lcd panel tn or ips in stock

So, why would anyone ever buy a TN panel? For starters, they’re cheap. They don’t cost a lot to produce, so they’re often used in the most budget-friendly options. If you don’t value color reproduction or need excellent viewing angles, a TN panel might be fine for your office or study.

TN panels also have the lowest input lag—typically around one millisecond. They can also handle high refresh rates of up to 240 Hz. This makes them an attractive option for competitive multiplayer games—especially eSports, where every split-second counts.

IPS technology was developed to improve upon the limitations of TN panels—most notably, the poor color reproduction and limited viewing angles. As a result, IPS panels are much better than TNs in both of these areas.

In particular, IPS panels have vastly superior viewing angles than TNs. This means you can view IPS panels from extreme angles and still get accurate color reproduction. Unlike TNs, you’ll notice very little shift in color when you view one from a less-than-ideal perspective.

IPS panels are also known for their relatively good black reproduction, which helps eliminate the “washed out” look you get with TN panels. However, IPS panels fall short of the excellent contrast ratios you’ll find on VAs.

While high refresh rates were typically reserved for TNs, more manufacturers are producing IPS panels with refresh rates of 240 Hz. For example, the 27-inch 1080p ASUS VG279QM uses an IPS panel and supports 280 Hz.

Previously, TNs exhibited less input lag than any other panel, but IPS technology has finally caught up. In June 2019, LG announced its new Nano IPS UltraGear monitors with a response time of one millisecond.

Despite the gap being closed, you’ll still pay more for an IPS panel with such a low response time than you would for a TN with similar specs. If you’re on a budget, expect a response time of around four milliseconds for a good IPS monitor.

One last thing to be aware of with IPS panels is a phenomenon called “IPS glow.” It’s when you see the display’s backlight shining through it at more extreme viewing angles. It’s not a huge problem unless you view the panel from the side, but it’s something to keep in mind.

VA panels are something of a compromise between TN and IPS. They offer the best contrast ratios, which is why TV manufacturers use them extensively. While an IPS monitor typically has a contrast ratio of 1000:1, it’s not unusual to see 3000:1 or 6000:1 in a comparable VA panel.

In terms of viewing angles, VAs can’t quite match the performance of IPS panels. Screen brightness, in particular, can vary based on the angle from which you’re viewing, but you won’t get the “IPS glow.”

VAs have slower response times than TNs and the newer Nano IPS panels with their one-millisecond response rates. You can find VA monitors with high refresh rates (240 Hz), but the latency can result in more ghosting and motion blur. For this reason, competitive gamers should avoid VA.

Compared to TNs, VA panels do offer much better color reproduction and typically hit the full sRGB spectrum, even on lower-end models. If you’re willing to spend a bit more, Samsung’s Quantum Dot SVA panels can hit 125 percent sRGB coverage.

For these reasons, VA panels are seen as the jack of all trades. They’re ideal for general use, but they either match or fall short in most other areas except contrast ratio. VAs are good for gamers who enjoy single-player or casual experiences.

When compared to CRT monitors, all LCD panels suffer from some form of latency issue. This was a real problem when TN panels first appeared, and it’s plagued IPS and VA monitors for years. But technology has moved on, and while many of these issues have been improved, they haven’t been eliminated entirely.

Uneven backlighting is another issue you’ll find on all panel types. Often this comes down to overall build quality—cheaper models slack on quality control to save on production costs. So, if you’re looking for a cheap monitor, be prepared for some uneven backlighting. However, you’ll mostly only notice it on solid or very dark backgrounds.

LCD panels are also susceptible to dead or stuck pixels. Different manufacturers and jurisdictions have different policies and consumer laws covering dead pixels. If you’re a perfectionist, check the manufacturer’s dead-pixel policy before you buy. Some will replace a monitor with a single dead pixel for free, while others require a minimum number.

Office or study use: Your budget should be your primary concern here. VA is the do-it-all panel, with superior viewing angles to TN, but either would do the trick. You can save some money because you don’t need high refresh rates or ultra-low latency. They’re still nice, though. You’ll see a noticeable difference in smoothness just when moving the Windows cursor on a monitor with a 144 versus 60 Hz refresh rate.

Photo and video editors/Digital artists: IPS panels are still generally favored for their ability to display a wide gamut of colors. It’s not unusual to find VA panels that also cover a wide gamut (125 percent sRGB, and over 90 percent DCI-P3), but they tend to exhibit more motion blur during fast-paced action than IPS panels. If you’re serious about color accuracy, you’ll need to properly calibrate your monitor.

Programmers who mount monitors vertically: You might think TN panels are great for programmers, but that’s not necessarily the case. TN panels have particularly bad viewing angles on the vertical axis. If you mount your monitor in portrait mode (as many programmers and mobile developers do), you’ll get the worst possible viewing angles from a TN panel. For the best possible viewing angles in this scenario, invest in an IPS display.

Competitive online gamers: There’s no question TN panels are still favored in the eSports world. Even the cheapest models have fast response times and support for high refresh rates. For 1080p gaming, a 24-inch will do just fine, or you could opt for a 1440p, 27-inch model without breaking the bank. You might want to go for an IPS panel as more low-latency models hit the market, but expect to pay more.

Non-competitive, high-end PC gamers: For a rich, immersive image that pops, a VA panel will provide a higher contrast ratio than IPS or TN. For deep blacks and a sharp, contrasting image, VA is the winner. If you’re okay with sacrificing some contrast, you can go the IPS route. However, we’d recommend avoiding TN altogether unless you play competitively.

Best all-rounder: VA is the winner here, but IPS is better in all areas except contrast ratio. If you can sacrifice contrast, an IPS panel will provide fairly low latency, decent blacks, and satisfactory color coverage.

As you probably know, you can usually get a monitor cheaper online than at a brick-and-mortar store. Unfortunately, buying online also usually means buying blind. And with a TV or monitor, that can lead to disappointment.

If you can, check out the monitor you’re interested in in-person before you buy it. You can perform some simple ghosting and motion blur tests by grabbing a window with the mouse and moving it rapidly around the screen. You can also test the brightness, watch some videos, and play with the onscreen display to get a feel for it.

lcd panel tn or ips in stock

When most people go shopping for a gaming monitor, their primary concerns are resolution and refresh rate. Those are certainly important considerations, but if you’ve ever had to put up with dull colors, murky blacks or terrible viewing angles, you’ll understand that panel types are important too.

