lcd panel connector pinout pricelist

There are many LCD screen manufacturers for the Laptop Industry. LCD screens have different resolutions, size and type and these screens are compatible as long as the resolution and connections are the same.

For this listing, we will ship you a brand new OEM Compatible LCD screen manufactured either by Samsung, LG, Chi Mei, Chunghwa, Sharp, or AUOptronics. For more information about each LCD manufacture please click here.

If you wish to know the make of the actual LCD that will be shipped to you, please contact us by phone with your order information between 10AM - 8PM EST (Monday – Friday).

This is a page where you can find common laptop/desktop LCD panel pinouts and see if your laptop screen"s pinout matches any one of them (it likely does!).

This is a very common pinout for higher-resolution CCFL displays. If you have a 1440x900, 1400x1050 or 1680x1050 panel, it"s likely using this pinout.

This is a pinout for desktop LCD monitor screens - laptop panels do not use this pinout (if there are some, let me know). If you"re ordering a MT6820 (MT561) board, it will arrive with a cable that has this specific pinout and is therefore incompatible with laptop screens - as you"re likely here to reuse a laptop screen, you will want to either rewire the cable you get, or order a suitable cable (for either A or B pinout, whichever you need) from the beginning.

This is a pinout for older, 1024x768 and similar laptop screens, CCFL-equipped ones. 1024x768 screens used both the A pinout, this pinout and even a different pinout with a connector I haven"t made a description for yet, so if you have a 1024x768 screen you"d like to reuse, there"s three possible options and you need to check which one you have before you buy/reuse/build a cable.

This is a pinout that"s, apparently, specific to a select range of 18.5" 1366x768 displays used in desktop LCD monitors. It"s not compatible with either A, B or C pinouts, and requires a specifically wired cable.

In some datasheets, the pinout will list extra pins - one before and one after the main pins, both would be described something like "shield GND". So, for a FI-X 30-pin connector, you might find a pinout in your datasheet that lists 32 pins instead of 30. These two pins are not "real" connector pins and you shouldn"t worry about them - they"re pins that the manufacturer decided to mention for some reason, but they"re not relevant when you are actually connecting to the panel.

Fortunately, finding the right screen for your device doesn’t have to be stressful. Often you can find what you are looking for simply by entering your laptop model number into the search bar of online retailers. You may also want to include the search term “LCD” in order to narrow down the accessories that are available for your computer. For the most part, screens should be priced fairly reasonably and you may even be able to buy some for around $50, although it depends on the type of computer you have.

One of the trickier parts of replacing your laptop screen will be removing the LCD. First, make sure that the bezel is completely off so you can have unfettered access to the LCD screen. It will be secured onto the laptop’s metal frame, and you will have to take it off from the left and right sides.

There will be two more screws to loosen at the top corners before you can lift the screen slightly away from the metal frame. You’ll probably find a few more screws securing the LCD on the sides, and these will also need to be unscrewed. In some cases, heavy duty tape may have been used instead.

After you remove the attachments, your screen should now lie on your keyboard. It can be a bit of a challenge to make sure there is enough space between the LCD and the metal frame, but you should be gentle to avoid ruining the video cable that runs from the back of the screen to the body of the laptop. If this is damaged, you will need a professional’s help to repair it.

Now it’s time to disconnect the cable from the LCD. You can usually find the connectors in the center, though they may alternatively be located at the bottom of your screen. It’s likely that adhesive was used to connect the two, so you will need to gently pry one from the other. There may also be some tape that needs to be removed, but overall it should be pretty simple to disconnect your LCD from the video connector. Set it somewhere away from your tools.

As you remove the screen, you should be able to locate where your new one will go. Place it face down within the frame so it fits perfectly. After that, you can reattach the video connector so it is placed exactly where the previous LCD sat. Make sure that it is as aligned as possible then attach it with tape or adhesive.

lcd panel connector pinout pricelist

A close look at the video input interfaces used in LCD monitors. With the emergence of a new generation of interfaces, growing numbers of LCD monitors feature multiple and different interfaces. Image quality and ease of use are likely to depend on how well the user knows and uses the unique characteristics of each interface when connecting the appropriate devices.

Note: Below is the translation from the Japanese of the "IT Media LCD Display Course II, Part 2," published on December 16, 2008. Copyright 2011 ITmedia Inc. Information about Mini DisplayPort was added to the English translation.

Driven by demand for higher-resolution monitor environments and the proliferation of high-definition devices, the types of video input interfaces ("interfaces" hereinafter) found in LCD monitors continue to proliferate. More than likely, significant numbers of users encountering LCD monitors incorporating multiple input systems have wondered what to connect to which terminal. In this article, we"ll discuss, one by one, the main interfaces used today. But first, let"s give an overview of the types of interfaces available.

The interfaces for LCD monitors designed for use with PCs can be grouped into two categories: analog interfaces, carryovers from the days of CRT monitors, and the digital interfaces developed more recently. An analog interface involves the additional steps of conversion of digital signals within the PC to analog signals for output and the conversion of these analog signals back into digital form by the LCD monitor receiving the signal. This series of actions can degrade image quality. (Image quality also depends on the quality of the route used in converting from analog to digital.) A digital interface offers superior image quality, since it transmits digital signals without conversion or modification.

