twisted nematic tn lcd panel quotation

The Nematic liquid crystal state is a unique state not included in the above 3 states. It is a state between the crystalline (solid) and isotropic (liquid) states. Even in the state of liquid crystals, there are several types of liquid crystal states, as below.

The nematic liquid crystal phase is characterized by molecules maintain the general order of tending to point in the same direction. It has one dimensional order. See Fig.1

In smectic phase, molecules show two-dimensional order not present in the nematic. The molecules maintain the general orientationally of nematic, but also tend to align themselves in layers or planes. It is the state between nematic (one-dimensional order) and solid state (three-dimensional order). See Fig.1.

The cholesteric (or chiral nematic) liquid crystal phase is typically the molecules are directionally oriented and stacked in a helical pattern, with each layer rotated at a slight angle to the ones above and below it. See Fig.1.

twisted nematic tn lcd panel quotation

A TN panel is an abbreviation for Twisted Nematic. It is an LCD display technology that is still being manufactured and used in electronic devices today.

Although newer, better display technologies have developed over the years, TN panels are still bought due to their affordability (see top budget monitors) and great gaming features. In this article, I"ll explain what a TN panel is and how it works.

TN stands for Twisted Nematic display. It is a type of LCD screen used in various electronic devices, including laptops, computer monitors, TVs, gaming systems, tablets, and mobile phones.

Many studies have been done on panel-type LCD vs. IPS displays. It"s true that the quality of the image is not as good as ISP panels because of the way TN displays are made, plus they are cheaper to produce.

TN displays have a high refresh rate than other display technologies. This makes them popular with gamers who want to get a higher refresh rate (see 120hz monitors). With a TN panel monitor, images will be updated quickly, which reduces blurriness and ghosting during fast motion.

A TN display has a better response time which makes it well suited for gaming. When playing games, you can"t afford to have a bad response time. In other words, the time taken from pushing a button to seeing action on your screen should be as low as possible. A faster response time ensures that you enjoy fast-paced games without any hassles.

TN displays typically have a low response time of below 5 MS. This means that a TN monitor will show more detail in faster-moving scenes compared to a VA monitor.

TN display is a good choice in a work monitor for small businesses needing to get up and running quickly. It"s less expensive, has great gaming features, and is easy to get. However, TN displays have a lower quality of color and contrast.

TN displays are enough for most people, especially if they"re going to use them for the office. For high performance and a display of good colors, you might want to consider a VA display. While more expensive, they"re also brighter and crisper than TN panels. And if you have the budget for it, an ISP screen is the way to go. They have the highest quality of color and contrast available on the market today—perfect if you"re trying to convey complex imagery in your storefront.

TN screens still make up a significant portion of the market, but they have fallen out of favor due to their poor color and viewing angle performance (see ultra-wide monitors) and lower contrast ratio.

The main problem with TN panels is viewing angles. When you move your head even slightly off-center, you can see a huge difference in color between what you"re looking at directly and what appears when you look at the screen from an angle. For example, if you"re viewing a white background, then move your head even slightly down or up, you"ll see that the background starts to take on another color.

Because of these limitations, TN displays are not as popular with graphic designers and similar professions as other flat-panel technologies such as IPS (in-plane switching) and AHVA or Advanced Hyper-Viewing Angle.

The low contrast ratio is something you can experience every time you use an old laptop or a monitor with this type of panel. If you put two colors right next to each other, like black and white, it will be extremely hard for your eyes to distinguish between them; the color difference will be almost imperceptible.

An LCD panel uses a combination of polarizers, color filters, and liquid crystals to produce an image. The backlight shines through red, green, and blue filters.

If you have an old or even new monitor or laptop (see what they are still good for here), it"s likely using a TN panel. Here are the TN panel features.

They are an older type of LCD technology. They were the first to be used in computer monitors but have been superseded by the superior IPS and VA technologies.

Panel type TN has a high refresh rate which is not an issue if you want to play games, watch movies because there"s no ghosting effect taking place on the screen. The best TN panels can reach refresh rates as high as 240 Hz.

The limited viewing angles. These types of panels can be hard to use when sitting at an angle, and the image quality takes a hit if you"re not sitting directly in front of the monitor.

Unimpressive color gamut makes TN screens inappropriate for professional graphic designers, architects and photographers who need accurate color representation.

TN panels have a poor contrast ratio, which means they can"t display deep blacks. In other words, the darkest parts of the picture will look gray. This is especially troubling when it comes to darker games and movies since the details of dark scenes will be lost in shadows.

If you"re looking for the highest possible resolution, TN panels aren"t the best option. They have a maximum resolution of 1920 x 1080, compared with 4K or 5K for IPS and VA panels.

Yes, TN panels can damage the eyes. Most people don"t feel comfortable using a TN panel for a long time unless it comes with eye care technologies such as anti-flicker and blue light filters. If you like to watch movies on a computer all day, the IPS panel is recommended.It emits blue light. The reason we need to avoid blue light is that it wouldmake our eyes uncomfortable and cause headaches. You may have experienced this when you were playing computer games in the past: the screen was bluish and made your eyes uncomfortable. So if you worry about eye safety, please choose an IPS panel instead of a TN panel.

The viewing angle of most TN panels ranges from 170/160 degrees. If you sit directly in front of the display with your head leveled, you will experience this viewing angle. But if you were to rotate your head so that your line of sight is at an angle greater than 170 degrees, then colors will begin to drift and distort on a TN panel.

The color quality of TN panels is not that good. They do not produce crisp colors, so this type of monitor is not suitable for users who work on graphics or images.