TN, or Twisted Nematic panels, are the oldest variety of LCD panels, but they’re still quite common even today. They’re cheap to produce, and they have very low input lag, which makes them appealing for gamers. They also support refresh rates of up to 240Hz, another plus for fast-paced environments.

The problem with TN panels is that they have very poor color reproduction. While modern TN panels are far better than earlier models, it’s still relatively rare to find a TN panel with close to full sRGB reproduction. Even if they do have good color reproduction when you’re looking at them straight on, their viewing angles are limited, and they look washed out when viewed from the sides.

If you’re on a budget, enjoy playing competitive shooters or strategy games where reaction times matter, a TN panel could be fine for you. But if you want something that doubles as a media player, the average TN monitor might disappoint.

Fortunately, our GFT27CXB monitor is far from “average.” We engineered our TN panel to do what most TN panels simply cannot: deliver stunningly accurate colors. And with its 99% sRGB gamut, colors are rich and vibrant. And it’s fully customizable, with space to store up to 3 unique user profiles. So you get amazing color. But you also get full HD resolution with lightning-fast speeds up to 240hz refresh rate and 1ms response times.

IPS, or In-Plane Switching, monitors are almost the exact opposite of TN panels. They offer much wider viewing angles than TN panels as well as better black reproduction. The trade-off is that they’re more expensive. They have a history of slower refresh rates, too, although that has been changing lately. Today’s IPS panels can reach max. refresh rates as high as 200-240Hz.

There are some IPS monitors with very good refresh rates and response times, but they’re on the pricier side. You can expect to pay more than $500 for an IPS monitor with a 1ms response time. If you’re looking for a more budget-friendly IPS monitor, then you’ll have to settle for response times of 4ms or slower. IPS panels are also prone to backlight issues. Color reproduction is better than on TN panels, even at extreme angles, but the backlight can sometimes be seen.

Our REAPER series monitor—starting with the RFI25CBA—has been designed to overcome this particular issue. It’s been engineered to reduce the amount of backlight bleed-through on its IPS panel. The monitor also features an MRPT Mode to produce extremely clear moving pictures with excellent color while significantly reducing backlight issues.

VA, or Vertical Alignment, panels are somewhere in between TN and IPS, offering the best of both worlds. This type of panel is common in TVs but is relatively uncommon for gaming monitors. TN panels offer very good contrast ratios, so you can expect vibrant colors and good color reproduction. They also offer good viewing angles, and while brightness may vary depending on the angle you’re looking at the screen from, they’re not susceptible to the backlight issues of IPS panels.

The downside of VA panels is that they have slower response times. As with IPS panels, newer models do have high refresh rates, but the slow response time means you may see ghosting or motion blur in fast-paced, competitive games. Fortunately, all VIOTEK monitors come with AdaptiveSync, which works with AMD® FreeSync® and NVIDIA® G-Sync™ technologies. AdaptiveSync eliminates image distortion (e.g., tearing, stuttering, ghosting and judder) and other glitches that can happen if the monitor’s refresh rate doesn’t match the frame rate of the computer’s GPU. The result is smoother action with clearer images.

There are benefits and downsides to each panel type, and there’s no one correct answer to the question of “which is best.” It depends on your budget, the type of games you enjoy playing, whether you prize response times over other features, and what else you do with the monitor.

If you’re a competitive gamer who wants the absolute best response time on a budget, TN panels will get the job done, but they may disappoint when you’re playing a heavily modded game of Skyrim and want to stop and enjoy the scenery. IPS panels can deliver a similar experience if you’re willing to spend a lot of money. But if you’re like most of us, you’d rather put that extra cash towards a slightly better GPU.

VA monitors are a great “Jack of all trades.” The NBV24CB2, for example, is a highly affordable 1080P monitor that offers a 75Hz refresh rate and AdaptiveSync technology—along with some other nice extras. Those extras include GAMEPLUS targeting crosshairs and FPS/RTS display modes to help give you the advantage while playing first-person shooter games. This monitor is ideal for gamers with mid-range systems. If you’re playing marathon sessions, the NBV24CB2 has a blue-light filter to help reduce eye strain. And there’s great color reproduction for watching videos.

Looking for something with a little more power? The GNV32CBO or GFV24CB are two 1080p monitors. These offer super-fast 165Hz refresh rates for pro-motion with reduced input lag. They’re also VA panels, delivering great color reproduction, AMD FreeSync to reduce image ghosting, and other game-friendly features.

With the right monitor, you can play for longer and enjoy a smoother and more responsive experience, whether that’s in an FPS, driving game, or RTS. These monitors are designed with gamers in mind and put you in control of every move. Check out Viotek’s selection of monitors today and find the best fit for your needs!

lcd panel tn or ips in stock

This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.

lcd panel tn or ips in stock

These cookies help to improve the performance of BenQ. If you want to opt-out of advertising cookies, you have to turn-off performance cookies. We also use Google Analytics, SessionCam and Hotjar to track activity and performance on the BenQ website. You can control the information provided to Google, SessionCam and Hotjar.  To opt out of certain ads provided by Google you can use any of the methods set forth here or using the Google Analytics opt out browser add-on here. To opt-out of SessionCam collecting data, you can disable tracking completely by following link:

These cookies are used to track your activity on the BenQ website and other websites across the Internet, help measure the effectiveness of our advertising campaign and deliver advertisements that are more relevant to you and your interests. We use various advertising partners, including Amazon, Facebook, and Google. These cookies and other technologies capture data like your IP address, when you viewed the page or email, what device you were using and where you were. You can find out how to avoid them below.

lcd panel tn or ips in stock

Again, IPS is the clear winner here. The vertical viewing angles are very similar to the horizontal ones on both IPS and VA panels. Unfortunately, this is one area where TN panels are usually much, much worse. TN monitors degrade rapidly from below, and colors actually inverse - resulting in a negative image that can be distracting. For this reason, if you decide to buy a TN monitor, look for one with an excellent height adjustment, or consider buying a VESA mounting arm, as you should mount TN monitors at eye level. Even when mounted properly, larger TN displays can appear non-uniform at the edges.

