arduino counter with lcd display made in china
I don"t know where the term "PLJ-6LED 2004A" came from since the first half (PLJ-6LED) seems to refer to a 6-digit, 7-segment display that does not show up on the Sainsmart website. The second half (2004A) comes up often since it refers to the 20x4 display size. It doesn"t much matter which one you are using since they are all more or less the same as long as the row of pins is at the upper left (and not the lower left) corner of the pc board.
I assume you mean the "New Liquidcrystal library" which is a replacement for, not an accessory to, the library that comes with the Arduino IDE. You must follow the installation instructions for this library which you can get here. I believe they also come packaged with the library. Basically you have to remove all traces of any other LiquidCrystal libraries for this one to compile.
I assume that you are referring to this ArduinoInfo page, and to the device he calls "I2C LCD DISPLAY VERSION 1:" That tutorial is actually the one I used when I was tinkering with my adapter which looks like that one and also came on a slow boat from the far east, Banggood in my case.
There are also eight different combinations of jumper possibilities for A0, A1 and A2 although they are almost always all pulled high or all pulled low. This leaves four possible addresses of which he mentions only the two that result with the jumpers setting the address pins high (0x27 and 0x3F). If the jumpers set the address pins low you get the base addresses mentioned above.
You also have to deal with the connections between the chip on the IC and the pins that go to the LCD module. These are specific to each pc board and the tutorial gives you the constructor that goes with each of the boards pictured. There is a "guesser" sketch available here if you want to go that route.
@Railroader Thanks for your advice, although I felt that it was a little patronising. But I guess that since the Arduino is primarily targeted at schoolchildren and for educational purposes, that"s a fair enough assumption of my age and career.
I am aware that there are better alternatives for screens that can be found for under £15. I was curious what was in a £15 quid projector and bought it for that reason. Disassembling it was fun and has already netted me lenses, heatsinks, and LEDs etc. for other projects which is worth more than its cost. The reason I asked was because a) I am loathe to bin the LCD and hence contribute to our electronic waste problems, and b) I am specifically looking for LEDs (most of the displays on eBay and Amazon are OLEDs) as I want to make an ESP32-controlled projector as a project. Non-OLEDs are difficult to find on eBay/Amazon nowadays. Hence I was asking on the off-chance that this screen might be similar to something else in Occidental part of the world that I could use.
From what you say it feels its very unlikely for there to be a shortcut and I"ll have decode the signals manually. Designing and manufacturing (or finding a 30 pin adapter) is not a problem but I can"t justify to myself spending the better part of my weekends in a month to decode the signals just to use it when I can spend £10 buying an SPI LCD from eBay which does the exact same thing. I"ll probably bite the bullet and do that.
Shame about having to bin the screen though. I have found the schematics for the GM8284DD chip and probably with a magnifying glass would be able to make out the LCD connections (RGB input etc.) on the circuit board but again, I"m not sure if its that cost-efficient spending that many weekends working on it...
Hello, I am having a problem programming a counter that can be reset to 0 to be displayed on my LCD. The counter works fine when it is still in its one"s digit, but once it reaches 2 digits and I reset the counter, there is a problem. When it reaches 2 digits, for example 10, the LCD keeps the second digit, meaning that when I restart my counter, it reads 10, 11, 12... . Elaborating on the problem, when I stop the counter at 11, it holds the 1 digit. This means that when I restart the count, it displays 11, 21, 31 and so on. This is my code as for now.
I bought a cheap LCD screen for a project I"m working on to get my feet wet with programming LCD touch screens before buying a "full-size" screen. But i can not find any libraries or code to get it to display anything. Ive downloaded the new ILI9341 library along with 4-5 other ones and can not get it to display or do anything.
Im using an UNO with THIS display. i would prefer to use my mega but this one says it is only for the UNO. I tried the links on the eBay page for getting it to work but they didn"t seem to help.
here are three codes I"m trying to run that upload but don"t display. Im extremely new to this and i had a fellow programmer give me a hand but can not figure it out.
This library enables you to use ISR-based PWM channels on AVR ATmega164, ATmega324, ATmega644, ATmega1284 with MCUdude MightyCore, to create and output PWM any GPIO pin
This library enables you to use Hardware-based PWM channels on Arduino AVR ATtiny-based boards (ATtiny3217, etc.), using megaTinyCore, to create and output PWM to pins.
This library enables you to use ISR-based PWM channels on Arduino AVR ATtiny-based boards (ATtiny3217, etc.), using megaTinyCore, to create and output PWM any GPIO pin.
Small low-level classes and functions for Arduino: incrementMod(), decToBcd(). strcmp_PP(), PrintStr, PrintStrN, printPad{N}To(), printIntAsFloat(), TimingStats, formUrlEncode(), FCString, KString, hashDjb2(), binarySearch(), linearSearch(), isSorted(), reverse(), and so on.
Cyclic Redundancy Check (CRC) algorithms (crc8, crc16ccitt, crc32) programmatically converted from C99 code generated by pycrc (https://pycrc.org) to Arduino C++ using namespaces and PROGMEM flash memory.