I"ve had a TN monitor for over 2 years now, and I really complain about its colors. It"s just that they don"t have a good color range as IPS panels, especially in the reds, but if you"re not an artist, you"ll hardly notice it.

The TNs have the worst contrast ratio, while IPS displays have the best. TN Panels have lower contrast ratios of around 1,000:1 to 2,000:1. This is not that great for movies or TV shows, but it"s still acceptable.

If you are planning to use your computer in a very bright light environment, you should choose the IPS ones, which have better visibility in a lot of light conditions than TN panels.

Response time is the time taken for a pixel to change from one color to another. A TN panel has a response time of fewer than 5 milliseconds (ms). A lower response time like this is better because fast-moving images will appear smoother and more natural.

The refresh rates of TN panels range from 60Hz and 144Hz. This represents an improvement over older TN panels, which had refresh rates of only 60Hz. The refresh rate is the number of times per second that a screen can refresh the image it displays.

If you"re looking to upgrade your setup for gaming, TN panels are the way to go. They"re the most responsive of all panel technologies, with high refresh rates.

Good gaming monitors have a low response time. The lower the number, the better. In LCD TN panels, response times are typically around 1ms, making them ideal for gaming.

The best TN panel for gaming has very high refresh rates. Some models can reach up to 240Hz refresh rates, which means that they can display content at up to 240 frames per second (fps). This is great for gamers who want high responsiveness and smooth graphics without suffering from screen tearing or image stuttering due to visual lag.

TN (Twisted Nematic) monitors were the first type of LCD monitors to make their way to the mainstream. TN Panels are generally cheaper than IPS models and look great from straight-on, which is great if you"re using your monitor to read emails or surf the web.

IPS or In-Plane Switching monitors have better viewing angles than TN models, so you can see accurate colors from almost any angle. Because of this feature, they tend to be more expensive than TN monitors.

Suppose you want a monitor for general office use, solid gaming performance, and don"t care too much about color accuracy and viewing angles. In that case, a TN panel monitor will be ideal for you.

The response time of TN panels tends to be faster than VA panels. TN panel monitors typically have a response time of 1-5ms, while a VA panel monitor"s response time typically ranges from 5-20ms.

In general, TN panels are suitable for gamers because they offer a greater level of responsiveness when playing fast action games such as first-person shooters, while VA panels are better suited for general use.

A TN panel can be adjusted to perform better. Do not change anything unless you know what you are doing; otherwise, twerking your display to perform better is easy.

The default color settings on TN panels aren"t very good, which is why you"ll often see extremely saturated or inconsistent colors. There are ways to adjust the settings to get a much more accurate picture that will please your eyes and make your screen more suitable for photo and video editing.

The answer is YES. I did good research and found that the majority of laptops use either TN or IPS panels. In the past, TN panels were favored for their simplicity and lower cost. They tend to be less expensive because they have fewer color reproduction capabilities and typically have a shorter lifespan.

IPS panels are generally more expensive because they have a longer lifespan and offer better color reproduction capabilities. However, TN displays still dominate the laptop market because they are cheaper to make and offer more responsive performance.

No, all laptop TN panels do not have the same quality. Their difference can be attributed to their features such as color gamut, refresh rates, viewing angles, and response time. Some offer good features, good image quality, and some TN panels don"t look very good at all.

twisted nematic tn lcd panel quotation

TN stands for twisted nematic. This is a type of LED (a form of LCD) panel display technology. TN panels are characterized as being the fastest and cheapest among the other main types of display panels, VA (vertical alignment)and IPS (in-plane switching). As such, they work great for gaming monitors and gaming laptops. However, TN panels also offer the worst viewing angles and color when compared to VA and IPS panels.

PerformanceFastest: low response times, highest refresh rates, minimal motion blur; Low input lagLongest response times typically; Higher refresh rates possibleSlower response times than TN, faster response times than VA; Gaming-quality refresh rates are rare

DisplayWorst viewing angles;Worst colorViewing angles typically better than TN, worse than IPS; Good color; Best contrast;Best image depthBest viewing angles; Best color

twisted nematic tn lcd panel quotation

The twisted nematic effect (TN-effect) was a main technology breakthrough that made LCDs practical. Unlike earlier displays, TN-cells did not require a current to flow for operation and used low operating voltages suitable for use with batteries. The introduction of TN-effect displays led to their rapid expansion in the display field, quickly pushing out other common technologies like monolithic LEDs and CRTs for most electronics. By the 1990s, TN-effect LCDs were largely universal in portable electronics, although since then, many applications of LCDs adopted alternatives to the TN-effect such as in-plane switching (IPS) or vertical alignment (VA).

TN displays benefit from fast pixel response times and less smearing than other LCD display technology, but suffer from poor color reproduction and limited viewing angles, especially in the vertical direction. Colors will shift, potentially to the point of completely inverting, when viewed at an angle that is not perpendicular to the display.

The twisted nematic effect is based on the precisely controlled realignment of liquid crystal molecules between different ordered molecular configurations under the action of an applied electric field. This is achieved with little power consumption and at low operating voltages. The underlying phenomenon of alignment of liquid crystal molecules in applied field is called Fréedericksz transition and was discovered by Russian physicist Vsevolod Frederiks in 1927.

The illustrations to the right show both the OFF and the ON-state of a single picture element (pixel) of a twisted nematic light modulator liquid crystal display operating in the "normally white" mode, i.e., a mode in which light is transmitted when no electrical field is applied to the liquid crystal.