There"s usually not much difference between VA and IPS panels in terms of gray uniformity. It"s rare for monitors to have uniformity issues, and even on monitors that perform worse than average, it"s usually not noticeable with regular content. TN monitors tend to perform a bit worse than usual, though, and the top half of the screen is almost always darker than the rest, but that"s an artifact of the bad vertical viewing angles.

Black uniformity tends to vary significantly, even between individual units of the same model, and there"s no single panel type that performs the best. It"s rare for monitors to have good black uniformity, and almost every monitor we"ve tested has some noticeable cloudiness or backlight bleed. IPS and TN panels can look slightly worse due to their low contrast ratios, as the screen can take on more of a bluish tint when displaying dark scenes. Like with contrast, black uniformity issues usually aren"t very noticeable unless you"re looking at dark content and you"re in a dark room. If you only use your monitor in a bright environment, generally speaking, you don"t need to worry about black uniformity.

Historically, TN panels used to have the worst colors, as many of them were cheaper models that only supported 6-bit colors or used techniques like dithering (FRC) to approximate 8-bit colors. Most displays today, including TN models, are at least 8 bit, and many of them are even able to approximate 10-bit colors through dithering. New technologies, like LG"s Nano IPS and Samsung"s Quantum Dot, add an extra layer to the LCD stack and have significantly improved the color gamut of modern IPS and VA displays, leaving TN a bit behind. Between them, NANO IPS is slightly better, as it tends to offer better coverage of the Adobe RGB color space. Although the difference is minor, IPS panels still have a slight edge over VA and TN displays.

Although TN panels have caught up a bit in the SDR color space, they"re far behind when it comes to HDR, so if you"re looking for a good HDR color gamut, avoid TN panels. Between VA and IPS panels, the difference isn"t as significant; however, IPS panels still have a slight edge. The best VA panels top out at around 90% coverage of the DCI P3 color space used by most current HDR content. IPS panels go as high as 98% coverage of DCI P3, rivaling even some of the best TVs on the market. Due to the very high coverage of DCI P3 on both VA and IPS, the difference isn"t that noticeable, though, as most content won"t use the entire color space anyway.

Although not necessarily as noticeable to everyone as the differences in picture quality, there can also be a difference in motion handling between IPS, VA, and TN displays. TN panels historically offered the best gaming performance, as they had the highest refresh rates and extremely fast response times. Manufacturers have found ways to drastically improve the motion handling of VA and IPS panels, though, and the difference isn"t as pronounced.

LCD panel technology has changed drastically over the last few years, and the historical expectations for response time performance don"t necessarily hold anymore. For years, TN monitors had the fastest response times by far, but that"s started to change. New high refresh-rate IPS monitors can be just as fast.

VA panels are a bit of a strange situation. They typically have slightly slower response times overall compared to similar TN or IPS models. It"s especially noticeable in near-black scenes, where they tend to be significantly slower, resulting in dark trails behind fast-moving objects in dark scenes, commonly known as black smear. Some recent VA panels, such as the Samsung Odyssey G7 LC32G75T, get around it by overdriving the pixels. It results in much better dark scene performance but a more noticeable overshoot in brighter areas.

The examples listed above aren"t perfect. The average response time metrics shown don"t necessarily show the whole picture. Monitors also usually offer a certain level of control over the pixel overdrive, so it"s possible to adjust the response time to match your usage and personal preference. Some overdrive settings deliver a sharper image but introduce overshoot and reverse ghosting artifacts, while other modes might not be as sharp but have no distracting artifacts. You can learn more about our response time testing here.

Within each of the three types of LCD we mentioned, other related panel types use the same basic idea but with slight differences. For example, two popular variants of IPS panels include ADS (technically known as ADSDS, or Advanced Super Dimension Switch) and PLS (Plane to Line Switching). It can be hard to tell these panels apart simply based on the subpixel structure, so we"ll usually group them all as IPS, and in the text, we"ll usually refer to them as IPS-like or IPS family. There are slight differences in colors, viewing angles, and contrast, but generally speaking, they"re all very similar.

There"s another display technology that"s growing in popularity: OLED. OLED, or organic light-emitting diode, is very different from the conventional LCD technology we"ve explored above. OLED panels are electro-emissive, which means each pixel emits its own light when it receives an electric signal, eliminating the need for a backlight. Since OLED panels can turn off individual pixels, they have deep, inky blacks with no blooming around bright objects. They also have excellent wide viewing angles, a near-instantaneous response time, and excellent gray uniformity.

OLED panels aren"t perfect, though. There"s a risk of permanent burn-in, especially when there are lots of static elements on screen, like the UI elements of a PC. There aren"t many OLED monitors available, either, but they"ve started to gain popularity as laptop screens and for high-end monitors, but they"re very expensive and hard to find. They"re also not very bright in some cases, especially when large bright areas are visible on screen. The technology is still maturing, and advances in OLED technology, like Samsung"s highly-anticipated QD-OLED technology, are promising.

As you can probably tell by now, no one panel type works best for everyone; it all depends on your exact usage. Although there used to be some significant differences between panel types, as technology has improved, these differences aren"t as noticeable. The two exceptions to this are viewing angles and contrast. If you"re in a dark room, a VA panel that can display deep blacks is probably the best choice. If you"re not in a dark room, you should focus on the other features of the monitor and choose based on the features that appeal to your exact usage. IPS panels are generally preferred for office use, and TN typically offers the best gaming experience, but recent advancements in VA and IPS technology are starting to change those generalizations. For the most part, the differences between each panel type are so minor now that it doesn"t need to be directly factored into your buying decision.

lcd panel tn or ips in stock

You should choose between different panel types according to what you’ll mostly be using the monitor for — gaming, color-critical work, or watching movies and other everyday activities.

VA panels have the highest contrast ratio, but it usually comes at a cost of slower response time, so they’re excellent for watching movies, but not suitable for competitive gaming. TN panels are cheap and have fast response times, but have inferior image quality and viewing angles.

IPS panels offer the most consistent colors and a quick pixel response time speed as well as the widest viewing angles, but they don’t have as high contrast ratio as VA panels, and they are usually more expensive.

All newer TN monitors will offer a rapid ~1ms response time (gray to gray pixel transition or ‘GtG’ for short), which eliminates ghosting/trailing behind fast-moving objects.

When paired with a high refresh rate, TN panel gaming monitors provide a buttery-smooth gaming experience at an affordable price, which is why they are usually the first choice of many professional FPS gamers.