Various sorting algorithms for Arduino, including Bubble Sort, Insertion Sort, Selection Sort, Shell Sort (3 versions), Comb Sort (4 versions), Quick Sort (3 versions).
Date, time, timezone classes for Arduino supporting the full IANA TZ Database to convert epoch seconds to date and time components in different time zones.
Clock classes for Arduino that provides an auto-incrementing count of seconds since a known epoch which can be synchronized from external sources such as an NTP server, a DS3231 RTC chip, or an STM32 RTC chip.
Useful Arduino utilities which are too small as separate libraries, but complex enough to be shared among multiple projects, and often have external dependencies to other libraries.
Fast and compact software I2C implementations (SimpleWireInterface, SimpleWireFastInterface) on Arduino platforms. Also provides adapter classes to allow the use of third party I2C libraries using the same API.
Enables Bluetooth® Low Energy connectivity on the Arduino MKR WiFi 1010, Arduino UNO WiFi Rev.2, Arduino Nano 33 IoT, Arduino Nano 33 BLE and Nicla Sense ME.
ESP32 + LwIP ENC28J60, including ESP32-S2, ESP32-S3 and ESP32-C3, Connection and Credentials Manager using AsyncWebServer, with enhanced GUI and fallback Web ConfigPortal.
ESP32 + LwIP W5500 / ENC28J60, including ESP32-S2, ESP32-S3 and ESP32-C3, Connection and Credentials Manager using AsyncWebServer, with enhanced GUI and fallback Web ConfigPortal.
ESP32 + LwIP W5500, including ESP32-S2, ESP32-S3 and ESP32-C3, Connection and Credentials Manager using AsyncWebServer, with enhanced GUI and fallback Web ConfigPortal.
(ESP8266 + LwIP W5500 / W5100(S) / ENC28J60) Connection and Credentials Manager using AsyncWebServer, with enhanced GUI and fallback Web ConfigPortal.
Simple Async HTTP Request library, supporting GET, POST, PUT, PATCH, DELETE and HEAD, on top of AsyncTCP libraries, such as AsyncTCP, ESPAsyncTCP, AsyncTCP_STM32, etc.. for ESP32 (including ESP32_S2, ESP32_S3 and ESP32_C3), WT32_ETH01 (ESP32 + LAN8720), ESP32 with LwIP ENC28J60, ESP8266 (WiFi, W5x00 or ENC28J60) and currently STM32 with LAN8720 or built-in LAN8742A Ethernet.
Simple Async HTTP Request library, supporting GET, POST, PUT, PATCH, DELETE and HEAD, on top of AsyncTCP_RP2040W library for RASPBERRY_PI_PICO_W with CYW43439 WiFi.
Simple Async HTTPS Request library, supporting GET, POST, PUT, PATCH, DELETE and HEAD, on top of AsyncTCP_SSL library for ESP32 (including ESP32_S2, ESP32_S3 and ESP32_C3), WT32_ETH01 (ESP32 + LAN8720) and ESP32 with LwIP ENC28J60.
Fully Asynchronous UDP Library for RASPBERRY_PI_PICO_W using CYW43439 WiFi with arduino-pico core. The library is easy to use and includes support for Unicast, Broadcast and Multicast environments.
ESP32 + LwIP LAN8720, including WT32-S1, ESP32-S2, ESP32-S3 and ESP32-C3, Connection and Credentials Manager using AsyncWebServer, with enhanced GUI and fallback Web ConfigPortal.
The last hope for the desperate AVR programmer. A small (344 bytes) Arduino library to have real program traces and to find the place where your program hangs.
Simple Ethernet Manager for MultiBlynk for Teensy, SAM DUE, SAMD21, SAMD51, nRF52, ESP32, ESP8266, RP2040-based (Nano_RP2040_Connect, RASPBERRY_PI_PICO) boards, etc. with or without SSL, configuration data saved in ESP8266/ESP32 LittleFS, SPIFFS, nRF52/RP2040 LittleFS/InternalFS, EEPROM, DueFlashStorage or SAMD FlashStorage.
Simple Blynk Credentials Manager for STM32 boards using built-in LAN8742A Ethernet, LAN8720, ENC28J60 or W5x00 Ethernet shields, with or without SSL, configuration data saved in EEPROM.
Simple GSM shield Credentials Manager for Blynk and ESP32 / ESP8266 boards, with or without SSL, configuration data saved in LittleFS / SPIFFS / EEPROM.
Simple WiFiManager for Blynk and ESP32 with or without SSL, configuration data saved in either SPIFFS or EEPROM. Enable inclusion of both ESP32 Blynk BT/BLE and WiFi libraries. Then select one at reboot or run both. Eliminate hardcoding your Wifi and Blynk credentials and configuration data saved in either LittleFS, SPIFFS or EEPROM. Using AsyncWebServer instead of WebServer, with WiFi networks scanning for selection in Configuration Portal.
