lcd panel index free sample
Glass substrate with ITO electrodes. The shapes of these electrodes will determine the shapes that will appear when the LCD is switched ON. Vertical ridges etched on the surface are smooth.
A liquid-crystal display (LCD) is a flat-panel display or other electronically modulated optical device that uses the light-modulating properties of liquid crystals combined with polarizers. Liquid crystals do not emit light directlybacklight or reflector to produce images in color or monochrome.seven-segment displays, as in a digital clock, are all good examples of devices with these displays. They use the same basic technology, except that arbitrary images are made from a matrix of small pixels, while other displays have larger elements. LCDs can either be normally on (positive) or off (negative), depending on the polarizer arrangement. For example, a character positive LCD with a backlight will have black lettering on a background that is the color of the backlight, and a character negative LCD will have a black background with the letters being of the same color as the backlight. Optical filters are added to white on blue LCDs to give them their characteristic appearance.
LCDs are used in a wide range of applications, including LCD televisions, computer monitors, instrument panels, aircraft cockpit displays, and indoor and outdoor signage. Small LCD screens are common in LCD projectors and portable consumer devices such as digital cameras, watches, digital clocks, calculators, and mobile telephones, including smartphones. LCD screens are also used on consumer electronics products such as DVD players, video game devices and clocks. LCD screens have replaced heavy, bulky cathode-ray tube (CRT) displays in nearly all applications. LCD screens are available in a wider range of screen sizes than CRT and plasma displays, with LCD screens available in sizes ranging from tiny digital watches to very large television receivers. LCDs are slowly being replaced by OLEDs, which can be easily made into different shapes, and have a lower response time, wider color gamut, virtually infinite color contrast and viewing angles, lower weight for a given display size and a slimmer profile (because OLEDs use a single glass or plastic panel whereas LCDs use two glass panels; the thickness of the panels increases with size but the increase is more noticeable on LCDs) and potentially lower power consumption (as the display is only "on" where needed and there is no backlight). OLEDs, however, are more expensive for a given display size due to the very expensive electroluminescent materials or phosphors that they use. Also due to the use of phosphors, OLEDs suffer from screen burn-in and there is currently no way to recycle OLED displays, whereas LCD panels can be recycled, although the technology required to recycle LCDs is not yet widespread. Attempts to maintain the competitiveness of LCDs are quantum dot displays, marketed as SUHD, QLED or Triluminos, which are displays with blue LED backlighting and a Quantum-dot enhancement film (QDEF) that converts part of the blue light into red and green, offering similar performance to an OLED display at a lower price, but the quantum dot layer that gives these displays their characteristics can not yet be recycled.
Since LCD screens do not use phosphors, they rarely suffer image burn-in when a static image is displayed on a screen for a long time, e.g., the table frame for an airline flight schedule on an indoor sign. LCDs are, however, susceptible to image persistence.battery-powered electronic equipment more efficiently than a CRT can be. By 2008, annual sales of televisions with LCD screens exceeded sales of CRT units worldwide, and the CRT became obsolete for most purposes.
Each pixel of an LCD typically consists of a layer of molecules aligned between two transparent electrodes, often made of Indium-Tin oxide (ITO) and two polarizing filters (parallel and perpendicular polarizers), the axes of transmission of which are (in most of the cases) perpendicular to each other. Without the liquid crystal between the polarizing filters, light passing through the first filter would be blocked by the second (crossed) polarizer. Before an electric field is applied, the orientation of the liquid-crystal molecules is determined by the alignment at the surfaces of electrodes. In a twisted nematic (TN) device, the surface alignment directions at the two electrodes are perpendicular to each other, and so the molecules arrange themselves in a helical structure, or twist. This induces the rotation of the polarization of the incident light, and the device appears gray. If the applied voltage is large enough, the liquid crystal molecules in the center of the layer are almost completely untwisted and the polarization of the incident light is not rotated as it passes through the liquid crystal layer. This light will then be mainly polarized perpendicular to the second filter, and thus be blocked and the pixel will appear black. By controlling the voltage applied across the liquid crystal layer in each pixel, light can be allowed to pass through in varying amounts thus constituting different levels of gray.
The chemical formula of the liquid crystals used in LCDs may vary. Formulas may be patented.Sharp Corporation. The patent that covered that specific mixture expired.
Most color LCD systems use the same technique, with color filters used to generate red, green, and blue subpixels. The LCD color filters are made with a photolithography process on large glass sheets that are later glued with other glass sheets containing a TFT array, spacers and liquid crystal, creating several color LCDs that are then cut from one another and laminated with polarizer sheets. Red, green, blue and black photoresists (resists) are used. All resists contain a finely ground powdered pigment, with particles being just 40 nanometers across. The black resist is the first to be applied; this will create a black grid (known in the industry as a black matrix) that will separate red, green and blue subpixels from one another, increasing contrast ratios and preventing light from leaking from one subpixel onto other surrounding subpixels.Super-twisted nematic LCD, where the variable twist between tighter-spaced plates causes a varying double refraction birefringence, thus changing the hue.
LCD in a Texas Instruments calculator with top polarizer removed from device and placed on top, such that the top and bottom polarizers are perpendicular. As a result, the colors are inverted.
The optical effect of a TN device in the voltage-on state is far less dependent on variations in the device thickness than that in the voltage-off state. Because of this, TN displays with low information content and no backlighting are usually operated between crossed polarizers such that they appear bright with no voltage (the eye is much more sensitive to variations in the dark state than the bright state). As most of 2010-era LCDs are used in television sets, monitors and smartphones, they have high-resolution matrix arrays of pixels to display arbitrary images using backlighting with a dark background. When no image is displayed, different arrangements are used. For this purpose, TN LCDs are operated between parallel polarizers, whereas IPS LCDs feature crossed polarizers. In many applications IPS LCDs have replaced TN LCDs, particularly in smartphones. Both the liquid crystal material and the alignment layer material contain ionic compounds. If an electric field of one particular polarity is applied for a long period of time, this ionic material is attracted to the surfaces and degrades the device performance. This is avoided either by applying an alternating current or by reversing the polarity of the electric field as the device is addressed (the response of the liquid crystal layer is identical, regardless of the polarity of the applied field).