TN monitors have the worst color reproduction and narrow viewing angles (170° horizontally, 160° vertically), which causes the image to shift in color, contrast and brightness when it’s looked at skewed angles.

The viewing angles aren’t an issue as long as you’re sitting in front of the monitor, apart from some gamma/saturation shifts, so if you’ve got a limited budget and care more about performance than pretty colors, a TN panel monitor is for you.

IPS panels provide themost accurate and consistent colors as well as wide 178° viewing angles, meaning that you can look at the screen from basically any angle without the image shifting in color and contrast.

Nowadays, most IPS monitors have just as fast pixel response time speed as TN panels (~1ms), though there are still some slower IPS variants with 4 to 5ms.

If you’re watching particularly dark content in a dark room, you will be able to notice light ‘glowing’ around the corners of the screen. This is an expected side effect caused by the excess light passing through the panel.

It’s rather tolerable as it’s only mildly bothersome in certain scenarios i.e., watching dark scenes of a movie/game in a dim-lit room with high brightness setting. In some rare cases, mainly due to poor quality control, IPS glow can be distracting, in which case you should RMA the monitor.

Now, another thing to keep in mind is that IPS panels don’t have as high contrast as VA panels. A standard IPS monitor has a static contrast ratio of around 1,000:1, whereas a VA alternative has around 3,000:1, or even higher.

In 2022, LG Display developed the first IPS Black panel, which increase the static contrast ratio to around 2,000:1! The Dell U2723QE is one of the first monitors released with this technology.

LG is also bringing back the A-TW polarizer on some of their models, such as the upcoming LG 32GQ950. This will help reduce IPS glow at a cost of introducing a minor purple glow at extreme angles.

Further, through the use of localized dimming, the contrast ratio can be significantly improved on LED-backlit monitors. However, unless an expensive full-array local dimming solution is used, there’s basically no meaningful improvement.

In the past, IPS monitors were more expensive than TN models with the same specs. Nowadays, some IPS monitors are only slightly (if at all) more costly than their TN counterparts.

Keep in mind that there are several variations of IPS panels depending on the manufacturer, and you will also find them named differently. These are the most current versions you should know:

While IPS and TN panels usually have a contrast ratio of around 1,000:1, most VA panels have a contrast ratio between 2,500:1 and 3,000:1, with more expensive models offering even higher contrast.

Even though their specified response time speed may be the same as that of an average IPS display (4-5ms), they actually have a lot slower black to white pixel transition.

Consequently, in dark scenes of fast-paced video games, you get noticeable black smearing behind fast-moving objects, which can be distracting for competitive gaming.

Samsung’s latest VA panels used in the Odyssey G7 and G9 curved gaming monitors are actually just as fast as some IPS models with 1ms GtG response time!

Therefore, these monitors offer the most balanced image quality and performance with deep blacks and fast pixel transitions, but they are also more expensive and have some other flaws, as explained in the review.

In fact, there are VA panels that have just as good or better colors than certain IPS monitors, but the colors on those VA displays won’t be as consistent as that of the IPS technology.

In other words, a certain shade of red, for instance, might not look the same at the top of the image and at the center of a VA panel monitor due to gamma shifts.

Generally, these slight uniformity issues aren’t really noticeable or bothersome in everyday use, but they are crucial for color-critical work, which is the main reason designers opt for IPS monitors.

Thanks to their high contrast and lack of IPS glow, VA panel displays are particularly great for watching movies in a dark room where details in shadows of the picture really stand out, which is why most LED TVs use VA panels, not IPS.

Lastly, although VA panels have specified 178° viewing angles just like IPS, some minor shifts in contrast and brightness are present at certain angles, but nothing extreme.

That’s it! Hopefully, we’ve helped you pick the perfect panel type for you, but there are many other things to consider when buying a new monitor such as screen size, resolution and refresh rate.

You can find more information in our comprehensive gaming monitor buyer’s guide or one of the other guides on our website — depending on whether you need a monitor for photo-editing, office work, etc.

All in all, even if you’re a competitive gamer and don’t care much about image quality, a modern IPS monitor is the way to go as you get just as fast response times as that of old TN displays, but a better image quality and viewing angles too.

For color-critical work, we highly recommend IPS monitors, but you can also use VA displays for basic content creation where color accuracy isn’t crucial.

lcd panel tn or ips in stock

By far the most common types of display panels used on PC monitors are TN, IPS and VA. We"re sure you"ve heard these terms before if you"ve researched monitors to purchase, and to be clear, the type of panel is a key piece of information that reveals a lot about how the monitor will behave and perform.

TN is the oldest of the LCD technologies and it stands for twisted nematic. This refers to the twisted nematic effect, which is an effect that allows liquid crystal molecules to be controlled with voltage. While the actual workings of a TN-effect LCD are a little more complicated, essentially the TN-effect is used to change the alignment of liquid crystals when a voltage is applied. When there is no voltage, so the crystal is "off," the liquid crystal molecules are twisted 90 degrees and in combination with polarization layers, allow light to pass through. Then when a voltage is applied, these crystals are essentially untwisted, blocking light.

VA, stands for vertical alignment. As the name suggests, this technology uses vertically aligned liquid crystals which tilt when a voltage is applied to let light pass through. This is the key difference between IPS and VA: with VA, the crystals are perpendicular to the substrates, while with IPS they are parallel. There are several VA variants, including Samsung"s SVA and AU Optronics AMVA.

IPS stands for in-plane switching and, like all LCDs, it too uses voltage to control the alignment of liquid crystals. However unlike with TN, IPS LCDs use a different crystal orientation, one where the crystals are parallel to the glass substrates, hence the term "in plane". Rather than "twisting" the crystals to modify the amount of light let through, IPS crystals are essentially rotated, which has a range of benefits.

There are many IPS variants on the market, with each of the three big LCD manufacturers using a different term to describe their IPS-type technology. LG simply calls their tech "IPS" which is easy for everyone. Samsung uses the term PLS or plane-to-line switching, while AU Optronics uses the term AHVA or advanced hyper viewing angle. AHVA shouldn"t be confused with regular VA displays, it"s an annoying and confusing name in my opinion, but AHVA is an IPS-like technology. Each of LG"s IPS, Samsung"s PLS and AUO"s AHVA are slightly different but the fundamentals are rooted in IPS.