Simple GSM shield Credentials Manager for Blynk and ESP32 / ESP8266 boards, with or without SSL, configuration data saved in LittleFS / SPIFFS / EEPROM.
Simple Async WiFiManager for Blynk and ESP32 (including ESP32-S2, ESP32-C3), ESP8266 with or without SSL, configuration data saved in either LittleFS, SPIFFS or EEPROM. Now working with new ESP8266 core v3.0.1 and ESP32 core v1.0.6
Simple WiFiManager for Blynk with MultiWiFi Credentials, for Mega, SAM DUE, SAMD21, SAMD51, nRF52, STM32F/L/H/G/WB/MP1, Teensy, RP2040-based RASPBERRY_PI_PICO, etc. boards running ESP8266/ESP32-AT shields. Configuration data saved in EEPROM, EEPROM-emulated FlashStorage_STM32 or FlashStorage_SAMD, SAM-DUE DueFlashStorage or nRF52/TP2040 LittleFS.
Simple WiFiManager for Blynk and ESP32 (including ESP32-S2, ESP32-C3), ESP8266 with or without SSL, configuration data saved in either LittleFS, SPIFFS or EEPROM. Now working with new ESP8266 core v3.0.0 and ESP32 core v1.0.6
An Arduino library that takes input in degrees and output a string or integer for the 4, 8, 16, or 32 compass headings (like North, South, East, and West).
Directly interface Arduino, esp8266, and esp32 to DSC PowerSeries and Classic security systems for integration with home automation, remote control apps, notifications on alarm events, and emulating DSC panels to connect DSC keypads.
This library enables you to use Hardware-based PWM channels on Arduino AVRDx-based boards (AVR128Dx, AVR64Dx, AVR32Dx, etc.), using DxCore, to create and output PWM.
This library enables you to use ISR-based PWM channels on Arduino AVRDx-based boards (AVR128Dx, AVR64Dx, AVR32Dx, etc.), using DxCore, to create and output PWM any GPIO pin.
Small and easy to use Arduino library for using push buttons at INT0/pin2 and / or any PinChangeInterrupt pin.Functions for long and double press detection are included.Just connect buttons between ground and any pin of your Arduino - that"s itNo call of begin() or polling function like update() required. No blocking debouncing delay.
Arduino library for controlling standard LEDs in an easy way. EasyLed provides simple logical methods like led.on(), led.toggle(), led.flash(), led.isOff() and more.
OpenTherm Library to control Central Heating (CH), HVAC (Heating, Ventilation, Air Conditioning) or Solar systems by creating a thermostat using Arduino IDE and ESP32 / ESP8266 hardware.
ESP32 (including ESP32-S2, ESP32-S3 and ESP32-C3), ESP8266 WiFi Connection Manager using AsyncWebServer, with enhanced GUI and fallback Web ConfigPortal.
Start serving a local webpage if cannot connect to WiFi, also include Buffer for to WiFi client to prevent small packets with partial messages being sent.
ESP32 + LwIP ENC28J60, including ESP32-S2, ESP32-S3 and ESP32-C3, Connection and Credentials Manager using AsyncWebServer, with enhanced GUI and fallback Web ConfigPortal.
(ESP32 + LwIP W5500 / ENC28J60), including ESP32-S2, ESP32-S3 and ESP32-C3, Connection and Credentials Manager, with enhanced GUI and fallback Web ConfigPortal.
ESP32 + LwIP W5500, including ESP32-S2, ESP32-S3 and ESP32-C3, Connection and Credentials Manager using AsyncWebServer, with enhanced GUI and fallback Web ConfigPortal.
Simple WebServer library for AVR, Teensy, SAM DUE, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, nRF52, SIPEED_MAIX_DUINO and RP2040-based (RASPBERRY_PI_PICO) boards using ESP8266/ESP32 AT-command shields with functions similar to those of ESP8266/ESP32 WebServer libraries
An ESP8266/ESP32-AT library for Arduino providing an easy-to-use way to control ESP8266-AT/ESP32-AT WiFi shields using AT-commands. For AVR, Teensy, SAM DUE, SAMD21, SAMD51, STM32, nRF52, SIPEED_MAIX_DUINO and RP2040-based (Nano_RP2040_Connect, RASPBERRY_PI_PICO, etc.) boards using ESP8266/ESP32 AT-command shields.
WiFi/Credentials Manager for nRF52, SAM DUE, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, RP2040-based Nano_RP2040_Connect, RASPBERRY_PI_PICO, etc. boards using ESP8266/ESP32-AT-command shields with fallback web configuration portal. Credentials are saved in EEPROM, SAMD FlashStorage, DueFlashStorage or nRF52/RP2040 LittleFS.
Library to detect a multi reset within a predetermined time, using RTC Memory, EEPROM, LittleFS or SPIFFS for ESP8266 and ESP32, ESP32_C3, ESP32_S2, ESP32_S3
Library to configure MultiWiFi/Credentials at runtime for ESP32 (including ESP32-S2, ESP32-S3 and ESP32-C3) and ESP8266 boards. With enhanced GUI and fallback web ConfigPortal.