Displays for a small number of individual digits or fixed symbols (as in digital watches and pocket calculators) can be implemented with independent electrodes for each segment.alphanumeric or variable graphics displays are usually implemented with pixels arranged as a matrix consisting of electrically connected rows on one side of the LC layer and columns on the other side, which makes it possible to address each pixel at the intersections. The general method of matrix addressing consists of sequentially addressing one side of the matrix, for example by selecting the rows one-by-one and applying the picture information on the other side at the columns row-by-row. For details on the various matrix addressing schemes see passive-matrix and active-matrix addressed LCDs.
LCDs, along with OLED displays, are manufactured in cleanrooms borrowing techniques from semiconductor manufacturing and using large sheets of glass whose size has increased over time. Several displays are manufactured at the same time, and then cut from the sheet of glass, also known as the mother glass or LCD glass substrate. The increase in size allows more displays or larger displays to be made, just like with increasing wafer sizes in semiconductor manufacturing. The glass sizes are as follows:
Until Gen 8, manufacturers would not agree on a single mother glass size and as a result, different manufacturers would use slightly different glass sizes for the same generation. Some manufacturers have adopted Gen 8.6 mother glass sheets which are only slightly larger than Gen 8.5, allowing for more 50 and 58 inch LCDs to be made per mother glass, specially 58 inch LCDs, in which case 6 can be produced on a Gen 8.6 mother glass vs only 3 on a Gen 8.5 mother glass, significantly reducing waste.AGC Inc., Corning Inc., and Nippon Electric Glass.
In 1922, Georges Friedel described the structure and properties of liquid crystals and classified them in three types (nematics, smectics and cholesterics). In 1927, Vsevolod Frederiks devised the electrically switched light valve, called the Fréedericksz transition, the essential effect of all LCD technology. In 1936, the Marconi Wireless Telegraph company patented the first practical application of the technology, "The Liquid Crystal Light Valve". In 1962, the first major English language publication Molecular Structure and Properties of Liquid Crystals was published by Dr. George W. Gray.RCA found that liquid crystals had some interesting electro-optic characteristics and he realized an electro-optical effect by generating stripe-patterns in a thin layer of liquid crystal material by the application of a voltage. This effect is based on an electro-hydrodynamic instability forming what are now called "Williams domains" inside the liquid crystal.
In the late 1960s, pioneering work on liquid crystals was undertaken by the UK"s Royal Radar Establishment at Malvern, England. The team at RRE supported ongoing work by George William Gray and his team at the University of Hull who ultimately discovered the cyanobiphenyl liquid crystals, which had correct stability and temperature properties for application in LCDs.
The idea of a TFT-based liquid-crystal display (LCD) was conceived by Bernard Lechner of RCA Laboratories in 1968.dynamic scattering mode (DSM) LCD that used standard discrete MOSFETs.
On December 4, 1970, the twisted nematic field effect (TN) in liquid crystals was filed for patent by Hoffmann-LaRoche in Switzerland, (Swiss patent No. 532 261) with Wolfgang Helfrich and Martin Schadt (then working for the Central Research Laboratories) listed as inventors.Brown, Boveri & Cie, its joint venture partner at that time, which produced TN displays for wristwatches and other applications during the 1970s for the international markets including the Japanese electronics industry, which soon produced the first digital quartz wristwatches with TN-LCDs and numerous other products. James Fergason, while working with Sardari Arora and Alfred Saupe at Kent State University Liquid Crystal Institute, filed an identical patent in the United States on April 22, 1971.ILIXCO (now LXD Incorporated), produced LCDs based on the TN-effect, which soon superseded the poor-quality DSM types due to improvements of lower operating voltages and lower power consumption. Tetsuro Hama and Izuhiko Nishimura of Seiko received a US patent dated February 1971, for an electronic wristwatch incorporating a TN-LCD.
In 1972, the concept of the active-matrix thin-film transistor (TFT) liquid-crystal display panel was prototyped in the United States by T. Peter Brody"s team at Westinghouse, in Pittsburgh, Pennsylvania.Westinghouse Research Laboratories demonstrated the first thin-film-transistor liquid-crystal display (TFT LCD).high-resolution and high-quality electronic visual display devices use TFT-based active matrix displays.active-matrix liquid-crystal display (AM LCD) in 1974, and then Brody coined the term "active matrix" in 1975.
In 1972 North American Rockwell Microelectronics Corp introduced the use of DSM LCDs for calculators for marketing by Lloyds Electronics Inc, though these required an internal light source for illumination.Sharp Corporation followed with DSM LCDs for pocket-sized calculators in 1973Seiko and its first 6-digit TN-LCD quartz wristwatch, and Casio"s "Casiotron". Color LCDs based on Guest-Host interaction were invented by a team at RCA in 1968.TFT LCDs similar to the prototypes developed by a Westinghouse team in 1972 were patented in 1976 by a team at Sharp consisting of Fumiaki Funada, Masataka Matsuura, and Tomio Wada,
In 1983, researchers at Brown, Boveri & Cie (BBC) Research Center, Switzerland, invented the passive matrix-addressed LCDs. H. Amstutz et al. were listed as inventors in the corresponding patent applications filed in Switzerland on July 7, 1983, and October 28, 1983. Patents were granted in Switzerland CH 665491, Europe EP 0131216,
The first color LCD televisions were developed as handheld televisions in Japan. In 1980, Hattori Seiko"s R&D group began development on color LCD pocket televisions.Seiko Epson released the first LCD television, the Epson TV Watch, a wristwatch equipped with a small active-matrix LCD television.dot matrix TN-LCD in 1983.Citizen Watch,TFT LCD.computer monitors and LCD televisions.3LCD projection technology in the 1980s, and licensed it for use in projectors in 1988.compact, full-color LCD projector.
In 1990, under different titles, inventors conceived electro optical effects as alternatives to twisted nematic field effect LCDs (TN- and STN- LCDs). One approach was to use interdigital electrodes on one glass substrate only to produce an electric field essentially parallel to the glass substrates.Germany by Guenter Baur et al. and patented in various countries.Hitachi work out various practical details of the IPS technology to interconnect the thin-film transistor array as a matrix and to avoid undesirable stray fields in between pixels.