So in summary, TN panels twist, IPS panels use a parallel alignment and rotate, while VA panels use a vertical alignment and tilt. Now let"s get into some of the performance characteristics and explore how each of the technologies differ and in general, which technology is better in any given category.

By far the biggest difference between the three technologies is in viewing angles. TN panels have the weakest viewing angles, with significant shift to color and contrast in both the horizontal and especially vertical directions. Typically viewing angles are rated as 170/160 but realistically you"ll get pretty bad shifts when viewing anywhere except for dead center. Higher-end TNs tend to be somewhat better but overall this is a big weakness for TNs.

VA and IPS panels are both significantly better, with IPS being the best overall for viewing angles. 178/178 viewing angle ratings are a realistic reflection of what you can expect with an IPS, you won"t get much shift in colors or contrast from any angle. VAs are good in this regard but not as good as IPS, mostly due to contrast shifts at off-center angles. With VAs and especially TNs having some color and contrast shifts when viewing at angles, they"re not as well suited to color-critical professional work as IPS panels, which is why you see most pro-grade monitors sticking to IPS.

In terms of brightness there"s no inherent differences between the technologies because the backlight, which determines brightness, is separate to the liquid crystal panel. However there are significant differences to contrast ratios, and this an area most people look at when determining which panel type they want.

Both TN and IPS panels tend to have a contrast ratio around 1000:1, although in my testing I have noted some differences. TN panels tend to have the lowest contrast ratios when calibrated, with an entry-level panel sitting between 700:1 and 900:1 and good panels pushing up to that 1000:1 mark. IPS has a larger range, I"ve seen some as low as 700:1 like TNs, however the very best tend to push up higher than TN, with 1200:1 as the upper range for desktop monitors and some laptop-grade displays reaching as high as 1500:1.

Neither TN nor IPS get to the range of VA though. Entry-level VA panels start with a contrast ratio of 2000:1 from those that we"ve tested, with the best easily exceeding 4500:1, although 3000:1 is a typical figure for most monitors.

TVs make extensive use of VA panels and there contrast ratios can be even higher. It"s not unusual to see over 6000:1. So if you want deep blacks and high contrast ratios, you"ll need to go with something VA.

While IPS panels tend to be a middle ground for contrast they do suffer from a phenomenon called "IPS glow," which is an apparent white glow when viewing dark imagery at an angle. The best panels exhibit minimal glow but it"s still an issue across all displays of this type.

Color quality is another difference many people cite between TN displays and other display panels in particular. And this can be split into two categories: color depth or bit depth, and color gamut.

In both of these regards, TN panels tend to fall on the weaker end of the scale. Many TN displays, in particular entry-level models, are only natively 6-bit and use frame rate control, otherwise called FRC or dithering, to achieve standard 8-bit output. 6-bit panels are prone to color banding, while native 8-bit panels have smoother color gradients and therefore better color output.

Not all TN panels are 6-bit. The top-end TNs are native 8-bit, but it"s safe to say most TNs will only be native 6-bit, even today. If you are after a native 8-bit display, you"ll need to go with either IPS or VA, where many more panels come native 8-bit.

As for native true 10-bit, typically you"ll need to look for an IPS panel, which make up the majority of native 10-bit panels. Some VA panels can do it, but they are rare. Most displays you purchase that claim to be 10-bit, are actually 8-bit+FRC, with only high-end professional-grade monitors offering a native 10-bit experience.

This is another area where VA and IPS provide a superior experience. The best TN panels tend to be limited to sRGB, or in the case of the worst entry-level panels, don"t even cover the entirety of the sRGB gamut. Wide-gamut TN panels do exist, but they are rare.

VA panels typically start with full sRGB coverage as a minimum, and depending on the panel can push higher. VAs that use a quantum dot film, typically from Samsung, offer higher gamuts, around the 125% sRGB or 90% DCI-P3 mark. Most of the wide gamut VA monitors we"ve tested fall between 85 and 90% DCI-P3 coverage, which is a decent result, though the best can approach 95% or higher.

With IPS panels, there is the largest variance. Entry-level IPS displays tend to offer 95% sRGB coverage or less, while the majority stick to full sRGB coverage. Then with high-end displays, usually for professionals, it"s not unusual to see full DCI-P3 and Adobe RGB coverage. Of all the wide gamut IPS displays I"ve tested, the lowest DCI-P3 coverage I"ve seen has been 93%, with over 95% a typical figure. This makes IPS the best technology for wide gamut work.

Throughout most of this discussion we"ve been talking about TN as the worst of the three technologies. So far, it has the worst color reproduction, contrast ratios and viewing angles. But it does have one key advantage, and that comes in the form of speed. TN panels have historically been the best for both refresh rates and response times, however that trend is slowly changing for the better.

Not long ago, we argued that only with a TN panel it was possible to hit 240 Hz, doing so at 1080p and later up to 1440p. Most recently, however we"ve seen IPS monitors hit the highest mark ever for a consumer-grade gaming monitor at 360Hz, and do so very convincingly. We"re sure other monitors will follow but as of writing, the Asus ROG Swift PG259QN can deliver both the fastest response times and an accurate color experience using an IPS panel.

More mainstream monitors using IPS panels tend to range from the regular 60Hz for productivity, up to 165 Hz and 240 Hz depending on the market they"re aimed at. VA panels top out at around 240 Hz at the moment.

Most IPS displays, especially high-grade options for professionals, as well as entry-level office monitors, are either 60 or 75 Hz. Meanwhile, a significantly larger number of VA panels across a wider range of sizes and resolutions are high-refresh, while the big selling point of TN is its super high refresh capabilities.

Another major consideration is response times, which govern the level of ghosting, smearing and overall clarity of a panel. Early IPS and VA panels were very slow, however this has improved a lot with modern panels, so the differences between the three technologies aren"t as pronounced as they once were. TN still holds an advantage here.

Most TN panels have a rated transition time of 1ms, or even lower with some recent releases. Actual grey to grey averages we"ve measured for TN panels tend to be in the 2-3 ms range when overdrive is factored in, which makes TN the fastest technology.