Simple Ethernet Manager for STM32F/L/H/G/WB/MP1 boards with Ethernet LAN8720, W5x00, ENC28J60 or built-in LAN8742A shields, with or without SSL, configuration data saved in EEPROM. With DoubleResetDetect feature.
ezTime - pronounced "Easy Time" - is a very easy to use Arduino time and date library that provides NTP network time lookups, extensive timezone support, formatted time and date strings, user events, millisecond precision and more.
A library for implementing fixed-point in-place Fast Fourier Transform on Arduino. It sacrifices precision and instead it is way faster than floating-point implementations.
The GCodeParser library is a lightweight G-Code parser for the Arduino using only a single character buffer to first collect a line of code (also called a "block") from a serial or file input and then parse that line into a code block and comments.
Basic to advanced line following, intersection detection, basic motor control, battery monitoring, gripper control, and basic collision detection with the Gobbit robot.
Arduino library for the Flysky/Turnigy RC iBUS protocol - servo (receive) and sensors/telemetry (send) using hardware UART (AVR, ESP32 and STM32 architectures)
An Arduino library to control the Iowa Scaled Engineering I2C-IRSENSE ( https://www.iascaled.com/store/I2C-IRSENSE ) reflective infrared proximity sensor.
This library provides an interface to control a stepper motor through Infineon’s Stepper Motor Control Shield "KIT_XMC1300_IFX9201" with h-bridge IFX9201 and XMC1300 microcontroller.
Treat PCF8574, MCP23017 and Shift registers like pins, matrix keypad, touch screen handler, button press and rotary encoder management (switches) on any supported IO (including DfRobot & Joysticks) with event handling, interchangable AVR/I2C(AT24) EEPROMs.
Convinient way to map a push-button to a keyboard key. This library utilize the ability of 32u4-based Arduino-compatible boards to emulate USB-keyboard.
This library allows you to easily create light animations from an Arduino board or an ATtiny microcontroller (traffic lights, chaser, shopkeeper sign, etc.)
LiquidCrystal fork for displays based on HD44780. Uses the IOAbstraction library to work with i2c, PCF8574, MCP23017, Shift registers, Arduino pins and ports interchangably.
This library enables you to use ISR-based PWM channels on RP2040-based boards, such as Nano_RP2040_Connect, RASPBERRY_PI_PICO, with Arduino-mbed (mbed_nano or mbed_rp2040) core to create and output PWM any GPIO pin.
Arduino library for MCP4728 quad channel, 12-bit voltage output Digital-to-Analog Convertor with non-volatile memory and I2C compatible Serial Interface
This library enables you to use ISR-based PWM channels on an Arduino megaAVR board, such as UNO WiFi Rev2, AVR_Nano_Every, etc., to create and output PWM any GPIO pin.
Replace Arduino methods with mocked versions and let you develop code without the hardware. Run parallel hardware and system development for greater efficiency.
A library package for ARDUINO acting as ModBus slave communicating through UART-to-RS485 converter. Originally written by Geabong github user. Improved by Łukasz Ślusarczyk.
Connects to MySQL or MariaDB using ESP8266/ESP32, WT32_ETH01 (ESP32 + LAN8720A), nRF52, SAMD21/SAMD51, STM32F/L/H/G/WB/MP1, Teensy, SAM DUE, Mega, RP2040-based boards, Portenta_H7, etc. with W5x00, ENC28J60 Ethernet, Teensy 4.1 NativeEthernet/QNEthernet, WiFiNINA modules/shields or Portenta_H7 WiFi/Ethernet. W5x00 can use Ethernet_Generic library. ENC28J60 can use either EthernetENC or UIPEthernet Library.
This library enables you to use ISR-based PWM channels on an nRF52-based board using Arduino-mbed mbed_nano core such as Nano-33-BLE to create and output PWM any GPIO pin.
This library enables you to use ISR-based PWM channels on an nRF52-based board using Adafruit_nRF52_Arduino core such as Itsy-Bitsy nRF52840 to create and output PWM any GPIO pin.
An Arduino library for the Nano 33 BLE Sense that leverages Mbed OS to automatically place sensor measurements in a ring buffer that can be integrated into programs in a simple manner.
The library for OpenBCI Ganglion board. Please use the DefaultGanglion.ino file in the examples to use the code that ships with every Ganglion board. Look through the skimmed down versions of the main firmware in the other examples.
his library enables you to use Hardware-based PWM channels on RP2040-based boards, such as Nano_RP2040_Connect, RASPBERRY_PI_PICO, with either Arduino-mbed (mbed_nano or mbed_rp2040) or arduino-pico core to create and output PWM to any GPIO pin.
This library enables you to use SPI SD cards with RP2040-based boards such as Nano_RP2040_Connect, RASPBERRY_PI_PICO using either RP2040 Arduino-mbed or arduino-pico core.