LCD-monitor interfaces also can be grouped by differences in the devices connected. Major categories here are inputs from PCs and inputs from audio-video (AV) devices. PC input generally involves one of the following five interface types: D-Sub for analog connections; DVI-D for digital connections; DVI-I, which is compatible with both analog and digital connections; and HDMI and DisplayPort, representing the new generation of interfaces for digital connections. Other more recent adapters input and output PC RGB signals and LCD monitors using USB as a video input interface.

It"s worth noting that while HDMI was designed for use with AV input and output, the standard also supports PC input and output. LCD monitors incorporating HDMI ports include some that support PC input officially and others that—whether or not they can display PC input—do not support PC input officially.

Known officially as D-Sub miniature, D-Sub is not exclusive to display use. It"s also used for serial-port, parallel-port, SCSI, and other connectors, with the number of connector pins depending on the purpose of use. However, these connector standards are rarely if ever found in PCs now for general-purpose personal use, most such applications having migrated to USB.

When used as a monitor interface, a D-Sub port is also known as a VGA port, an analog connection standard that"s been around for some time. The connector is a DE-15 connector with 15 pins in three rows, often referred to as a "mini-D-Sub 15-pin" or "D-Sub 15-pin" connector. (Some connectors omit unused pins.) D-Sub is currently the most widely used monitor interface, compatible with very large numbers of PCs and LCD monitors.

A D-Sub female connector (photo at left) installed on the monitor side and a D-Sub male connector (center photo) on the cable side. A D-Sub cable features a screw on each end of the connector that can be turned by hand to prevent unintended disconnection (photo at right).

The Digital Visual Interface (DVI) standard uses one of three types of connectors: DVI-D for digital connection; DVI-A for analog connection; and DVI-I, compatible with both digital and analog connections. The DVI-A connector for analog use is not in general use and can be disregarded when choosing monitor products.

Keep in mind that there are two types of mainstream DVI-D digital connections: single link and dual link. For a single-link DVI-D connection, the maximum resolution that can be displayed is 1920 × 1200 pixels (WUXGA). Higher resolutions (such as 2560 × 1600 pixels) require a dual-link DVI-D connection providing double the bandwidth of a single-link DVI-D (7.4 Gb/second or higher). To use a dual-link DVI-D connection, the DVI-D input on the LCD monitor side, the DVI-D output on the PC side, and the DVI-D cable must all be compatible with the dual-link DVI-D standard.

DVI-I, the other DVI standard, can be used with both digital and analog connections, depending on the monitor cable used. Since a DVI-I analog signal is compatible with the D-Sub standard, an analog connection can be formed by using a monitor cable with a D-Sub connector on one end and a DVI-I connector on the other. Depending on the cable and the connectors on the PC side and on the LCD-monitor side, it may also be possible to use an adapter for connecting a DVI-I connector with a D-Sub connector.

A DVI-D female connector installed on the monitor side (photo at left) and a DVI-D single-link (18-pin) male connector installed on the cable (center photo). As with D-Sub cables, a DVI-D cable can be secured into place by turning the screws on either end of the connector (photo at right).

Monitor cables with DVI-I connectors on both ends were available at one time. These are rare today, since this configuration made it difficult to determine whether the connection was digital or analog and generated frequent connection issues. Having DVI-I connectors on both the PC side and the LCD monitor side can lead to confusion. In such cases, the ideal configuration is a digital connection made with a DVI-D cable.

The shapes of HDMI, DisplayPort, and Mini DisplayPort connectors resemble that of a USB series-A connector (on the side of the USB host, such as a PC). The connectors lack screws, allowing the cables to be readily inserted and removed. (The disadvantage: This makes it easier to dislodge a cable connection if a hand or foot catches on the cable.)

At left is an HDMI (type A) female connector; in the middle is a DisplayPort female connector; at right is a Mini DisplayPort female connector. The HDMI connector has 19 pins. The DisplayPort and Mini DisplayPort connectors have 20 pins and an asymmetrical (left to right) connector. (The HDMI standard also defines a 29-pin type-B connector compatible with resolutions exceeding 1080p.)

Another feature is that HDMI, DisplayPort, and Mini DisplayPort video signals can be converted back and forth with the DVI-D standard, a PC digital interface. Using the appropriate conversion adapter or cable, we can output video from a DVI-D, HDMI, DisplayPort, and Mini DisplayPort connector and input to any of these options. Currently, however, this implementation appears to be imperfect: In certain cases, input and output devices are not completely compatible (i.e., video does not display).

An HDMI (type-A) female connector (photo at left) and male connector (center photo). The compact HDMI cable is easily connected and disconnected, just like a USB cable (photo at right). HDMI cables come in two types: Standard (category 1), denoting those that have passed 74.25 MHz in transmission-speed tests, and High Speed (category 2), denoting those certified for 340 MHz. A High Speed cable is recommended when using high-definition signals such as 1440p.