IPS panels are next in terms of speed, though as tends to be the case with IPS, there is a wide variance between the best and worst of this type. High-end IPS monitors, typically those with high refresh rates, can have a transition time as fast as 3ms. Compared to the best TN panels, this still makes IPS slower. However entry-level IPS panels or those without overdrive sit closer to the 10ms range, while mid-tier options tend to occupy the 5 to 7 ms bracket.

VA panels are consistently the slowest of the three types, but again, high-end gaming monitors have been pushing this further on every generation. The absolute fastest VA panel we"ve measured so far has a 4ms response time which is very impressive, though more typical numbers are between 8 and 10 ms for gaming monitors. VA panels also tend to be less consistent with their transitions; some individual transitions can be fast, while others very slow, whereas IPS panels tend to hover more around their overall grey to grey average.

While a lot of people are unlikely to spot the difference between an 8ms VA panel and a 5ms IPS, TN panels overall tend to be noticeably clearer in motion, but that gap is closing with every generation. The slowness of VA panels also limits their real world refresh rate: a 144 Hz panel that only manages a 9ms response time, is actually delivering an image most equivalent to a 110 Hz panel. Whereas most 144 Hz IPS panels can transition faster than the 6.94ms refresh window, leading to a true 144 Hz experience. So that"s something to consider.

As a quick summary, TN panels are the fastest and have the highest refresh rates, however they have the worst viewing angles by far, as well as weak color performance and typically the lowest contrast ratios. TNs are typically used for ultra-fast gaming displays, as well as budget class displays, for both desktop monitors and laptops.

IPS is a middle-ground technology. They typically have the best color performance and viewing angles, mid-tier response times and refresh rates, along with mid-tier black levels and contrast ratios. Due to its top-end color output, IPS panels are the go-to choice for professionals, but you"ll also find them in entry-level displays, office monitors, most laptops and a handful of gaming monitors.

VA panels are the slowest of the three, but have the best contrast ratio and black levels by far. Color performance isn"t quite at the level of IPS, but they still offer a significantly better experience than TN in this regard.

With response times for the best modern VAs approaching the level of a typical IPS, along with broad support for high refresh rates, VA monitors are commonly used for gaming monitors. Entry-level VAs also tend to be superior to entry-level TN and IPS panels, though you won"t find VA used in laptops.

There"s no right answer to which monitor technology is best, because all have their strengths and weaknesses which is why all three coexist on the market today. However if you want our recommendation, we tend to gravitate towards VA panels for most buyers, especially gamers and those after something entry-level. Creative professionals should be looking exclusively at IPS monitors, while those after something dirt cheap or ultra high refresh for competitive gaming should opt for TN, although superior latest-gen IPS and VA offerings are finally matching or even beating the best of TN in some regards.

lcd panel tn or ips in stock

You may be surprised to know that not all LCD panels are created equal. That’s because there’s more than one type of LCD screen. While their differences are subtle, the type of panel technology significantly impacts its image quality and display performance.

In this post, we’ll compare the three types of LCD panel technologies – IPS vs. TN vs. VA – and the pros and cons of each. Knowing the differences is critical to help you find the best type that fits your needs.

The main difference between them is how they arrange and move the liquid crystal display (LCD) molecules in their panels. This, in turn, has a profound effect on image quality, refresh rate, and other performance factors.

A twisted nematic or TN monitor is the oldest and most common type of LCD still used today. It uses a nematic liquid crystal, meaning it has its molecules arranged in parallel, but not on a level plane. These can twist or untwist themselves when a voltage runs through them, hence the name. This twisting effect either allows or blocks light from passing through, turning screen pixels “on” or “off.”

In-panel switching (IPS) panels work similarly to TN monitors, except that the liquid crystal molecules are parallel to the glass panel of the screen. Instead of twisting like in TN monitors, these molecules rotate when a voltage is applied.

Vertical alignment (VA) displays arrange their LCD molecules vertically, perpendicular to the glass panel. When voltage is present, they tilt themselves instead of twisting or rotating.

Being the oldest LCD technology still in use today, TN monitors undoubtedly have their share of benefits, otherwise they wouldn’t have this much longevity! Comparing TN vs. IPS and VA, TN panels are the cheapest and fastest to manufacture. As a result, they are better for the more budget-conscious user. They’re also the most versatile LCD type and have no real-world limits on size, shape, resolution, and refresh rate.

You’ll be hard-pressed to find a TN monitor in a reasonable price range that can display 24-bit (8 bits per channel) color at a wide color gamut, and contrast is limited. The second problem with TN monitors is that because the molecules are not oriented uniformly across the plane, it suffers from a narrow viewing angle. That is, anyone looking at the screen off-axis, such as from a 45-degree angle, will most likely find the image completely un-viewable.

Comparing IPS vs. TN, the former is a drastic improvement over the latter. IPS panels resolve some of the limitations and problems of TN monitors, specifically color accuracy and issues with viewing angles. However, IPS panels suffer from a phenomenon called “IPS glow,” where you can see the display’s backlight clearly if you view it from the side.

Another significant limitation of IPS panels, particularly for gamers, is that they have the lowest refresh rates of any LCD type. And while the color fidelity is fantastic with IPS vs. VA, the latter has superior contrast ratios over the IPS panels.

The biggest strength of VA panels lies in their excellent contrast ratio. Keep in mind that irrespective of the LCD technology used, a backlight is required; this is typically LED. The LCD’s ability to block this light will determine how well it can reproduce blacks, and it’s in this detail where VA excels. That is, blacks are dark and rich in a VA panel vs. IPS. They also lie somewhere in the middle regarding overall image quality, color reproduction, viewing angle, and refresh rate. Overall, VA is a good compromise between TN and IPS.

A drawback of VA vs. IPS and TN is it exhibits an relatively high response time. As such, VA displays are more prone to motion blur and ghosting if you’re viewing fast-moving visuals on a screen, such as when you’re playing a racing game.

It’s worth noting that there is no universal “right” choice for choosing a type of LCD panel. Which one you pick depends on your budget, your intended use, and your expected outcome.

A TN monitor is best if you’re looking for a low-cost, readily available display for tasks that don’t rely on contrast and color accuracy, such as sending emails or typing a document or spreadsheet. They are also the best choice for competitive gamers who want the best refresh rates and response times to give them an edge in online multiplayer games, despite a technically lower image quality.