This library enables you to use ISR-based PWM channels on RP2040-based boards, such as ADAFRUIT_FEATHER_RP2040, RASPBERRY_PI_PICO, etc., with arduino-pico core to create and output PWM any GPIO pin.
The most powerful and popular available library for using 7/14/16 segment display, supporting daisy chaining so you can control mass amounts from your Arduino!
A user interface through the serial channel (menus, sub-menus and command execution), with support for navigation through the menu hierarchy and online help.
Enables smooth servo movement. Linear as well as other (Cubic, Circular, Bounce, etc.) ease movements for servos are provided. The Arduino Servo library or PCA9685 servo expanders are supported.
An associative container used either as a list or btree without needing std lib, and a concurrent circular buffer. Works from AVR/Uno upwards to ESP32, mbed etc
Use the low-power high-resolution ICM 20948 9 DoF IMU from Invensense with I2C or SPI. Version 1.2 of the library includes support for the InvenSense Digital Motion Processor (DMP™).
The VL6180 combines an IR emitter, a range sensor, and an ambient light sensor together for you to easily use and communicate with via an I2C interface.
Enables reading and writing on SD card using SD card slot connected to the SDIO/SDMMC-hardware of the STM32 MCU. For slots connected to SPI-hardware use the standard Arduino SD library.
BufferedPrint stream for efficient networking. ChunkedPrint for HTTP chunked encoding. ChunkedStreamReader for HTTP chunked decoding. CStringBulder builds a c-string with Print class methods. StringReadStream to wrap string as Stream. And printf() function with formatting string from F macro.
Menu library for Arduino with IoT capabilities that supports many input and display devices with a designer UI, code generator, CLI, and strong remote control capability.
Adds tcUnicode UTF-8 support to Adafruit_GFX, U8G2, tcMenu, and TFT_eSPI graphics libraries with a graphical font creation utility available. Works with existing libraries
A library for creating Tickers which can call repeating functions. Replaces delay() with non-blocking functions. Recommanded for ESP and Arduino boards with mbed behind.
This library enables you to use Interrupt from Hardware Timers on an Arduino, Adafruit or Sparkfun AVR board, such as Nano, UNO, Mega, Leonardo, YUN, Teensy, Feather_32u4, Feather_328P, Pro Micro, etc.
This library enables you to use Interrupt from Hardware Timers on supported Arduino boards such as AVR, Mega-AVR, ESP8266, ESP32, SAMD, SAM DUE, nRF52, STM32F/L/H/G/WB/MP1, Teensy, Nano-33-BLE, RP2040-based boards, etc.
A simple library to display numbers, text and animation on 4 and 6 digit 7-segment TM1637 based display modules. Offers non-blocking animations and scrolling!
Really tiny library to basic RTC functionality on Arduino. DS1307, DS3231 and DS3232 RTCs are supported. See https://github.com/Naguissa/uEEPROMLib for EEPROM support. Temperature, Alarms, SQWG, Power lost and RAM support.
Monochrome LCD, OLED and eInk Library. Display controller: SSD1305, SSD1306, SSD1309, SSD1312, SSD1316, SSD1318, SSD1320, SSD1322, SSD1325, SSD1327, SSD1329, SSD1606, SSD1607, SH1106, SH1107, SH1108, SH1122, T6963, RA8835, LC7981, PCD8544, PCF8812, HX1230, UC1601, UC1604, UC1608, UC1610, UC1611, UC1617, UC1638, UC1701, ST7511, ST7528, ST7565, ST7567, ST7571, ST7586, ST7588, ST75160, ST75256, ST75320, NT7534, ST7920, IST3020, IST3088, IST7920, LD7032, KS0108, KS0713, HD44102, T7932, SED1520, SBN1661, IL3820, MAX7219, GP1287, GP1247, GU800. Interfaces: I2C, SPI, Parallel.
True color TFT and OLED library, Up to 18 Bit color depth. Supported display controller: ST7735, ILI9163, ILI9325, ILI9341, ILI9486,LD50T6160, PCF8833, SEPS225, SSD1331, SSD1351, HX8352C.
A rotary encoder library that allows the callback of up to 9 different functions representing the same number of different encoder events. These different functions can be associated with events like press rotate and long press among many others.
