 ACM International Conference on Interactive Tabletops and Surfaces. New York: 183. doi:10.1145/2396636.2396664. ISBN 9781450312097. S2CID 15765730.

Hoober, Steven (2014-09-02). "Insights on Switching, Centering, and Gestures for Touchscreens". UXmatters. Archived from the original on 2014-09-06. Retrieved 2014-08-24.

Brasel, S. Adam; Gips, James (2014). "Tablets, touchscreens, and touchpads: How varying touch interfaces trigger psychological ownership and endowment". Journal of Consumer Psychology. 24 (2): 226–233. doi:10.1016/j.jcps.2013.10.003.

Zhu, Ying; Meyer, Jeffrey (September 2017). "Getting in touch with your thinking style: How touchscreens influence purchase". Journal of Retailing and Consumer Services. 38: 51–58. doi:10.1016/j.jretconser.2017.05.006.

Hueter, Jackie; Swart, William (February 1998). "An Integrated Labor-Management System for Taco Bell". Interfaces. 28 (1): 75–91. CiteSeerX doi:10.1287/inte.28.1.75. S2CID 18514383.

"A RESTAURANT THAT LETS GUESTS PLACE ORDERS VIA A TOUCHSCREEN TABLE (Touche is said to be the first touchscreen restaurant in India and fifth in the world)". India Business Insight. 31 August 2011. Gale A269135159.

Sears, A.; Plaisant, C. & Shneiderman, B. (1992). "A new era for high precision touchscreens". In Hartson, R. & Hix, D. (eds.). Advances in Human-Computer Interaction. Vol. 3. Ablex, NJ. pp. 1–33.

Sears, Andrew; Shneiderman, Ben (April 1991). "High precision touchscreens: design strategies and comparisons with a mouse". International Journal of Man-Machine Studies. 34 (4): 593–613. doi:10.1016/0020-7373(91)90037-8. hdl:

7 lcd touch screen display manufacturer

TRU-Vu offers the largest selection of industrial-grade small LCD monitors and touch screens in the world. Choose from over 125 models of 8.4 inch to 12″ industrial-grade small lcd monitors, including small HDMI monitors, waterproof monitors, Sunlight Readable monitors, 4:3 and 16:9 aspect ratio, panel-mount and custom displays.

TRU-Vu offers over 235 standard, off-the shelf 13.3” to 19” industrial-grade LCD monitors and touch screens. Industrial LCD monitors offer many advantages over consumer or commercial-grade displays. They are more rugged, have higher shock and vibration resistance and can be modified or customized to meet your needs. Industrial and medical-grade monitors, Sunlight Readable, waterproof, open frame monitors and more.

TRU-Vu offers the largest selection of industrial LCD monitors and large touch screens in the world. We have an impressive line-up of over 175 off-the-shelf industrial LCD monitors with large screen sizes from 21.5" to 75". This includes Medical-Grade, Sunlight Readable, open frame, bezel-less, waterproof, 4K, custom and OEM widescreen monitors, with a wide range of configurations and enclosure types.

TRU-Vu Sunlight Readable Monitors and Daylight Screens (with Optical Bonding) and touch screen monitors are ideal for use in direct sunlight, or in other high-ambient light environments. These outdoor monitors offer 1,000 nits to 2,500 screen brightness. They are ideal for outdoor digital signage, military, law enforcement, amusement parks, way-finding, marine, and more.

Industrial-grade monitors and touch screens with standard brightness (250-350 nits) are ideal for use indoors or in environments without sunlight or bright lighting. We offer waterproof monitors, panel mount monitors, custom LCD displays, private label monitors, Medical Grade monitors, outdoor monitors, 16:9 and 4:3 aspect ratio, and more, from 7" to 65" lcd monitor screen sizes.

Our waterproof monitors and water proof touch screens are perfect for use as outdoor monitors, or in industrial settings where high humidity, liquids, and daily wash-downs may exist. Stand-alone or panel mount waterproof enclosures are available in stainless steel, painted steel or aluminum, with protection ratings up to IP68.

We offer a wide range of rugged and waterproof Touch Screen monitors for both indoor and outdoor use. Select from 5-wire resistive touch, surface capacitive, P-Cap, IR touch and SAW touch screen technologies in order to best meet your specific application requirements. Large touch screen monitors up to 46", and small touchscreen monitors down to 8.4".

TRU-Vu Medical-Grade displays and Medical touch screens are certified to the latest UL and IEC 60601 standards. They are ideal for use in hospital surgical operating rooms as surgical displays, on medical diagnostic equipment and medical cart monitors. Their bezel-less monitor design provides added benefits of improved aesthetics, and increased safety and hygiene, and IP65 liquid protection.

Panel mount monitors and panel mount touch screens can be flush-mounted into doors, walls, kiosks and cabinets for improved ergonomics and safety. They are available with standard and high brightness screens, waterproof front face, and 4:3 and 16:9 aspect ratio, in a wide range of sizes and configurations.