Hitachi also improved the viewing angle dependence further by optimizing the shape of the electrodes (Super IPS). NEC and Hitachi become early manufacturers of active-matrix addressed LCDs based on the IPS technology. This is a milestone for implementing large-screen LCDs having acceptable visual performance for flat-panel computer monitors and television screens. In 1996, Samsung developed the optical patterning technique that enables multi-domain LCD. Multi-domain and In Plane Switching subsequently remain the dominant LCD designs through 2006.South Korea and Taiwan,
In 2007 the image quality of LCD televisions surpassed the image quality of cathode-ray-tube-based (CRT) TVs.LCD TVs were projected to account 50% of the 200 million TVs to be shipped globally in 2006, according to Displaybank.Toshiba announced 2560 × 1600 pixels on a 6.1-inch (155 mm) LCD panel, suitable for use in a tablet computer,transparent and flexible, but they cannot emit light without a backlight like OLED and microLED, which are other technologies that can also be made flexible and transparent.
In 2016, Panasonic developed IPS LCDs with a contrast ratio of 1,000,000:1, rivaling OLEDs. This technology was later put into mass production as dual layer, dual panel or LMCL (Light Modulating Cell Layer) LCDs. The technology uses 2 liquid crystal layers instead of one, and may be used along with a mini-LED backlight and quantum dot sheets.
Since LCDs produce no light of their own, they require external light to produce a visible image.backlight. Active-matrix LCDs are almost always backlit.Transflective LCDs combine the features of a backlit transmissive display and a reflective display.
CCFL: The LCD panel is lit either by two cold cathode fluorescent lamps placed at opposite edges of the display or an array of parallel CCFLs behind larger displays. A diffuser (made of PMMA acrylic plastic, also known as a wave or light guide/guiding plateinverter to convert whatever DC voltage the device uses (usually 5 or 12 V) to ≈1000 V needed to light a CCFL.
EL-WLED: The LCD panel is lit by a row of white LEDs placed at one or more edges of the screen. A light diffuser (light guide plate, LGP) is then used to spread the light evenly across the whole display, similarly to edge-lit CCFL LCD backlights. The diffuser is made out of either PMMA plastic or special glass, PMMA is used in most cases because it is rugged, while special glass is used when the thickness of the LCD is of primary concern, because it doesn"t expand as much when heated or exposed to moisture, which allows LCDs to be just 5mm thick. Quantum dots may be placed on top of the diffuser as a quantum dot enhancement film (QDEF, in which case they need a layer to be protected from heat and humidity) or on the color filter of the LCD, replacing the resists that are normally used.
WLED array: The LCD panel is lit by a full array of white LEDs placed behind a diffuser behind the panel. LCDs that use this implementation will usually have the ability to dim or completely turn off the LEDs in the dark areas of the image being displayed, effectively increasing the contrast ratio of the display. The precision with which this can be done will depend on the number of dimming zones of the display. The more dimming zones, the more precise the dimming, with less obvious blooming artifacts which are visible as dark grey patches surrounded by the unlit areas of the LCD. As of 2012, this design gets most of its use from upscale, larger-screen LCD televisions.
RGB-LED array: Similar to the WLED array, except the panel is lit by a full array of RGB LEDs. While displays lit with white LEDs usually have a poorer color gamut than CCFL lit displays, panels lit with RGB LEDs have very wide color gamuts. This implementation is most popular on professional graphics editing LCDs. As of 2012, LCDs in this category usually cost more than $1000. As of 2016 the cost of this category has drastically reduced and such LCD televisions obtained same price levels as the former 28" (71 cm) CRT based categories.
Monochrome LEDs: such as red, green, yellow or blue LEDs are used in the small passive monochrome LCDs typically used in clocks, watches and small appliances.
Today, most LCD screens are being designed with an LED backlight instead of the traditional CCFL backlight, while that backlight is dynamically controlled with the video information (dynamic backlight control). The combination with the dynamic backlight control, invented by Philips researchers Douglas Stanton, Martinus Stroomer and Adrianus de Vaan, simultaneously increases the dynamic range of the display system (also marketed as HDR, high dynamic range television or FLAD, full-area local area dimming).
The LCD backlight systems are made highly efficient by applying optical films such as prismatic structure (prism sheet) to gain the light into the desired viewer directions and reflective polarizing films that recycle the polarized light that was formerly absorbed by the first polarizer of the LCD (invented by Philips researchers Adrianus de Vaan and Paulus Schaareman),
Due to the LCD layer that generates the desired high resolution images at flashing video speeds using very low power electronics in combination with LED based backlight technologies, LCD technology has become the dominant display technology for products such as televisions, desktop monitors, notebooks, tablets, smartphones and mobile phones. Although competing OLED technology is pushed to the market, such OLED displays do not feature the HDR capabilities like LCDs in combination with 2D LED backlight technologies have, reason why the annual market of such LCD-based products is still growing faster (in volume) than OLED-based products while the efficiency of LCDs (and products like portable computers, mobile phones and televisions) may even be further improved by preventing the light to be absorbed in the colour filters of the LCD.
A pink elastomeric connector mating an LCD panel to circuit board traces, shown next to a centimeter-scale ruler. The conductive and insulating layers in the black stripe are very small.
A standard television receiver screen, a modern LCD panel, has over six million pixels, and they are all individually powered by a wire network embedded in the screen. The fine wires, or pathways, form a grid with vertical wires across the whole screen on one side of the screen and horizontal wires across the whole screen on the other side of the screen. To this grid each pixel has a positive connection on one side and a negative connection on the other side. So the total amount of wires needed for a 1080p display is 3 x 1920 going vertically and 1080 going horizontally for a total of 6840 wires horizontally and vertically. That"s three for red, green and blue and 1920 columns of pixels for each color for a total of 5760 wires going vertically and 1080 rows of wires going horizontally. For a panel that is 28.8 inches (73 centimeters) wide, that means a wire density of 200 wires per inch along the horizontal edge.
The LCD panel is powered by LCD drivers that are carefully matched up with the edge of the LCD panel at the factory level. The drivers may be installed using several methods, the most common of which are COG (Chip-On-Glass) and TAB (Tape-automated bonding) These same principles apply also for smartphone screens that are much smaller than TV screens.anisotropic conductive film or, for lower densities, elastomeric connectors.