RFC6455-based WebSockets Server and Client for Arduino boards, such as nRF52, Portenta_H7, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, Teensy, SAM DUE, RP2040-based boards, besides ESP8266/ESP32 (ESP32, ESP32_S2, ESP32_S3 and ESP32_C3) and WT32_ETH01. Ethernet shields W5100, W5200, W5500, ENC28J60, Teensy 4.1 NativeEthernet/QNEthernet or Portenta_H7 WiFi/Ethernet. Supporting websocket only mode for Socket.IO. Ethernet_Generic library is used as default for W5x00. Now supporting RP2040W
Enables network connection (local and Internet) and WiFiStorage for SAM DUE, SAMD21, SAMD51, Teensy, AVR (328P, 32u4, 16u4, etc.), Mega, STM32F/L/H/G/WB/MP1, nRF52, NINA_B302_ublox, NINA_B112_ublox, RP2040-based boards, etc. in addition to Arduino MKR WiFi 1010, Arduino MKR VIDOR 4000, Arduino UNO WiFi Rev.2, Nano 33 IoT, Nano RP2040 Connect. Now with fix of severe limitation to permit sending much larger data than total 4K and using new WiFi101_Generic library
Simple WiFiWebServer, HTTP Client and WebSocket Client library for AVR Mega, megaAVR, Portenta_H7, Teensy, SAM DUE, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, nRF52, RP2040-based (Nano-RP2040-Connect, RASPBERRY_PI_PICO, RASPBERRY_PI_PICO_W, ESP32/ESP8266, etc.) boards using WiFi, such as WiFiNINA, WiFi101, CYW43439, U-Blox W101, W102, ESP8266/ESP32-AT modules/shields, with functions similar to those of ESP8266/ESP32 WebServer libraries.
Universal Timer with 1 millisecond resolution, based on system uptime (i.e. Arduino: millis() function or STM32: HAL_GetTick() function), supporting OOP principles.
Mechanical counters look beautiful and even 2 decades back they were common to find in cars, two whellers, gas stations, electric meters, video tape players an so on. Some had mechanical reset to set to zero, some were cumulative. Here is Basic Information Around Mechanical Counter for Arduino as They are Difficult to Find Outside Industrial Usage. They Can Be Stepper Motor Counter With or Without Reset. These mechanical counters counts digits (so they were called “digital” once) and were built using mechanical components inside exactly like mechanical clocks.
These mechanical devices consists of of disks mounted on an axle, with the digits printed or drawn on their edge. The extreme right disk moves one increment with each event. Even can be rotation or a pull. Each disks has a protrusion so that, upon the completion of one revolution of disk right to it, it moves one increment. Veeder-Root company was a big manufacturer of these counters.
Some these plain mechanical counters made electromechanical counters by adding a small solenoid. The solenoid responds to electrical impulse. Some were directly mounted to stepper motors. Some were made clocks with adjustment with RPM and second.
High quality difficult to find now except in few countries. High quality will have bearings with serviceable parts inside like clocks. We will suggest to find company (this is example of India) which manufacturer counters like this :
https://blog.adafruit.com/2012/10/26/new-products-mechanical-decade-counters-large-size-pack-of-5-and-mechanical-decade-counters-small-size-pack-of-5/
https://blog.adafruit.com/2012/10/26/new-products-mechanical-decade-counters-large-size-pack-of-5-and-mechanical-decade-counters-small-size-pack-of-5/
There is a China generic 75-I Mechanical Resettable 5 Digit mechanical counter which costs around 8 USD. External It’s maximum rotation speed is 350 r/min, enough big to fill palm.
Conclusion depends on what exactly you’ll do with the counter. In general, an ideal mechanical counter for development purpose is that which supports forwards & reverse movement with minimal torque (aka lesser rpm) and has a reset mechanism. Old tape player counters are ideal for that need.
If you need to make a clock, that will either need to find a manufacturer who still manufacturer such for industries or custom build – you need 00-00-00 format. Without gap between two digits, clock will be difficult to read.
When autocomplete results are available use up and down arrows to review and enter to select. Touch device users, explore by touch or with swipe gestures.
In this project, we will need two softwares first is the Arduino IDE which is used for Arduino programming. As we are going to make this project in simulation, we will use Proteus simulation software. Proteus is a simulation software for electronics projects. In this software, we can run the real time simulation of electronics circuits and debug them without damaging any real components.
And Proteus has a very large database for electronics components but it lacks some new component libraries, for that we have to install some libraries for those components. In this, we have to install a library for the Arduino UNO module.
It is an LED display module, in which there are seven LEDs arranged in the rectangular form on which we can display single digit numbers from 0-9 and some alphabets as well.
As they are simple LEDs so while using them in the circuit, it is mandatory to use some protection resistors with each of them if we are using Common ground type display and single resistor with the Common Vcc pin if we are using the Common Vcc type display.
As we will use the push buttons in active low condition which means one side will be connected to ground and other terminal will be connected to the Arduino.
As we know counters are simple electronic circuits which count some values and after reaching the maximum value they will reset. In this project, we will make an Up-Down counter which means our counter will count from 0-9 and again after 9-0.
We will use the 7 segment display for showing the counter values. In this project, we have used the common ground type of LED display. And two push buttons to start the counter in up counting or in down counting. When we press the UP push button, then the Arduino will activate the pins as per the up counting and LED will display numbers from 0-9 and when we press the DOWN push button then the Arduino will activate the pin as per the down counting and LED will display numbers from 9-0.
Connect the pins of the LED display in the same order as A-2, B-3, C-4, D-6, E-7, F-8, G-9 and DP -5. Otherwise it will show the wrong data on the display.
Now we will start writing the code of the Up-Down counter. The code of this project will be divided into three major parts. In the first part, we will declare all the required variables and pins. In the second part, we will set the modes of pins and set the initial states to pins and do the required configuration if needed and the last part we will write our main functionality of our project which we want to run continually.