In the OFF state, i.e., when no electrical field is applied, a twisted configuration (aka helical structure or helix) of nematic liquid crystal molecules is formed between two glass plates, G in the figure, which are separated by several spacers and coated with transparent electrodes, E1 and E2. The electrodes themselves are coated with alignment layers (not shown) that precisely twist the liquid crystal by 90° when no external field is present (left diagram). If a light source with the proper polarization (about half) shines on the front of the LCD, the light will pass through the first polarizer, P2 and into the liquid crystal, where it is rotated by the helical structure. The light is then properly polarized to pass through the second polarizer, P1, set at 90° to the first. The light then passes through the back of the cell and the image, I, appears transparent.

To display information with a twisted nematic liquid crystal, the transparent electrodes are structured by photo-lithography to form a matrix or other pattern of electrodes. Only one of the electrodes has to be patterned in this way, the other can remain continuous (common electrode). For low information content numerical and alpha-numerical TN-LCDs, like digital watches or calculators, segmented electrodes are sufficient. If more complex data or graphics information have to be displayed, a matrix arrangement of electrodes is used. Because of this, voltage-controlled addressing of matrix displays, such as in LCD-screens for computer monitors or flat television screens, is more complex than with segmented electrodes. For a matrix of limited resolution or for a slow-changing display on even a large matrix panel, a passive grid of electrodes is sufficient to implement passive matrix-addressing, provided that there are independent electronic drivers for each row and column. A high-resolution matrix LCD with required fast response (e.g. for animated graphics and/or video) necessitates integration of additional non-linear electronic elements into each picture element (pixel) of the display (e.g., thin-film diodes, TFDs, or thin-film transistors, TFTs) in order to allow active matrix-addressing of individual picture elements without crosstalk (unintended activation of non-addressed pixels).

In 1962, Richard Williams, a physical chemist working at RCA Laboratories, started seeking new physical phenomena that might yield a display technology without vacuum tubes. Aware of the long line of research involving nematic liquid crystals, he started experimenting with the compound p-azoxyanisole which has a melting point of 115 °C (239 °F). Williams set up his experiments on a heated microscope stage, placing samples between transparent tin-oxide electrodes on glass plates held at 125 °C (257 °F). He discovered that a very strong electrical field applied across the stack would cause striped patterns to form. These were later termed "Williams domains".

Although successful, the dynamic scattering display required constant current flow through the device, as well as relatively high voltages. This made them unattractive for low-power situations, where many of these sorts of displays were being used. Not being self-lit, LCDs also required external lighting if they were going to be used in low-light situations, which made existing display technologies even more unattractive in overall power terms. A further limitation was the requirement for a mirror, which limited the viewing angles. The RCA team was aware of these limitations, and continued development of a variety of technologies.

Another potential approach was the twisted-nematic approach, which had first been noticed by French physicist Charles-Victor Mauguin in 1911. Mauguin was experimenting with a variety of semi-solid liquid crystals when he noted that he could align the crystals by pulling a piece of paper across them, causing the crystals to become polarized. He later noticed when he sandwiched the crystal between two aligned polarizers, he could twist them in relation to each other, but the light continued to be transmitted. This was not expected. Normally if two polarizers are aligned at right angles, light will not flow through them. Mauguin concluded that the light was being re-polarized by the twisting of the crystal itself.

Wolfgang Helfrich, a physicist who joined RCA in 1967, became interested in Mauguin"s twisted structure and thought it might be used to create an electronic display. However RCA showed little interest because they felt that any effect that used two polarizers would also have a large amount of light absorption, requiring it to be brightly lit. In 1970, Helfrich left RCA and joined the Central Research Laboratories of Hoffmann-LaRoche in Switzerland, where he teamed up with Martin Schadt, a solid-state physicist. Schadt built a sample with electrodes and a twisted version of a liquid-crystal material called PEBAB (p-ethoxybenzylidene-p"-aminobenzonitrile), which Helfrich had reported in prior studies at RCA, as part of their guest-host experiments.

At this time Brown, Boveri & Cie (BBC) was also working with the devices as part of a prior joint medical research agreement with Hoffmann-LaRoche.James Fergason, an expert in liquid crystals at the Westinghouse Research Laboratories. Fergason was working on the TN-effect for displays, having formed ILIXCO to commercialize developments of the research being carried out in conjunction with Sardari Arora and Alfred Saupe at Kent State University"s Liquid Crystal Institute.

When news of the demonstration reached Hoffmann-LaRoche, Helfrich and Schadt immediately pushed for a patent, which was filed on 4 December 1970. Their formal results were published in Applied Physics Letters on 15 February 1971. In order to demonstrate the feasibility of the new effect for displays, Schadt fabricated a 4-digit display panel in 1972.

This work, in turn, led to the discovery of an entirely different class of nematic crystals by Ludwig Pohl, Rudolf Eidenschink and their colleagues at Merck KGaA in Darmstadt, called cyanophenylcyclohexanes. They quickly became the basis of almost all LCDs, and remain a major part of Merck"s business today.

Gerhard H. Buntz (Patent Attorney, European Patent Attorney, Physicist, Basel), "Twisted Nematic Liquid Crystal Displays (TN-LCDs), an invention from Basel with global effects", Information No. 118, October 2005, issued by Internationale Treuhand AG, Basel, Geneva, Zurich. Published in German

twisted nematic tn lcd panel quotation

Twisted nematic or TN LCD panel is a type of thin-film transistor liquid crystal display or TFT-LCD that is commonly used in an array of consumer electronic devices such as digital watches and calculators, as well as computer monitors and mobile phones.