Monochrome and later color passive-matrix LCDs were standard in most early laptops (although a few used plasma displaysGame Boyactive-matrix became standard on all laptops. The commercially unsuccessful Macintosh Portable (released in 1989) was one of the first to use an active-matrix display (though still monochrome). Passive-matrix LCDs are still used in the 2010s for applications less demanding than laptop computers and TVs, such as inexpensive calculators. In particular, these are used on portable devices where less information content needs to be displayed, lowest power consumption (no backlight) and low cost are desired or readability in direct sunlight is needed.
STN LCDs have to be continuously refreshed by alternating pulsed voltages of one polarity during one frame and pulses of opposite polarity during the next frame. Individual pixels are addressed by the corresponding row and column circuits. This type of display is called response times and poor contrast are typical of passive-matrix addressed LCDs with too many pixels and driven according to the "Alt & Pleshko" drive scheme. Welzen and de Vaan also invented a non RMS drive scheme enabling to drive STN displays with video rates and enabling to show smooth moving video images on an STN display.
Bistable LCDs do not require continuous refreshing. Rewriting is only required for picture information changes. In 1984 HA van Sprang and AJSM de Vaan invented an STN type display that could be operated in a bistable mode, enabling extremely high resolution images up to 4000 lines or more using only low voltages.
High-resolution color displays, such as modern LCD computer monitors and televisions, use an active-matrix structure. A matrix of thin-film transistors (TFTs) is added to the electrodes in contact with the LC layer. Each pixel has its own dedicated transistor, allowing each column line to access one pixel. When a row line is selected, all of the column lines are connected to a row of pixels and voltages corresponding to the picture information are driven onto all of the column lines. The row line is then deactivated and the next row line is selected. All of the row lines are selected in sequence during a refresh operation. Active-matrix addressed displays look brighter and sharper than passive-matrix addressed displays of the same size, and generally have quicker response times, producing much better images. Sharp produces bistable reflective LCDs with a 1-bit SRAM cell per pixel that only requires small amounts of power to maintain an image.
Segment LCDs can also have color by using Field Sequential Color (FSC LCD). This kind of displays have a high speed passive segment LCD panel with an RGB backlight. The backlight quickly changes color, making it appear white to the naked eye. The LCD panel is synchronized with the backlight. For example, to make a segment appear red, the segment is only turned ON when the backlight is red, and to make a segment appear magenta, the segment is turned ON when the backlight is blue, and it continues to be ON while the backlight becomes red, and it turns OFF when the backlight becomes green. To make a segment appear black, the segment is always turned ON. An FSC LCD divides a color image into 3 images (one Red, one Green and one Blue) and it displays them in order. Due to persistence of vision, the 3 monochromatic images appear as one color image. An FSC LCD needs an LCD panel with a refresh rate of 180 Hz, and the response time is reduced to just 5 milliseconds when compared with normal STN LCD panels which have a response time of 16 milliseconds.
Samsung introduced UFB (Ultra Fine & Bright) displays back in 2002, utilized the super-birefringent effect. It has the luminance, color gamut, and most of the contrast of a TFT-LCD, but only consumes as much power as an STN display, according to Samsung. It was being used in a variety of Samsung cellular-telephone models produced until late 2006, when Samsung stopped producing UFB displays. UFB displays were also used in certain models of LG mobile phones.
In-plane switching is an LCD technology that aligns the liquid crystals in a plane parallel to the glass substrates. In this method, the electrical field is applied through opposite electrodes on the same glass substrate, so that the liquid crystals can be reoriented (switched) essentially in the same plane, although fringe fields inhibit a homogeneous reorientation. This requires two transistors for each pixel instead of the single transistor needed for a standard thin-film transistor (TFT) display. The IPS technology is used in everything from televisions, computer monitors, and even wearable devices, especially almost all LCD smartphone panels are IPS/FFS mode. IPS displays belong to the LCD panel family screen types. The other two types are VA and TN. Before LG Enhanced IPS was introduced in 2001 by Hitachi as 17" monitor in Market, the additional transistors resulted in blocking more transmission area, thus requiring a brighter backlight and consuming more power, making this type of display less desirable for notebook computers. Panasonic Himeji G8.5 was using an enhanced version of IPS, also LGD in Korea, then currently the world biggest LCD panel manufacture BOE in China is also IPS/FFS mode TV panel.
In 2015 LG Display announced the implementation of a new technology called M+ which is the addition of white subpixel along with the regular RGB dots in their IPS panel technology.
In 2011, LG claimed the smartphone LG Optimus Black (IPS LCD (LCD NOVA)) has the brightness up to 700 nits, while the competitor has only IPS LCD with 518 nits and double an active-matrix OLED (AMOLED) display with 305 nits. LG also claimed the NOVA display to be 50 percent more efficient than regular LCDs and to consume only 50 percent of the power of AMOLED displays when producing white on screen.
This pixel-layout is found in S-IPS LCDs. A chevron shape is used to widen the viewing cone (range of viewing directions with good contrast and low color shift).
Vertical-alignment displays are a form of LCDs in which the liquid crystals naturally align vertically to the glass substrates. When no voltage is applied, the liquid crystals remain perpendicular to the substrate, creating a black display between crossed polarizers. When voltage is applied, the liquid crystals shift to a tilted position, allowing light to pass through and create a gray-scale display depending on the amount of tilt generated by the electric field. It has a deeper-black background, a higher contrast ratio, a wider viewing angle, and better image quality at extreme temperatures than traditional twisted-nematic displays.
Blue phase mode LCDs have been shown as engineering samples early in 2008, but they are not in mass-production. The physics of blue phase mode LCDs suggest that very short switching times (≈1 ms) can be achieved, so time sequential color control can possibly be realized and expensive color filters would be obsolete.
Some LCD panels have defective transistors, causing permanently lit or unlit pixels which are commonly referred to as stuck pixels or dead pixels respectively. Unlike integrated circuits (ICs), LCD panels with a few defective transistors are usually still usable. Manufacturers" policies for the acceptable number of defective pixels vary greatly. At one point, Samsung held a zero-tolerance policy for LCD monitors sold in Korea.ISO 13406-2 standard.