So let’s declare all the required variables. First of all, declare the variables for pins of the seven segment display and Up counter push button and down counter push button.
It is one of the most important functions in the Arduino code structure. Without this, our code will not compile successfully and will show the error.
As per the application of our code first of all, we will read the Up and Down counter push button states and when the state changes we will trigger the counter.
Write the condition for the Up counter button, when the button is pressed then the state of the button changes and we will check the state of the push button. If it is HIGH then we will start incrementing the counter variable and using the “changeNumber()”, we will display the numbers on the seven segment LED display.
Similarly, for the down counter push button, when the push button is pressed then the state changes and when the state of the button is high then we will start decrementing the counter variable and display the number on the seven segment display using the “changeNumber()” function
So, when we press the Up push button, then the counter variable will be incremented by one on every press and when we push the Down push button, then the counter variable will be decremented by one on every push and the same will be displayed on the Seven segment LED display.
I hope we have covered all the points related to this project. I think it will be a useful project for learning purposes and gives an understanding about working of counters. Please let us know in the comment section if you have faced any issues while making this project.
In this project we are going to construct a bidirectional visitor counter circuit using Arduino which registers the number of people who made entry and exit at schools, library, offices, commercial buildings etc. in a given period of time, set by an operator and automatically stores the data in a SD at the instant of closing with date and time.
The circuit detects people with the help of LDR and laser setup at entry and exit points. When a person passes through an entry / exit point the laser gets interrupted and the microcontroller registers a count. The circuit also sport automatic recovery feature where in case of power failure the counts are recovered from EEPROM memory.
The proposed project utilizes laser beam and LDR to detect the passage of a person. The LDR is mounted inside a black hollow tube with minimum of 5 cm in length and less than or equal to 1.5 cm in diameter. The tube will prevent ambient light sources hitting the LDR.
The LDR is connected to a “logic NOT gate” IC 7404 with a pull-up resistor 10K. The IC 7404 is here to output a proper digital signal to Arduino by receiving a noisy LDR input.
The Arduino pins 2 and 3 are configured as interrupts, an interrupt is generated when the voltage level turns from high to low and a count is incremented internally in the microcontroller.
The collected data during closing time is stored to a SD card, but interfacing Arduino to a SD card is not that straight forward until you use a SD card module using which you can easily interface a SD to any variant of Arduino.
A SD card module is illustrated in the above image. The SD card must be inserted in its socket in the correct direction and the pins that connect to Arduino are labeled at the backside.
The module can be supplied with 5V, however the SD card operates only at 3.3V, fortunately the module comes with an on-board 3.3V regulator to supply 3.3V to the SD card. The module also comes with a level shifter IC which takes 5V signal from Arduino or any other microcontroller and converts it to 3.3V signal which is compatible with the SD card; otherwise 5V will kill it.
The SD card utilizes SPI protocol to communicate with Arduino and generates a text file containing data of entry and exit count with date and time. An operator has to insert the SD card to his/her computer to read the data. The logged data is illustrated in the below image:
DS3231 / DS1307 utilizes I2C protocol to communicate with Arduino, it can track time and date up to year 2100 with leap year compensation and it comes with a 3V coin cell which keep the RTC running even when you disconnect the main power supply to the circuit and it can run on the coin cell for more than 2 years.
3) Once you upload the code, you will see date and time on the display. Now disconnect the power for 10 seconds and reconnect it, you should see correct date and time are displayed and running.
This project utilizes an I2C LCD adapter module which is connected to a 16 x 2 LCD display. The I2C LCD module helps the project to prototype it quickly by reducing the number of wires that connects from LCD to four; otherwise we have to connect a bunch wires from Arduino to LCD.
It utilizes I2C protocol hence its name and can be soldered on the back of the LCD or can be connected on a breadboard as illustrated in the above image. It shares the same I2C bus as RTC does. Use the on-board trim potentiometer to adjust the contrast of the display.
After you prototype the circuit in a breadboard, the main construction can be done using a well-designed PCB and use Arduino pro mini for the main construction.
1) With the completed hardware setup, including properly aligned lasers with LDR, turn on the circuit. The first step should be setting the correct time and date to RTC which is already explained in this article.
3) To set start time press the menu button and press enter. Now the LCD will ask you to set (starting) hours and use INC and DEC buttons to select an hour (0 to 23) and press enter. Now the LCD will ask you to set minutes (0 to 59), use INC and DEC buttons to select a minute and press enter, the LCD will say start time is saved.
Arduino has always helped to build projects easily and make them look more attractive. Programming an LCD screen with touch screen option might sound as a complicated task, but the Arduino libraries and shields had made it really easy. In this project we will use a 2.4” Arduino TFT LCD screen to build our own Arduino Touch Screen calculator that could perform all basic calculations like Addition, Subtraction, Division and Multiplication.
Before we actually dive into the project it is important to know, how this 2.4” TFT LCD Module works and what are the types present in it. Let us take a look at the pinouts of this 2.4” TFT LCD screen module.