With their superior color reproduction, IPS panels are best for graphic designers, film editors, photographers, and other visual design professionals. For them, image quality including contrast and color accuracy are more important than refresh rates. IPS panels are also fantastic for casual gamers who want the best visuals and don’t mind the compromise in refresh rate or response time.

If you’re looking for a solid middle-ground for both graphic and non-graphic work, VA works as a general-purpose monitor. While its high response times are unsuitable for gamers, it’s a technology that’s more than suitable for watching movies or TV shows.

Whichever LCD type you choose, make sure you get the right cable, a Premium High Speed HDMI® Cable, or an Ultra High Speed HDMI® Cable to ensure delivery of all the HDMI 2.1 features. Doing this ensures that you’ll get the best experience on your screen.

The Adopted Trademarks HDMI, HDMI High-Definition Multimedia Interface, Premium High Speed HDMI Cable, Ultra High Speed HDMI Cable, and HDMI Logo are registered trademarks or trademarks of HDMI Licensing Administrator, Inc.

lcd panel tn or ips in stock

PC monitors and laptop screens come in all manner of shapes and sizes, but at their heart nearly all have one thing in common: an LCD panel. But not all LCDs are created equal. Some are better for gaming, some offer better contrast and some produce more accurate-looking colours. So, which is the best LCD type for your needs?

We’ll get to how the technology works below, but what you probably want to know off the bat is which technology is right for you. Here we’ll break down the main characteristics of each type: IPS, VA and TN.

Both IPS and VA have two main advantages over TN panels. The first is that they offer much better viewing angles. In other words, you can view both VA and IPS panels from far shallower angles and still be able to see what’s on-screen without much, or any, colour degradation. This is quite a big deal.

VA panels don’t tend to be quite as good as IPS, and as a result there can be a somewhat noticeable variation in brightness when viewed from different angles. ButIPS suffers from what’s known as ‘IPS glow’. This is where the backlight of the LCD shines through when the display is viewed from a certain angle.

You shouldn’t normally notice this unless viewing from an extreme angle, but it can sometimes be seen in the corners of large displays, particularly if they’re not manufactured to a high standard. Some users are particularly bothered by this; for most it’s all but unnoticeable in general use.

Another advantage of IPS and VA panels is that both tend to present better colour reproduction – again, because they simply have a more controlled and precise ability to manage the light that passes through.

As for other differences, IPS tends to have a faster response time than VA since its crystals don’t have to tip over and then twist as they do with VA (see below). You can get fast-refreshing gaming monitors that use VA, but they offer a poor experience due to the slow pixel response time. IPS is slower than TN, but can be fast enough for responsive gaming.

Meanwhile, VA’s last hurrah is contrast. Since its resting state blocks light, its black level is the lowest of all LCDs, yet it can still produce bright colours when needed. A typical IPS or TN panel will have a contrast of 1000:1 or lower. VA panels can double that. This is the reason VA tends to be the best choice for TVs, where a deep black level is important for enjoying movies.

As for TN, it isn’t all bad news – it has a couple of key advantages. The first is that it’s easier to produce so can be used to make cheaper monitors.

If you’re after a monitor that offers great image quality for day-to-day work and image editing, but aren’t particularly bothered about super-competitive gaming, then go for an IPS screen. They deliver the best all-round experience for work and play, and you can still get gaming IPS monitors that refresh at over 100Hz, making them nearly as good as the best TN gaming screens.

However, if gaming is your be-all and end-all then TN is the way to go. Not only are they the most responsive – with the latest displays having refresh rates of 240Hz – but they also tend to be relatively affordable.

That leaves VA, which is the least suited for fast-paced gaming and isn’t as good as IPS for most day-to-day computing such as reading emails, browsing the web and writing documents. However, great contrast levels means it’s the best for watching video and playing some games. So, if you’re looking for a screen to be part of a a multimedia hub then VA might suit your needs.

Liquid crystal is a material that’s somewhere between a liquid and a solid crystal, so it can flow but the molecules remain somewhat aligned. As is the case with solid crystals, these aligned molecules can do clever things with light, refracting or bending it as it passes through.

In the case of LCDs, a grid of pixels made from liquid crystal is sandwiched between two polarising filters and placed in front of a backlight. As light passes through this assembly, it’s either blocked by the second filter or allowed to pass, depending on the orientation of the molecules in the liquid crystal. Vary the voltage and it varies the orientation of the molecules.

This basic principle is what controls the pixels of any LCD panel. Split each pixel into three and add colour filters for red, green and blue and you have yourself a colour LCD screen.

These fundamentals apply to all the different types of LCD available to buy. However, in order to improve certain characteristics of the displays, different types of LCD have been developed that tweak the way in which the liquid crystal, polarising filters and the electrodes are arranged and controlled.

The original and most basic version of a modern LCD is TN, or twisted nematic. This has the polarisers arranged at ninety degrees to one another, so that – normally – no light passes through them. However, the resting state of the crystal has the molecules arranged in a helix, which twists the polarisation of the light as it passes through, in turn allowing it to pass through the second filter.

When a voltage is applied to the liquid crystal the molecules point directly towards the viewer, so no longer twisting the light, resulting in it being blocked by the second polarising filter. TN works well enough, but famously suffers from poor viewing angles (see above), which is why alternative models were developed.

The most famous of these is IPS, or in-plane switching. Here the polarising filters are in the same orientation so that light is blocked when the crystal is in its resting twisted state, rather than allowed to pass through as it would in TN. Then, when activated, the crystals line up in the same direction as the polarising filters and parallel to their surface: for instance, when switched they’re in-plane.

There are several variations on IPS, such as S-IPS and H-IPS, that use slightly different pixel structures and layouts, and have optimisations for faster response times – most displays that are referred to as IPS are in fact S-IPS panels – but the fundamentals are the same.

Samsung has also developed PLS as an alternative to IPS. It’s basically a reworking of the technology that allows Samsung to manufacture the panels without infringing on existing patents.

The other most common variant is Vertical Alignment (VA). Here the crystals are arranged perpendicular to the polarisers, which are again orientated at right-angles as they are with TN. As such, in its resting state a VA panel blocks light as the light isn’t being twisted. When a voltage is applied the crystals tip to a more horizontal position and twist, allowing light to pass through.

lcd panel tn or ips in stock

Whether you just want to project your laptop screen onto a bigger monitor, or you’re buying a new monitor for your desktop, the search for a monitor, like any other component, is riddled with tech jargon that is often difficult to understand. This article is designed to give buyers a quick guide about the differences between TN and IPS, the two main monitor types of today’s world.