Dead pixel policies are often hotly debated between manufacturers and customers. To regulate the acceptability of defects and to protect the end user, ISO released the ISO 13406-2 standard,ISO 9241, specifically ISO-9241-302, 303, 305, 307:2008 pixel defects. However, not every LCD manufacturer conforms to the ISO standard and the ISO standard is quite often interpreted in different ways. LCD panels are more likely to have defects than most ICs due to their larger size. For example, a 300 mm SVGA LCD has 8 defects and a 150 mm wafer has only 3 defects. However, 134 of the 137 dies on the wafer will be acceptable, whereas rejection of the whole LCD panel would be a 0% yield. In recent years, quality control has been improved. An SVGA LCD panel with 4 defective pixels is usually considered defective and customers can request an exchange for a new one.
Some manufacturers, notably in South Korea where some of the largest LCD panel manufacturers, such as LG, are located, now have a zero-defective-pixel guarantee, which is an extra screening process which can then determine "A"- and "B"-grade panels.clouding (or less commonly mura), which describes the uneven patches of changes in luminance. It is most visible in dark or black areas of displayed scenes.
The zenithal bistable device (ZBD), developed by Qinetiq (formerly DERA), can retain an image without power. The crystals may exist in one of two stable orientations ("black" and "white") and power is only required to change the image. ZBD Displays is a spin-off company from QinetiQ who manufactured both grayscale and color ZBD devices. Kent Displays has also developed a "no-power" display that uses polymer stabilized cholesteric liquid crystal (ChLCD). In 2009 Kent demonstrated the use of a ChLCD to cover the entire surface of a mobile phone, allowing it to change colors, and keep that color even when power is removed.
In 2004, researchers at the University of Oxford demonstrated two new types of zero-power bistable LCDs based on Zenithal bistable techniques.e.g., BiNem technology, are based mainly on the surface properties and need specific weak anchoring materials.
Resolution The resolution of an LCD is expressed by the number of columns and rows of pixels (e.g., 1024×768). Each pixel is usually composed 3 sub-pixels, a red, a green, and a blue one. This had been one of the few features of LCD performance that remained uniform among different designs. However, there are newer designs that share sub-pixels among pixels and add Quattron which attempt to efficiently increase the perceived resolution of a display without increasing the actual resolution, to mixed results.
Spatial performance: For a computer monitor or some other display that is being viewed from a very close distance, resolution is often expressed in terms of dot pitch or pixels per inch, which is consistent with the printing industry. Display density varies per application, with televisions generally having a low density for long-distance viewing and portable devices having a high density for close-range detail. The Viewing Angle of an LCD may be important depending on the display and its usage, the limitations of certain display technologies mean the display only displays accurately at certain angles.
Temporal performance: the temporal resolution of an LCD is how well it can display changing images, or the accuracy and the number of times per second the display draws the data it is being given. LCD pixels do not flash on/off between frames, so LCD monitors exhibit no refresh-induced flicker no matter how low the refresh rate.
Brightness and contrast ratio: Contrast ratio is the ratio of the brightness of a full-on pixel to a full-off pixel. The LCD itself is only a light valve and does not generate light; the light comes from a backlight that is either fluorescent or a set of LEDs. Brightness is usually stated as the maximum light output of the LCD, which can vary greatly based on the transparency of the LCD and the brightness of the backlight. Brighter backlight allows stronger contrast and higher dynamic range (HDR displays are graded in peak luminance), but there is always a trade-off between brightness and power consumption.
Usually no refresh-rate flicker, because the LCD pixels hold their state between refreshes (which are usually done at 200 Hz or faster, regardless of the input refresh rate).
No theoretical resolution limit. When multiple LCD panels are used together to create a single canvas, each additional panel increases the total resolution of the display, which is commonly called stacked resolution.
As an inherently digital device, the LCD can natively display digital data from a DVI or HDMI connection without requiring conversion to analog. Some LCD panels have native fiber optic inputs in addition to DVI and HDMI.
As of 2012, most implementations of LCD backlighting use pulse-width modulation (PWM) to dim the display,CRT monitor at 85 Hz refresh rate would (this is because the entire screen is strobing on and off rather than a CRT"s phosphor sustained dot which continually scans across the display, leaving some part of the display always lit), causing severe eye-strain for some people.LED-backlit monitors, because the LEDs switch on and off faster than a CCFL lamp.
Fixed bit depth (also called color depth). Many cheaper LCDs are only able to display 262144 (218) colors. 8-bit S-IPS panels can display 16 million (224) colors and have significantly better black level, but are expensive and have slower response time.
Input lag, because the LCD"s A/D converter waits for each frame to be completely been output before drawing it to the LCD panel. Many LCD monitors do post-processing before displaying the image in an attempt to compensate for poor color fidelity, which adds an additional lag. Further, a video scaler must be used when displaying non-native resolutions, which adds yet more time lag. Scaling and post processing are usually done in a single chip on modern monitors, but each function that chip performs adds some delay. Some displays have a video gaming mode which disables all or most processing to reduce perceivable input lag.
Loss of brightness and much slower response times in low temperature environments. In sub-zero environments, LCD screens may cease to function without the use of supplemental heating.
The production of LCD screens uses nitrogen trifluoride (NF3) as an etching fluid during the production of the thin-film components. NF3 is a potent greenhouse gas, and its relatively long half-life may make it a potentially harmful contributor to global warming. A report in Geophysical Research Letters suggested that its effects were theoretically much greater than better-known sources of greenhouse gasses like carbon dioxide. As NF3 was not in widespread use at the time, it was not made part of the Kyoto Protocols and has been deemed "the missing greenhouse gas".
Kawamoto, H. (2012). "The Inventors of TFT Active-Matrix LCD Receive the 2011 IEEE Nishizawa Medal". Journal of Display Technology. 8 (1): 3–4. Bibcode:2012JDisT...8....3K. doi:10.1109/JDT.2011.2177740. ISSN 1551-319X.
Brody, T. Peter; Asars, J. A.; Dixon, G. D. (November 1973). "A 6 × 6 inch 20 lines-per-inch liquid-crystal display panel". 20 (11): 995–1001. Bibcode:1973ITED...20..995B. doi:10.1109/T-ED.1973.17780. ISSN 0018-9383.
Explanation of CCFL backlighting details, "Design News — Features — How to Backlight an LCD" Archived January 2, 2014, at the Wayback Machine, Randy Frank, Retrieved January 2013.