As you can see there are 28 pins which will perfectly fit into any Arduino Uno / Arduino Mega Board. A small classification of these pins is given in the table below.
As you can see the pins can be classified in to four main classifications such as LCD Command Pins, LCD Data Pins, SD Card Pins and Power Pins, We need not know much about the detailed working of these pins since they will be take care by our Arduino Library.
You can also find an SD card slot at the bottom of the module shown above, which can be used to load an SD card with bmp image files, and these images can be displayed in our TFT LCD screen using the Arduino Program.
Another important thing to note is your Interface IC. There are many types of TFT modules available in the market starting from the original Adafruit TFT LCD module to cheap Chinese clones. A program which works perfectly for your Adafruit shield might not work the same for Chinese breakout boards. So, it is very important to know which types of LCD display your are holding in hand. This detail has to be obtained from the vendor. If you are having a cheap clone like mine then it is most probably using the ili9341 driver IC.You can follow this TFT LCD interfacing with Arduino tutorial to try out some basic example programs and get comfortable with the LCD screen. Also check out our other TFT LCD projects with Arduino here:
If you planning to use the touch screen function of your TFT LCD module, then you have to calibrate it to make it work properly. A LCD screen without calibration might work unlikely, for instance you might touch at one place and the TFT might respond for a touch at some other place. These calibrations results will not be similar for all boards and hence you are left on your own to do this.
The best way to calibrate is to use the calibration example program (comes with library) or use the serial monitor to detect your error. However for this project since the size of buttons is large calibration should not be a big problem and I will also explain how you can calibrate your screen under the programming section below.
The 2.4” TFT LCD screen is a perfect Arduino Shield. You can directly push the LCD screen on top of the Arduino Uno and it will perfectly match with the pins and slid in through. However, as matters of safety cover the Programming terminal of your Arduino UNO with a small insulation tape, just in case if the terminal comes in contact with your TFT LCD screen. The LCD assembled on UNO will look something like this below.
We are using the SPFD5408 Library to get this arduino calculator code working. This is a modified library of Adafruit and can work seamlessly with our LCD TFT Module. You can check the complete program at the end of this Article.
Now, open Arduino IDE and select Sketch -> Include Librarey -> Add .ZIP library. A browser window will open navigate to the ZIP file and click “OK”. You should notice “Library added to your Libraries” on the bottom-left corner of Arduino, if successful. A detailed guide to do the same is given in the Interfacing Tutorial.
Now, you can use the code below in your Arduino IDE and upload it to your Arduino UNO for the Touch Screen Calculator to work. Further down, I have explained the code into small segments.
As said earlier we need to calibrate the LCD screen to make it work as expected, but don’t worry the values given here are almost universal. The variables TS_MINX, TS_MINY, TS_MAXX, and TS_MAXY decide the calibration of the Screen. You can toy around them if you feel the calibration is not satisfactory.
As we know the TFT LCD screen can display a lot of colours, all these colours have to be entered in hex value. To make it more human readable we assign these values to a variable as shown below.
Okay now, we can get into the programming part. There are three sections involved in this program. One is creating a UI of a calculator with buttons and display. Then, detecting the buttons based on the users touch and finally calculating the results and display them. Let us get through them one by one.
This is where you can use a lot of your creativity to design the User Interface of calculator. I have simply made a basic layout of a calculator with 16 Buttons and one display unit. You have to construct the design just like you will draw something on MS paint. The libraries added will allow you to draw Lines, Rectangle, Circles, Chars, Strings and lot more of any preferred colour. You can understand the available functions from this article.
Another challenging task is detecting the user touch. Every time the user touches somewhere we will able to how where the X and Y position of the pixel he touched. This value can be displayed on the serial monitor using the println as shown below.
Since we have designed the box with width and height of 60 pixel each and have four Rows and for columns starting from (0,0). The position of each box can be predicted as shown in below picture.
Now, since we know the position of all the boxes. When a user touches anywhere we can predict where he has touched by comparing his (X,Y) values with the value for each box as shown below.
The final step is to calculate the result and display them on TFT LCD Screen. This arduino calculator can perform operation with 2 numbers only. These two numbers are named as variables “Num1” and “Num2”. The variable “Number” gives and takes value from Num1 and Num2 and also bears the result.
When a use presses a button, one digit is added to number. When another button is pressed, the previous one digit is multiplied with 10 and the new number is added with it. For example, if we press 8 and then press 5 and then press 7. Then first the variable will hold 8 then (8*10)+5=85 then (85*10)+7 = 857. So finally the variable will have the value 857 with it.
The working of this Arduino Touch Screen Calculator is simple. You have to upload the below given code on your Arduino and fire it up. You get the calculator displayed on your LCD screen.
You have to press the “C” to clear the value on screen each time after performing a calculation. Hope you understood the project and enjoyed building something similar. If you have any doubts feel free to post them on forums or on the comment section below. See you next time with another interesting project until then happy computing!!