However, further demands for better and wider display applications resulted in the emergence of newer display technologies such as plasma panel display or PDP technology, in-plane switching or IPS LCD technology and active-matrix organic light-emitting diode or AMOLED technology.

Nonetheless, it cannot be denied that the introduction of TN technology during the 1970s was a major technological breakthrough because it commercialized the use of LCD and made the use of digital electronic displays in consumer electronic devices affordable and practical.

Central to the technology behind twisted nematic or TN display panel is the use of nematic liquid crystal sandwiched between two plates of glass substrates coated with transparent indium-tin-oxide or ITO. This ITO surface are further coated with alignment layers that both rub in one direction.

Manipulation of polarised light is the underlying technological principle behind TN display. When light enters the TN cell, the polarisation state twists with the director of the liquid crystal material.

The inherent advantages of TN LCD panels made twisted nematic LCD technology a dominant and almost universal display technology used in portable electronics during the 1990s. Take note of the following advantages of TN LCD panels over other display technologies:

One of the key advantages of TN LCD panels stems from the easy implementation of twisted nematic technology. This translates to cheaper manufacturing requirements and simpler production processes, thus further translating into affordability of TN LCD panels and the corresponding consumer electronics products to end consumers.

Note that the introduction and subsequent popularity of twisted nematic technology quickly pushed out other display technologies such as monolithic LED and cathode-ray tube or CRT for most electronics.

Furthermore, because TN LCD panels are easy and cheap to manufacture, not only did they replace LED and CRT display but they have also continued to remain an affordable alternative to modern display technologies such as IPS and AMOLED.

Twisted nematic technology does not require a current to flow to operate. It also runs under low operating voltages. These advantages collectively correspond to low and efficient power consumption, thus making TN LCD panels suitable for use with batteries and low-powered devices.

The power consumption advantage of TN LCD panels has ushered in the era for low-powered and lightweight LCD, thus paving the way for the invention and production of compact and lighter consumer electronics and non-consumer electronic instruments.

Compared against IPS LCD panels, TN LCD panels have shorter response time and higher refresh rate. Pixels in a typical TN LCD panel change their state as fast as two milliseconds compared against the five milliseconds response time of a typical IPS LCD panel. Furthermore, high-end TN LCD panels even have double the usual refresh rate of 120Hz instead of 60Hz.

The better pixel response time and refresh rate advantages of TN LCD panels can enable them to display twice as much information every second. These make TN LCD panels suitable for use in high-end gaming. In fact, some hardcore gamers prefer a TN computer monitor to a VA or IPS monitor due to its responsiveness and better refresh rate.

The disadvantages of twisted nematic LCD technology have prevented it from catapulting into more modern and wider applications however. Take note of the following limitations and disadvantages of TN LCD panels:

A notable disadvantage of TN LCD panels is a narrow viewing angle. A user needs to look at a TN panel from a straight up 90-degree angle to maximize its visual performance.

When viewed from other angles, colors will appear duller and images will appear darker on a TN panel. User familiar with different types of LCD can easily discern if a panel is a TN panel through these color shifts and image distortion.

Nonetheless, the restricted viewing angle compels a user to remain sitting dead straight up in front of a TN LCD panel. Doing so can be problematic in larger TN LCD panels in which changing viewing angle is sometimes unavoidable.

Apart from the inherent dull color reproduction in twisted nematic LCD technology, especially when compared against vertical alignment or in-plane switching LCD technologies, the problem with the limited viewing angle also produces poor representation of colors.

Poor color reproduction also means that color inaccuracy is another disadvantage of TN panels. This is the reason why TN panels are not suitable for use in color critical tasks such as graphic design, photo manipulation, and video editing, among others.

Note that the quality of TN LCD panels depends on manufacturers. Low-end TN LCD panels have the tendency to exhibit extreme instances of other disadvantages such as poor viewing angle and poor color reproduction.

Take note of cheap feature mobile phones as an example. The TN LCD panels used in these products can exhibit extreme color shifts even at slight change in viewing angle.

Images in low-end TN LCD panels can also be indiscernible when viewed under direct sunlight. Note than another disadvantage of TN LCD panels is susceptibility to dead pixels. This becomes more pronounced in cheaper and low-end panels.

Twisted nematic LCD technology was a breakthrough innovation that paved the way for an array of relatively inexpensive electronic devices that use digital electronic display. TN panels remain a very popular LCD option because of their advantages that revolve around inexpensive manufacturing and simpler production that translate further to cheaper price points for end consumers.

However, TN panels are becoming noticeable archaic due to the popularity of other display technologies such as in-plane switching or IPS LCD technology and active-matrix organic light-emitting diode or AMOLED technology. Both technologies are becoming more prominent in modern consumer electronics such as smartphones and tablet computers.

Of course, the associated cost efficiency of producing and using TN panels, in addition to other advantages such as low power consumption and better response time and refresh rates, still make them an ideal display option for use in inexpensive computer monitors, as well as for other portable electronics such as digital watches and calculators.

twisted nematic tn lcd panel quotation

You may be surprised to know that not all LCD panels are created equal. That’s because there’s more than one type of LCD screen. While their differences are subtle, the type of panel technology significantly impacts its image quality and display performance.

In this post, we’ll compare the three types of LCD panel technologies – IPS vs. TN vs. VA – and the pros and cons of each. Knowing the differences is critical to help you find the best type that fits your needs.