LCD Television Power Draw Trends from 2003 to 2015; B. Urban and K. Roth; Fraunhofer USA Center for Sustainable Energy Systems; Final Report to the Consumer Technology Association; May 2017; http://www.cta.tech/cta/media/policyImages/policyPDFs/Fraunhofer-LCD-TV-Power-Draw-Trends-FINAL.pdf Archived August 1, 2017, at the Wayback Machine
New Cholesteric Colour Filters for Reflective LCDs; C. Doornkamp; R. T. Wegh; J. Lub; SID Symposium Digest of Technical Papers; Volume 32, Issue 1 June 2001; Pages 456–459; http://onlinelibrary.wiley.com/doi/10.1889/1.1831895/full
K. H. Lee; H. Y. Kim; K. H. Park; S. J. Jang; I. C. Park & J. Y. Lee (June 2006). "A Novel Outdoor Readability of Portable TFT-LCD with AFFS Technology". SID Symposium Digest of Technical Papers. 37 (1): 1079–1082. doi:10.1889/1.2433159. S2CID 129569963.
Jack H. Park (January 15, 2015). "Cut and Run: Taiwan-controlled LCD Panel Maker in Danger of Shutdown without Further Investment". www.businesskorea.co.kr. Archived from the original on May 12, 2015. Retrieved April 23, 2015.
NXP Semiconductors (October 21, 2011). "UM10764 Vertical Alignment (VA) displays and NXP LCD drivers" (PDF). Archived from the original (PDF) on March 14, 2014. Retrieved September 4, 2014.
"Samsung to Offer "Zero-PIXEL-DEFECT" Warranty for LCD Monitors". Forbes. December 30, 2004. Archived from the original on August 20, 2007. Retrieved September 3, 2007.
"Display (LCD) replacement for defective pixels – ThinkPad". Lenovo. June 25, 2007. Archived from the original on December 31, 2006. Retrieved July 13, 2007.
Explanation of why pulse width modulated backlighting is used, and its side-effects, "Pulse Width Modulation on LCD monitors", TFT Central. Retrieved June 2012.
An enlightened user requests Dell to improve their LCD backlights, "Request to Dell for higher backlight PWM frequency" Archived December 13, 2012, at the Wayback Machine, Dell Support Community. Retrieved June 2012.
Oleg Artamonov (January 23, 2007). "Contemporary LCD Monitor Parameters: Objective and Subjective Analysis". X-bit labs. Archived from the original on May 16, 2008. Retrieved May 17, 2008.
Consistent presentation of digital radiographic images at all locations within a medical center can help ensure a high level of patient care. Currently, liquid crystal displays (LCDs) are the electronic display technology of choice for viewing medical images. As the inherent luminance (and thereby perceived contrast) properties of different LCDs can vary substantially, calibration of the luminance response of these displays is required to ensure that observer perception of an image is consistent on all displays. The digital imaging and communication in medicine (DICOM) grayscale standard display function (GSDF) defines the luminance response of a display such that an observer’s perception of image contrast is consistent throughout the pixel value range of a displayed image. The main purpose of this work is to review the theoretical and practical aspects of calibration of LCDs to the GSDF. Included herein is a review of LCD technology, principles of calibration, and other practical aspects related to calibration and observer perception of images presented on LCDs. Both grayscale and color displays are considered, and the influence of ambient light on calibration and perception is discussed.
The purpose of this work is to provide an overview of DICOM grayscale calibration of medical imaging grade liquid crystal displays (LCDs). In the context of this work, a “medical imaging grade” display is a high-quality LCD, which is appropriate for medical image viewing. It has the general characteristics of minimal visual noise, an appropriately wide viewing angle range, minimal reflection of ambient light, and a grayscale luminance response that is calibrated to a known and accepted standard. Each of these display properties will be discussed, with greater detail and emphasis placed on grayscale calibration. Much of the information provided here has been presented previously by other authors and groups, and references to those works are provided. Successful calibration and use of LCDs in medical imaging requires an understanding of LCD technology. Therefore, a “Technology Overview” is provided. A combination of the GSDF and LCD technology provides the “Foundations of DICOM Calibration.” There are several “Practical Aspects of Calibration,” some of which will be discussed here. Grayscale calibration is evolving from inherently grayscale displays to grayscale calibration of color displays. The “Influence of Color” on the calibration of LCDs is underrepresented in the literature and will be discussed briefly. The light source of most LCDs is a combination of fluorescent lamps and light guides. Because the luminance output of the lamps changes over time, “Maintenance of Calibration” is required to ensure quality image presentation over time. Finally, there are several “Confounding Factors” to consider when calibrating and implementing medical imaging grade LCDs into clinical practice. These include the influence of viewing angle and ambient light. Whereas the influence of ambient light on the physical properties of a displayed image is well known, the influence of ambient light on the adaptation (and perception) of the human visual system is underrepresented in the medical imaging display literature and will be discussed briefly.
Whereas the theory of grayscale calibration of medical imaging grade LCDs is based on the known response of the human visual system to contrast stimuli, practical calibration is implemented to both accommodate and utilize the specifics of LCD technology. A basic understanding of LCD technology is essential to appreciate the methods and limitations of calibration.