Back in the not so distant past, CRT, or Cathode Ray Tube, was the standard monitor type. CRTs got information in an analog format along the cable. The cathode, or electron gun, sits at the back of the monitor’s tapered back and fires electrons corresponding to the signal received from the cable. Closer towards the screen is a set of anodes, that direct the electron to the RGB layer of the actual screen, via part of the signal from the cable. While these monitors were state of the art once upon a time, they don’t really have much of a place in today’s world with the invention of LCD screens, which have become the standard for today’s monitors.

LCD, Liquid Crystal Displays, don’t suffer from the same drawbacks as CRTs. For one, they use far less power. Also, CRTs tend to be harsher to stare at, and lack customization options in terms of brightness controls to the degree that modern monitors do. Additionally, LCDs are much more clear than CRTs, allowing for a more accurate image to be displayed. Modern LCD monitors work by having a two layer system of LED lights and LCD screen. The LED lights are referred to as a “backlight” and cause the image to be projected more clearly than the otherwise fairly dark LCD. The LCD layer, then, is in charge of color production, and the actual recreation of the image. LCD monitors are digital now, via such connections as HDMI or DisplayPort, and therefore can transmit data faster.

TN, or Twisted Nematic panels, use a ‘nematic’ kind of liquid crystal to rotate and pass light through, corresponding to the signal transmitted. The main advantage of TN panels is speed. TN panels take advantage of something called an “active 3D shutter” which in essence allows them to display up to twice as much information as other types of panels. Additionally, the response time of TN panels is much quicker than IPS, though it is possible to find faster IPS panels. The delay in response time for a TN panel is roughly 2ms (milliseconds) however they can go as low as 1ms. Another benefit of TN panels is that they are generally cheaper than their IPS equivalent. This fast response time, and cheap factor, make these monitors quite popular in the gaming community, as well as the general consumer market, as gamers will experience less delay time when rendering an image. Additionally, TN panels allow for a higher refresh rate, going as high as 144Hz – though once again, it is possible to get IPS monitors with similar specs, just for a more money.

The major downside of TN panels is that they lack 100% accurate color reproduction. If you’re browsing Facebook, it’s not very important. However, if you’re doing color sensitive work perhaps for a movie or a photo edit, then TN panels may not be the right monitor for you.

The main difference between IPS, In-plane Switching,  and TN panels, as touched on above, are price and color reproduction. IPS monitors are generally preferred by those in the professional rendering industry, as they more accurately portray colors of images. The downside, however, is that they are more expensive, though it is quite possible to find affordable IPS monitors for price ranges from $150 all the way up to thousands of dollars.

IPS monitors work by having a parallel instead of perpendicular array of pixels, which in addition to allowing for better color reproduction has the benefit of excellent viewing angles, while TN panels can often discolor if viewed from any relatively extreme angle. In essence, IPS panels were designed to address the flaws with TN panels, and therefore are preferred by many, from the average consumer to the professional editor.

Don’t let the benefits of IPS panels ruin your opinion of TN panels, though, for TN panels are still fantastic for certain situations. If you’re just sitting in one place in front of your computer, and absolutely perfect color reproduction isn’t really important to you, then TN is the way to go, especially if you’re trying to save a little on your monitor purchase.

To summarize, TN panels have a better response time, as well as a cheaper price tag, while IPS panels have better viewing angles and color reproduction for a little extra cash. Whatever your choice of type, there are a plethora of excellent monitors for sale across the internet, in an immense variety of sizes and resolutions.

lcd panel tn or ips in stock

This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.

lcd panel tn or ips in stock

With so many companies in the market churning out newer and newer gaming monitors, shopping for LCD monitors can be confusing. Not only is there a lot of marketing noise out there today, but there are also debates on what panel/monitor type is the best?

When it comes to buying either a TV for home or a monitor for your office or a display for that gaming setup in your basement, things can be distilled down to usage and based on that; you can compare what different panels have to offer and how they will suit you. In this article, we will be having a quick look at the three most commonly used panels – TN, IPS and VA and helping you understand what they have to offer, and what they can be best used for. But first, a basic run on what an LCD is.

The major drawback of the CRT (cathode ray tube) technology was that it occupied quite a significant amount of space. The CRT displays worked on the principle of ‘light emission’ and they consumed a lot of power, which just added up to the size issue. The solution to these problems came in technological research on developing a screen that consumes less power (hence, increasing productivity), and which was smaller. Lit using fluorescent tubes, LCDs (liquid crystal displays) consume less power, are way thinner than the CRTs, and work on the principle of ‘blocking light’ rather than emitting it.

LCDs are made from a passive/active matrix grid made of conductors, the latter called as thin film display (or a TFT). Pixels are mounted on this grid at each intersection (and an active matrix has a transistor located at each pixel intersection). This network structure controls a pixel’s luminance and consuming a little amount of current. This ability leaves us with a choice to switch the current on and off more often on the grid, and this leads to a high ‘refresh rate.’ And a high refresh rate means a ‘smoother’ operation.

Developments in these screen types lead to LED TVs. The main difference between these and the LCDs is that they are lit using Light Emitting Diodes instead of fluorescent tubes. So technically, a LED display is a ‘LED backlit LCD screen.’

This LED backlighting helps in enhancing the color contrast and it consumes less power as compared to fluorescent tube lit panels. It significantly improves the overall picture quality by tapping into a wider RGB color range, and there is a better brightness achieved which allows you to see the images clearly, even in well-lit environments. On top of these things, LED backlit displays to consume less power and are lightweight too. So there are no drawbacks of this technology as such, resulting in backlighting being used in more and more panels every day. Today, we have three types of backlighting: White Edge, Full LED array, and Local Dimming LEDs.

White edge implements a diffusion panel, with white LED around the edges of the screen. This helps disperse the light evenly throughout the screen. A full LED array, as the name suggests, implements arrays of LED lights placed right behind the screen that collectively controlled for an even light dispersion. The third one is the Local Dimming LED system, which implements an array of dynamic led lights that can either be controlled in groups or individually to obtain an even light pattern.

This information, however not essential for everyone to know, is a good bit for panel enthusiasts and pro gamers, as having a high refresh rate depends