The main difference between them is how they arrange and move the liquid crystal display (LCD) molecules in their panels. This, in turn, has a profound effect on image quality, refresh rate, and other performance factors.

A twisted nematic or TN monitor is the oldest and most common type of LCD still used today. It uses a nematic liquid crystal, meaning it has its molecules arranged in parallel, but not on a level plane. These can twist or untwist themselves when a voltage runs through them, hence the name. This twisting effect either allows or blocks light from passing through, turning screen pixels “on” or “off.”

In-panel switching (IPS) panels work similarly to TN monitors, except that the liquid crystal molecules are parallel to the glass panel of the screen. Instead of twisting like in TN monitors, these molecules rotate when a voltage is applied.

Vertical alignment (VA) displays arrange their LCD molecules vertically, perpendicular to the glass panel. When voltage is present, they tilt themselves instead of twisting or rotating.

Being the oldest LCD technology still in use today, TN monitors undoubtedly have their share of benefits, otherwise they wouldn’t have this much longevity! Comparing TN vs. IPS and VA, TN panels are the cheapest and fastest to manufacture. As a result, they are better for the more budget-conscious user. They’re also the most versatile LCD type and have no real-world limits on size, shape, resolution, and refresh rate.

You’ll be hard-pressed to find a TN monitor in a reasonable price range that can display 24-bit (8 bits per channel) color at a wide color gamut, and contrast is limited. The second problem with TN monitors is that because the molecules are not oriented uniformly across the plane, it suffers from a narrow viewing angle. That is, anyone looking at the screen off-axis, such as from a 45-degree angle, will most likely find the image completely un-viewable.

Comparing IPS vs. TN, the former is a drastic improvement over the latter. IPS panels resolve some of the limitations and problems of TN monitors, specifically color accuracy and issues with viewing angles. However, IPS panels suffer from a phenomenon called “IPS glow,” where you can see the display’s backlight clearly if you view it from the side.

Another significant limitation of IPS panels, particularly for gamers, is that they have the lowest refresh rates of any LCD type. And while the color fidelity is fantastic with IPS vs. VA, the latter has superior contrast ratios over the IPS panels.

The biggest strength of VA panels lies in their excellent contrast ratio. Keep in mind that irrespective of the LCD technology used, a backlight is required; this is typically LED. The LCD’s ability to block this light will determine how well it can reproduce blacks, and it’s in this detail where VA excels. That is, blacks are dark and rich in a VA panel vs. IPS. They also lie somewhere in the middle regarding overall image quality, color reproduction, viewing angle, and refresh rate. Overall, VA is a good compromise between TN and IPS.

A drawback of VA vs. IPS and TN is it exhibits an relatively high response time. As such, VA displays are more prone to motion blur and ghosting if you’re viewing fast-moving visuals on a screen, such as when you’re playing a racing game.

It’s worth noting that there is no universal “right” choice for choosing a type of LCD panel. Which one you pick depends on your budget, your intended use, and your expected outcome.

A TN monitor is best if you’re looking for a low-cost, readily available display for tasks that don’t rely on contrast and color accuracy, such as sending emails or typing a document or spreadsheet. They are also the best choice for competitive gamers who want the best refresh rates and response times to give them an edge in online multiplayer games, despite a technically lower image quality.

With their superior color reproduction, IPS panels are best for graphic designers, film editors, photographers, and other visual design professionals. For them, image quality including contrast and color accuracy are more important than refresh rates. IPS panels are also fantastic for casual gamers who want the best visuals and don’t mind the compromise in refresh rate or response time.

Whichever LCD type you choose, make sure you get the right cable, a Premium High Speed HDMI® Cable, or an Ultra High Speed HDMI® Cable to ensure delivery of all the HDMI 2.1 features. Doing this ensures that you’ll get the best experience on your screen.

twisted nematic tn lcd panel quotation

Twisted nematic or TN LCD is a type of thin-film transistor liquid crystal display or TFT-LCD that is commonly used in an array of consumer electronic devices such as digital watches and calculators, as well as computer monitors and mobile phones. Note that it is the most common type of LCD technology because of its lowered manufacturing cost than IPS LCD.

1.One advantage of twisted nematic or TN LCD over other display technologies such as IPS LCD, VA display, and OLED is affordability. The technology behind TN LCDs is easier to implement, thus translating to inexpensive manufacturing cost and affordable market price.

2.Energy efficiency is another strength of twisted nematic LCD when compared to IPS LCD and VA display. It can run under low operating voltages and does not require a current flow to operate. Hence, TN LCDs are suitable for low-powered devices.

3.Another notable advantage of twisted nematic LCD is that it has the fastest pixel response rate and highest refresh rate than its counterpart display technologies, particularly IPS LCD and to some extent, OLED display. These characteristics make TNs a favorite in the gaming community.

1.Limited viewing angle is a main disadvantage of twisted nematic LCD. To be specific, when viewed from an angle, images appear darker and color seems less vivid on a TN LCDs. Viewing experience suffers due to this.

2.Another disadvantage of TNs is that it has the poorest color reproduction among the different types of LCD technologies, such as IPS LCD and VA LCD. TNs only have a color depth of 262,144 possible colors.

3.Quality is also an issue. The quality of a particular twisted nematic LCD panel depends on its manufacturer. However, because twisted nematic is generally cheap to manufacture, there are low-end models that severely highlights the disadvantages of TN LCD.

twisted nematic tn lcd panel quotation

When searching for monitors, consumers inevitably come across terms like twisted nematic (TN), vertical alignment (VA), or in-plane switching (IPS) when referring to the panel types. All three panel types come in at different price points and have pros and cons. Gaming monitors often use TN panels because of their high speed and low cost.