An active matrix liquid crystal display is often described as an optical “stack” containing a light source, light diffusers, polarizers, color filters (especially in case of a color LCD), and thin-film transistor liquid crystal matrix. An example of an optical stack is shown in Figure 1. The backlight is a combination of a light source and optical light guides and diffusers that serve to create a uniform luminance across the LCD surface. The light source is commonly a cold-cathode fluorescent lamp and may be implemented truly as backlights or commonly as “side” lights that are positioned along the outer edge(s) of the display. Other light sources, such as light emitting diodes or xenon lamps may also be used. The amount of light transmitted through the panel is a function of the relative orientation of the rear and front polarizers and the influence of the liquid crystal on the polarized light. The liquid crystal is a thin fluid layer of elongated organic molecules between glass plates. Linear “etching” of the inner surfaces of the glass plates preferentially orients the molecules near these surfaces parallel to the direction of the etching. In a resting state, the orientation of the molecules is determined by the direction of the etched grooves. As voltage is applied across the crystal, the molecules tend to preferentially align their direction in relation to the electric field. Orthogonal direction etching of the top and bottom surfaces of the liquid crystal layer provides an inherent “twist” in the orientation of the elongated molecules when a voltage is applied across the crystal. As the polarized light interacts with the twisted crystal, the plane of polarization tends to twist with the crystal. If the front and rear polarizers are oriented perpendicular to one another and the preferential plane of the polarized light is unaffected by the crystal, then very little light will be transmitted through the panel. If the molecules are highly aligned to the orthogonally oriented etching (caused by an applied voltage), then the polarized light is twisted 90° to align with the orientation of the front polarizer and a large fraction of light is transmitted. The applied voltage level influences to what extent the elongated molecules twist, thereby influencing the orientation of the plane of propagation of the once polarized light, which ultimately determines the amount of light that is transmitted by a small portion of the liquid crystal display. This description of LCD construction and operation is provided an as example. Details of the design and function of a specific LCD may well vary from the example provided there. However, the basic interactions between light, the polarizers, and the liquid crystal are common for all LCDs.
Each addressable LCD pixel has three subpixel elements, regardless of whether the display is inherently a color or a grayscale LCD. The three subelements correspond to the standard red, green, and blue color channels (RGB). In a color LCD, the colors are created by the addition of RGB filters. The color filters are omitted in inherently grayscale LCDs. Example color and grayscale pixel elements are shown in Figure 2. The “chevron” shape on the left in Figure 2 and the linear subpixels shown on the right are typical of many types of displays. As will be discussed later, the three subpixels will prove to be useful for grayscale calibration.
Grayscale calibration of LCDs is especially important because there is generally poor consistency in the inherent response of these displays. For example, the luminance (and perceived) contrast of an uncalibrated LCD can vary greatly throughout the input digital driving level (DDL) range of a single display.
The intensity of light emitted by a display, or luminance, is typically specified to have units of candela per square meter (cd/m2). The relationship between cd/m2 and the older luminance unit foot-lamberts (fL) is given by 1 cd/m2 = 0.292 fL. Because LCDs are non-Lambertian surfaces, luminance is typically measured with a photometer, which has a narrow light acceptance angle (≤5°). Some photometers have a display to provide luminance measurements to the operator. Others interface with a computer, which can provide electronic data capture and display the luminance values. Often, medical imaging grade LCDs utilize a calibration software package that supports a limited number of photometers. For calibrating medical imaging grade displays, a photometer should be accurate to within 5% except for very low luminance levels (0.5 cd/m2) where an accuracy of 10% may suffice. The accuracy of any photometer used for calibrating medical imaging grade displays should be specified by the manufacturer. Note that photometers used for calibrating color LCDs have independent RGB measurement channels. This provides for calibration of the color tone as well as the luminance of color displays.
Experience has shown that the overall perceived contrast of an image presented on two GSDF calibrated LCDs of similar contrast ratio but different luminance ranges exhibit similar (although not exactly the same) overall contrast appearance. Another recognized limitation of the Barten model (and thereby the GSDF) is that, for a particular uniform background luminance, the luminance change required to perceive the visual targets was determined with the HVS adapted to that background luminance. In radiographic image viewing the HVS adapts to an overall scene luminance, but is required to perceive anatomical detail over the relatively wide luminance range of a displayed image. Because the HVS perception is optimized for a relatively narrow luminance range near the adaptation luminance, perception of detail in the light and dark portions of an image may be somewhat compromised.
The DICOM grayscale standard display function describes a relationship between luminance and monitor input values such that the slope of the curve at any point, ie the contrast, is proportional (but not necessarily equal) to the contrast associated with a JND from the Barten model. The DICOM grayscale display function is often plotted graphically as luminance versus JND index (j), where the JND index values range from 0 to 1023. The DICOM grayscale display function is presented in Figure 3 this way. For a given luminance, the luminance change required to perceive a difference corresponds to a single JND. The model data have been fit to a polynomial, which provides a convenient mathematical transform to convert back and forth from units of luminance (cd/m2) to JNDj. The transform to convert from luminance (L) to JNDjj) is provided in Eq. j to luminance,,j transforms are available in tabular format.
To perform a DICOM calibration of a display, the desired postcalibration minimum (Lmin) and maximum (Lmax) luminance values are first identified. Because the luminance output of the backlights decreases over time, it may be reasonable to expect that the calibrated maximum luminance intensity selected may adversely affect the life expectancy of a display. The desired Lmax may be less than the maximum luminance that the device is capable of producing, Ldmax. Diagnostic monochrome monitors are now commonly calibrated for an Lmax of 400 to 600 cd/cm2, whereas color monitors used for clinical review will have an Lmax from 250 to 450 cd/cm2. Similarly, Lmin, corrected for ambient light effects, is often set to be larger than the black level of the display, Ldmin. The minimum possible Ldmin value is determined by the ability of an LCD to block the backlight.
After the Lmin and Lmax values have been specified, the corresponding JND index values (JNDmin and JNDmax) are determined using Eq. max and JNDmin defines the total number of JNDs (JNDtot) that the calibrated display can produce. For example, a display with Lmin = 0.5 cd/m2 and Lmax = 200 cd/m2 has corresponding JNDmin = 46.6 and JNDmax = 572.2. In this example, JNDtot = 525.6. Most computers, video display driver cards, and displays are capable of 8-bit graphics. Regardless of whether the display is color or grayscale, an 8-bit grayscale palette is typical. Therefore, there are typically N = 256 grayscale digital driving levels available to a display system. The purpose of calibration is to set the luminance output for each input DDL such that throughout the entire DDL range, a change in DDL results in a JND index change that is constant. To accomplish this, the total number of JNDs is divided by the number of DDLs, minus one. This defines the average number of JNDs per DDL (JNDave) of the calibrated display. Continuing with the example started above, JNDave = 525.6 / 255 = 2.06. The JNDDDL of each DDL is next calculated as
Just as the DICOM GSDF with JND indices is useful for calibrating displays, it is also useful for characterizing the contrast properties of both calibrated and uncalibrated displays. To characterize a display, luminance measurements can be converted to JND index values using Eq. 4 and and55 for both an uncalibrated and a calibrated display. In Figures 4 and and5,5, note the lack of contrast for DDL values less than 8 and the relatively increased contrast for DDL values in the range 8 to 96 compared to the GSDF. For values greater than 128, the uncalibrated display has less contrast than the calibrated display. As might be expected, the JND space of a calibrated display is linear.