DisplayPort female (photo at left) and male (center photo) connectors. Although a DisplayPort cable resembles an HDMI cable, it has two hooks at the top of the connector to make it harder to disconnect accidentally (photo at right).

Since DisplayPort is a serial interface like PCI Express that generates a clock from the data instead of using external clock signals, data transmission speeds and functionality are easily improved. In addition, since DisplayPort employs a configuration wherein the LCD monitor is operated directly, it makes it possible to reduce the numbers of components. Another benefit is its ability to transmit signals over distances of up to 15 meters.

A component video port has separate connectors for each of the three video-signal types: A green connector for the Y signal, a blue connector for the Pb (Cb) signal, and a red connector for the Pr (Cr) signal. In most cases, the compatible video formats are 480i, 480p, 720p, and 1080i, with connectors labeled Y, Cb, and Cr compatible with 480i video and connectors labeled Y, Pb, and Pr with higher-quality video formats.

While component video ports offer higher quality and greater benefits than most other types of analog video input, they also entail inconveniences, including more troublesome connections (since they use three connectors) and greater space requirements on devices equipped with such ports. Additionally, they are incapable of transmitting control signals. In Japan, the D-Terminal standard, formulated by the Japan Electronics and Information Technology Industries Association (JEITA, known at the time as the Electronic Industry Association of Japan, or EIAJ), which features its own improvements on these points, has entered widespread use.

A D-Terminal connector combines the three types of component video signals into a single cable and is easier to connect. It also embeds a control signal to identify scanning lines, scanning method, and aspect ratio. (In passing, it"s called a D-Terminal only because its connector is shaped like the letter "D"; the "D" does not mean "digital." Signals flowing through the D-Terminal and the connecting cable are analog.) The table below gives the types of D-Terminals (D1 – 5) and corresponding video formats. While many products feature D5 terminals, which are compatible with 1080p video, this is not specified in the official JEITA standard.

D-Terminal female (photo at left) and male (center photo) connectors. Each connector end of a D-Terminal cable features a hook to prevent accidental disconnection (photo at right). The connector has 14 pins.

Comparisons of picture quality between component video and D-Terminal standards show that component video, with its three separate connectors, offers higher picture quality, due to structural characteristics of the cable and connector. Many believe this difference becomes even more marked with longer cables.

On an RCA connector with three single pins in a row, the yellow pin is the composite female connector (photo at left). Most composite cables assume the form of a single cable that splits into three connectors, with the yellow connector used for video and the red and white for stereo audio (center photo). An S-Video female connector (photo at right), which has four pins.

Most such products are adapters, which connect to the PC using USB and feature DVI-D or DVI-I connectors on the output side. These are then connected to LCD monitors. After the user installs a device driver, the PC recognizes the adapter as a monitor adapter. Users can create a multi-monitor environment in Windows by activating the secondary monitor connected to the adapter in Display Properties. In terms of display performance, these adapters are not well suited to uses that require high-speed response; they are associated with slight delays in reflecting mouse or keyboard operations.

A small number of LCD monitors on the market use USB as a video input interface, making it possible to output and display a PC screen through a USB connection between the PC and the LCD display. These, too, are ideal for laptops and netbooks, since they allow users to use laptops connected to large-screen LCD monitors at their office desks or at home, then use the laptops for mobile use when out and about simply by unplugging a single USB cable.

lcd panel connector pinout pricelist

This is a page where you can find common laptop/desktop LCD panel pinouts and see if your laptop screen"s pinout matches any one of them (it likely does!).

This is a very common pinout for higher-resolution CCFL displays. If you have a 1440x900, 1400x1050 or 1680x1050 panel, it"s likely using this pinout.

This is a pinout for desktop LCD monitor screens - laptop panels do not use this pinout (if there are some, let me know). If you"re ordering a MT6820 (MT561) board, it will arrive with a cable that has this specific pinout and is therefore incompatible with laptop screens - as you"re likely here to reuse a laptop screen, you will want to either rewire the cable you get, or order a suitable cable (for either A or B pinout, whichever you need) from the beginning.

This is a pinout for older, 1024x768 and similar laptop screens, CCFL-equipped ones. 1024x768 screens used both the A pinout, this pinout and even a different pinout with a connector I haven"t made a description for yet, so if you have a 1024x768 screen you"d like to reuse, there"s three possible options and you need to check which one you have before you buy/reuse/build a cable.

This is a pinout that"s, apparently, specific to a select range of 18.5" 1366x768 displays used in desktop LCD monitors. It"s not compatible with either A, B or C pinouts, and requires a specifically wired cable.

In some datasheets, the pinout will list extra pins - one before and one after the main pins, both would be described something like "shield GND". So, for a FI-X 30-pin connector, you might find a pinout in your datasheet that lists 32 pins instead of 30. These two pins are not "real" connector pins and you shouldn"t worry about them - they"re pins that the manufacturer decided to mention for some reason, but they"re not relevant when you are actually connecting to the panel.