TN panels are based on liquid crystal technology. The first person to note the color generation properties of liquid crystal was a man called Friedrich Reinitzer. In 1888 he discovered that certain types of extracted cholesterol from carrots have two melting points. At the first melting point, it becomes a nontransparent liquid, and at the second melting point, it becomes transparent. This phenomenon is the basis of what eventually become LCDs.

In 1911, a French physicist called Charles-Victor Mauguin first noticed the twisted nematic effect. He found that if he positioned liquid crystals between two aligned polarizers, a light would still pass through them. Knowing that light doesn’t usually pass through two aligned polarizers, he surmised that the crystals repolarized the light.

It was only in 1972 when the first real TN device was created. While working in Switzerland, two physicists named Martin Schadt and Wolfgang Helfrich found that applying voltage to liquid crystals could redirect light due to their structure twisting. They developed the first four-digit LCD screen.

Their discovery paved the way for devices with digital displays and was widely adopted for use in watches and calculators. The first color LCD TV only came out in 1988 and had a tiny, two-inch screen. Since then, TN technology has evolved at a rapid pace and now serves as the basis for many LCD screens, including TVs and monitors.

TN panels contain liquid crystals positioned between two polarizing filters. Each filter is the same size but orientated at 90-degree angles to each other with one placed vertically and the other horizontally. In its standard form, no light can pass through the filters because of their orientation. When voltage is applied to the liquid crystals, their molecules twist to 90 degrees allowing light to pass through the filters.

There are many advantages to using TN panels for gaming monitors. A couple of the main reasons why they are favored for gaming is their high refresh rates and response times which make them ideal for fast-paced competitive gaming.

Another reason why TN panels are popular is their price. They are inexpensive compared to the other panel types, making them ideal for budget gaming monitors like the LG Ultragear 24GL600F-B and the Asus VP28UQG.

Despite their high speeds, TN panels have some drawbacks. They can’t compete with IPS or VA panels when it comes to color accuracy. Many TN panels also have narrower viewing angles compared to the other monitor types.

While these are the general characteristics of TN panels, real-world performance varies depending on the screen itself, and there is often overlap between the different display types.

twisted nematic tn lcd panel quotation

In this article we will explore the different types of display panel types available on the market. We will cover the most popular and some very niche or near obsolete options to give our fans a good overview.

TN or Twisted Nematic, In-Plane Switching or IPS, and Vertical Alignment or VA. TN is most common on computer monitors although IPS is also very common, while VA is most common on low-end TVs, but is slowly gaining ground in PC monitor spaces.

LCD technology has some real and inherent disadvantages when compared to CRT, Plasma, and OLED, mostly because of the fact that LCDs rely on backlighting (either edge-lit like all computer monitors, or literally backlit on higher end TVs) while CRT, Plasma, OLED produce light on the surface for each and every pixel. This means that those other display types have superior contrast ratios, deeper blacks, more pure whites, far richer and fuller colors. For example, blacks are only true blacks on CRT/Plasma/OLED, not LCD, since the pixel actually has no light on these unlike LCD. LCDs also use sample and hold which leads to a lot more motion blur especially compared to CRT and SED/FED.

TN panels have two large advantages over other types. Cost and response time. It should be noted that even though inferior to IPS and VA for colour critical work, a good, high-end TN monitor with good calibration can still look quite decent for most use cases. It won’t beat decent VA or IPS, but it can still offer a nice visual experience. Good response times and low motion blur can make a TN look great in action.

This is the panel type used in many slightly older HDTVs. Overall it is a very nice and increasingly popular LCD panel type although the potential has yet to be fully realized in computer monitors.

- Inconsistent response times. Most VA displays have at least a few very slow transitions. Black to dark grey or just black to grey are the most common culprits, even if other transitions are good or even fast. As a result, VAs offer better minimum response times than IPS, but worse average and maximum response times than IPS. It should be noted that some higher end panels seem to have this issue mostly figured out though.

- “Black crush” which causes a loss in black detail (e.g., grey detail lost in black content). Compared to TN’s dark grey blacks and IPS’s white blacks, this isn’t a cause for concern save for color critical work, but it is a real con.

IPS is the most used panel type for photo editing, because of all LCD panels it has the best color accuracy. It is becoming more and more common and may eventually overtake TN panels.

- The best potential color accuracy of all LCD panels. Especially for professional panels, but even normal IPS monitors still have far better color accuracy than typical TN monitors though.

IPS is a very good LCD panel type and it has many advantages, but it is not the end all be all of monitors. Still, we believe that it and VA are overall tied in their pros and cons. But remember, the specific panel and product (and price!) always matter more than the technology it is based off!

The image above is based on slightly older monitors, but it shows the difference in blacks in a similar scene.IPS (far left), TN (middle), and VA (right).

CRT monitors have gone out of fashion and very few are still in any sort of production. Any CRT monitors one finds are likely to be used or old stock. We mostly expect only really hardcore competitive gamers to use such monitors thanks to their response time advantage, but the truth is that modern ultra-high end LCDs with blur reduction can offer a good alternative here.

This tech was prominent in HDTVs for a while, before LCD became the big thing. We are covering it in case you find an old plasma TV and are wondering if it would be a good fit. It has excellent contrast ration, good blacks and no backlight. Viewing angles are also very good and there is almost no motion blur.

Like CRT and plasma, the light source is on the screen surface itself, hence the much better image. An OLED powers each and every subpixel. OLED may have the potential to be the best panel type for everything, but there are still some longevity concerns on many models and its higher cost is still an issue.

- They use sample and hold just like LCD technology, so motion blur still exists. However, there is already a blur reduction technique for it, used by Oculus Rift (black frame insertion).

- While colour accuracy is good, it is hard to make it excellent. Lots of calibration is needed on the manufacturer’s side and probably on the user’s side too. It will easily surpass all other panels, except a perfectly calibrated CRT.

twisted nematic tn lcd panel quotation

In conclusion, the type of panel to be used is determined by the purpose of the monitor. In photography, graphics design, video and picture edits, where the displayed colors, as well as the viewing angle and contrast, are of great importance, the IPS should be considered. If the refresh rate, price and the reaction time is needed more than the other characteristics, the TN panel should be considered.

However, an IPS panel can have a higher reaction and refresh rate, but this will lead to an increase in the cost of production as well as the cost of acquiring it. It might also lead to a great increase in power consumption.

For our PresentationPoint users and digital signage in general, we can transform this recommendation as follows. For advertising and public information screens e.g. in hotels: use an IPS panel. In areas where the graphics qualities are not that important, use a TN panel. Think here about information screens in factories.

twisted nematic tn lcd panel quotation

Again, IPS is the clear winner here. The vertical viewing angles are very similar to the horizontal ones on both IPS and VA panels. Unfortunately, this is one area where TN panels are usually much, much worse. TN monitors degrade rapidly from below, and colors actually inverse - resulting in a negative image that can be distracting. For this reason, if you decide to buy a TN monitor, look for one with an excellent height adjustment, or consider buying a VESA mounting arm, as you should mount TN monitors at eye level. Even when mounted properly, larger TN displays can appear non-uniform at the edges.

There"s usually not much difference between VA and IPS panels in terms of gray uniformity. It"s rare for monitors to have uniformity issues, and even on monitors that perform worse than average, it"s usually not noticeable with regular content. TN monitors tend to perform a bit worse than usual, though, and the top half of the screen is almost always darker than the rest, but that"s an artifact of the bad vertical viewing angles.

Black uniformity tends to vary significantly, even between individual units of the same model, and there"s no single panel type that performs the best. It"s rare for monitors to have good black uniformity, and almost every monitor we"ve tested has some noticeable cloudiness or backlight bleed. IPS and TN panels can look slightly worse due to their low contrast ratios, as the screen can take on more of a bluish tint when displaying dark scenes. Like with contrast, black uniformity issues usually aren"t very noticeable unless you"re looking at dark content and you"re in a dark room. If you only use your monitor in a bright environment, generally speaking, you don"t need to worry about black uniformity.

Historically, TN panels used to have the worst colors, as many of them were cheaper models that only supported 6-bit colors or used techniques like dithering (FRC) to approximate 8-bit colors. Most displays today, including TN models, are at least 8 bit, and many of them are even able to approximate 10-bit colors through dithering. New technologies, like LG"s Nano IPS and Samsung"s Quantum Dot, add an extra layer to the LCD stack and have significantly improved the color gamut of modern IPS and VA displays, leaving TN a bit behind. Between them, NANO IPS is slightly better, as it tends to offer better coverage of the Adobe RGB color space. Although the difference is minor, IPS panels still have a slight edge over VA and TN displays.

Although TN panels have caught up a bit in the SDR color space, they"re far behind when it comes to HDR, so if you"re looking for a good HDR color gamut, avoid TN panels. Between VA and IPS panels, the difference isn"t as significant; however, IPS panels still have a slight edge. The best VA panels top out at around 90% coverage of the DCI P3 color space used by most current HDR content. IPS panels go as high as 98% coverage of DCI P3, rivaling even some of the best TVs on the market. Due to the very high coverage of DCI P3 on both VA and IPS, the difference isn"t that noticeable, though, as most content won"t use the entire color space anyway.

Although not necessarily as noticeable to everyone as the differences in picture quality, there can also be a difference in motion handling between IPS, VA, and TN displays. TN panels historically offered the best gaming performance, as they had the highest refresh rates and extremely fast response times. Manufacturers have found ways to drastically improve the motion handling of VA and IPS panels, though, and the difference isn"t as pronounced.

LCD panel technology has changed drastically over the last few years, and the historical expectations for response time performance don"t necessarily hold anymore. For years, TN monitors had the fastest response times by far, but that"s started to change. New high refresh-rate IPS monitors can be just as fast.

VA panels are a bit of a strange situation. They typically have slightly slower response times overall compared to similar TN or IPS models. It"s especially noticeable in near-black scenes, where they tend to be significantly slower, resulting in dark trails behind fast-moving objects in dark scenes, commonly known as black smear. Some recent VA panels, such as the Samsung Odyssey G7 LC32G75T, get around it by overdriving the pixels. It results in much better dark scene performance but a more noticeable overshoot in brighter areas.

Within each of the three types of LCD we mentioned, other related panel types use the same basic idea but with slight differences. For example, two popular variants of IPS panels include ADS (technically known as ADSDS, or Advanced Super Dimension Switch) and PLS (Plane to Line Switching). It can be hard to tell these panels apart simply based on the subpixel structure, so we"ll usually group them all as IPS, and in the text, we"ll usually refer to them as IPS-like or IPS family. There are slight differences in colors, viewing angles, and contrast, but generally speaking, they"re all very similar.

There"s another display technology that"s growing in popularity: OLED. OLED, or organic light-emitting diode, is very different from the conventional LCD technology we"ve explored above. OLED panels are electro-emissive, which means each pixel emits its own light when it receives an electric signal, eliminating the need for a backlight. Since OLED panels can turn off individual pixels, they have deep, inky blacks with no blooming around bright objects. They also have excellent wide viewing angles, a near-instantaneous response time, and excellent gray uniformity.

OLED panels aren"t perfect, though. There"s a risk of permanent burn-in, especially when there are lots of static elements on screen, like the UI elements of a PC. There aren"t many OLED monitors available, either, but they"ve started to gain popularity as laptop screens and for high-end monitors, but they"re very expensive and hard to find. They"re also not very bright in some cases, especially when large bright areas are visible on screen. The technology is still maturing, and advances in OLED technology, like Samsung"s highly-anticipated QD-OLED technology, are promising.

As you can probably tell by now, no one panel type works best for everyone; it all depends on your exact usage. Although there used to be some significant differences between panel types, as technology has improved, these differences aren"t as noticeable. The two exceptions to this are viewing angles and contrast. If you"re in a dark room, a VA panel that can display deep blacks is probably the best choice. If you"re not in a dark room, you should focus on the other features of the monitor and choose based on the features that appeal to your exact usage. IPS panels are generally preferred for office use, and TN typically offers the best gaming experience, but recent advancements in VA and IPS technology are starting to change those generalizations. For the most part, the differences between each panel type are so minor now that it doesn"t need to be directly factored into your buying decision.

twisted nematic tn lcd panel quotation

Consider you’re buying a new gaming monitor. Now, before you head out (or online), there are many things to consider. The resolution and refresh rates are just the tips of the ice-berg. When it comes to PC monitor display panels, you’ve got three options: IPS, TN and VA. If you are a gamer which panel is right for you? Do you need an IPS display, a TN panel, or a VA panel?

All three of these are different flavors of LCD monitors. They’re built using fundamentally similar technology–this isn’t the difference between LCD and OLED. All three have advantages and substantial weakness. This means that they are ideal for different use cases. You’ll want to know these as a gamer to identify what’s right for you.

TN is short for twisted nematic, referring to the LCD substrate that’s used in this type of display. TN panels are a very mature technology and are the cheapest kind of LCD display to produce. This means that you’ll get TN panels for a given screen size/resolution at a lower price than other options.

TN panels aren’t just cheap. They tend to have lower response times than other monitor panels. This makes them exceptionally well-suited for low-latency use cases like eSports gaming. As a result, many eSports-oriented high-refresh rate monitors utilize TN technology.

There are notable downsides, though. For starters, viewing angles are terrible. Even if you look at a TN panel from its exact center, you’ll experience picture quality degradation at the edges. Poor viewing angles mean that color is only accurately reproduced at the very center of the panel, from your perspective. Some TN panels have better viewing angles than others, but almost all are beaten by even budget VA and IPS sets in this respect.

Another thing? Color reproduction is poor on TN panels. Colors, in general, appear washed-out. But what’s most noticeable is the poor contrast levels. In poorly-illuminated scenes, black appears grey. All in all, we find TN panels hard to recommend anymore. If you want an eSports panel, but can’t afford a high-performance IPS, a TN panel might be right for you. Otherwise, look elsewhere.

IPS is short for in-plane switching. IPS displays were actually developed to address the shortcomings of TN panels. In IPS panels, the orientation of liquid crystal molecules is arranged and switched parallel to the substrate. This allows for accurate color reproduction across a much wider range of viewing angles.

IPS panels have clear advantages over TN panels. For starters, color reproduction is excellent. High-end IPS monitors that cover a significant amount of the sRGB gamut not only look great–they’re an excellent choice for professional photographers and graphic designers. Contrast is much-improved on IPS: while you don’t get the inky blacks of OLED, dark areas look reliably dark, while retaining detail. IPS panels tend to have a slower refresh rate than TN panels.

However, gaming-oriented IPS models are available with low response time and higher refresh rates. They just cost a lot more than comparable TN parts. IPS panels are our go-to recommendation. They offer great image quality, while also allowing for low-latency, high refresh rate gaming.

VA is short for vertical alignment. In these displays, LCD cells align vertically when no electricity is passing through. They align horizontally when it is, allowing light through. VA panels offer excellent image quality. Even budget VA monitors deliver contrast ratios in excess of 3000:1. This translates into rich colors, and detail preservation in dark scenes.

VA is ideal if media consumption is your primary use case: you get excellent image quality. The trade-off here is that VA panels tend to have the worst response times. Response times higher than 4ms are typical. On the worst offenders, input lag is actually somewhat notable. And while viewing angles are better than TN panels, VA panels often exhibit color shifting–with colors going off-hue at wide angles. Some VA panels also have a “ghosting” issue, especially when handling rapidly moving images.

This makes VA panels a questionable choice for eSports gaming. If you mainly play single-player titles, though, VA panels are a great choice. Price-wise, they tend to be cheaper than their IPS counterparts while offering great image quality.

If you’re an eSports gamer, you need a monitor with the lowest-possible response rate and a high refresh rate. Both IPS and TN panels enable this. At a premium budget, you should look at IPS panels, as they offer the best combination of picture quality and low latency. If you’re on a tighter budget, a TN panel can get the job done, although you’ll be compromising somewhat on the image.

Other than the display panel, you also need to look at some of the other specifications such as the color gamut, HDR support, contrast ratio, etc. You can read more about how to pick the right config here.