Just noticeable difference index value as a function of digital driving level (DDL) for an uncalibrated display and a display that is calibrated to the DICOM Grayscale Standard Display Function.
As shown in Figures 4 and and5,5, a luminance output that corresponds to the GSDF is not inherent to LCDs. Calibration requires creation of a look-up table (LUT) such that for each DDL, the LUT specifies a new DDL value that corresponds to a displayed luminance that matches (as closely as possible) that of an ideal DICOM display.6 shows the JND/DDL contrast of an ideal GSDF calibrated display and a display that has been calibrated using an 8-bit LUT.
It is important to note that GSDF calibration of different displays does not necessarily result in displays which are exactly perceptually matched. The GSDF ensures that the perceived contrast is consistent throughout the grayscale range of a given display, but calibrated displays that have substantially different maximum luminance values or contrast ratios will not provide an exact perceptual match. For example, a brighter display will still look brighter after calibration and a higher contrast display will still have higher contrast. Because the luminance and contrast properties of medical imaging grade LCDs is not widely variable, GSDF calibration of these displays will ensure that an image presented on each display will have a similar appearance.
For LCD displays, the luminance can vary discontinuously between adjacent palette LUT entries. Therefore, the number of calibration points should be much larger than the number of points used for CRT devices, and preferably equal to the full size of the grayscale palette. Similarly, calibration conformance should be checked for all 256 drive levels.
Postcalibration measurement of the grayscale response of a display can be used to assess the quality of the calibration. Detailed discussion of the methods used to assess calibrated display performance are available in the literature.,,Lmin and Lmax. A comprehensive assessment of display grayscale calibration involves measuring the luminance for each of the 256 DDL values. For a small sample of displays, this may be done using a quality photometer and manual recording of the data. Preferably, this can be done by using a photometer that interfaces directly to a computer. Characterization of calibrated displays via measurement of all 256 steps in the DDL range provides an overall assessment of the grayscale response. Both “macro-grayscale” (over a subset of DDLs) and “micro-grayscale” (between individual DDLs) can be assessed. Macroscale assessment may be performed by calculating the JND/DDL contrast between DDL values that are coarsely spaced. For example, the large scale conformance to the GSDF may be calculated using DDL values that are separated by 15. This is equivalent to the 18-step assessment recommended by the AAPM TG-18. Of course, assessment of the macro-grayscale conformance does not require measurement at all 256 DDL values. The additional value of measuring the luminance at each of the 256 DDL values is characterization of the micro-grayscale response. This is more important for LCD displays than for CRT displays. Discrepancy between the ideal GSDF and the actual micro-grayscale response can be considered an assessment of the contribution of an imperfect grayscale calibration to the noise of the displayed image.
There are many possible mechanisms to store and utilize calibration data. Only an introduction to these mechanisms is provided here. Depending upon implementation, the calibration look-up table may be stored on a host PC as an International Color Consortium (.icc) color profile (or similar). The computer operating system, in combination with the video card, can modify the DDL values sent to the display via the .icc profile. As a general rule, the .icc profile is available to both analog or digital visual interface (DVI) video output formats. The calibration data may also be stored in firmware of the LCD. In general, this type of implementation has the limitation that it can be applied only to a DVI input signal, but has the advantage that the calibration is immediately available if the display is moved to another PC with a DVI output channel. Certainly, other vendor-specific solutions to calibration storage and portability exist. Also, note that many imaging grade displays have other calibrated display function settings in addition to the GSDF setting (such as log-linear or CIELab), which are provided by the manufacturer and delivered as part of a new display.
Not surprisingly, grayscale calibration was originally performed on inherently grayscale displays. Grayscale calibration of color LCDs for medical image display is a relatively new practice. The implications of color on the grayscale calibration palette were discussed in “Expanded Palette Calibration”. Color displays have an inherent advantage for displaying radiographic images that contain color, such as nuclear medicine, Doppler ultrasound, and functional magnetic resonance images. Also, recent work has indicated that using color displays likely does not limit the ability of an expert observer to diagnose disease in chest radiographs.
The construction of grayscale and color LCDs is similar, except that the color displays have red, green, and blue (RGB) color filters. Each of the color filters preferentially blocks a portion of the color spectrum contained in the “white” backlight source. Therefore, the maximum luminance output of color displays is considerably less than that of inherently grayscale displays. Although color displays are inherently dimmer than their grayscale counterparts, it is worth noting that there is currently an upward trend in the maximum luminance of color medical imaging grade LCDs.
All LCDs, including grayscale, have a color tone. The color tone of grayscale displays is a function of the fluorescent (or other) backlight and the transmission properties of the optical stack that may be included to adjust the color tone. For example, some grayscale displays have a blue hue similar to that of blue-base film. Contrary to what one might expect, identical models of grayscale displays may have noticeably different color tones. This is due primarily to variations in the manufacture of the backlights. The AAPM TG-18 report provides guidelines for establishing measurable color differences such that the color tone differences are not perceivable. The color tone of color displays can generally be specified during calibration. Therefore, it is reasonable to expect that no color difference should be perceived between similarly calibrated color displays.
Liquid crystal displays commonly use fluorescent lamps as the backlight source. The luminance output of the backlight is subject to change over time and therefore requires some sort of maintenance to ensure luminance stability. Most medical imaging grade displays have built-in backlight luminance sensors with feedback circuits to maintain the desired maximum luminance of the LCD based on proper calibration of the backlight sensor. Some of them also have sensors that measure the luminance output of a small area near the edge at the front of the display. The front of screen sensor has the potential to measure not only the maximum luminance, but can also be used to measure the luminance throughout the entire DDL range, albeit in a small area at the periphery of the display. The sensors in turn are calibrated with respect to the center of the LCD. That the front of screen sensor can measure luminance values throughout the entire DDL range can help to provide assurance that conformance to the GSDF is maintained over time. Whether an automated front of screen sensor is required to maintain conformance has not be established. Often, the sensor values are provided to administrative software that allows remote monitoring of the luminance properties as measured by back and/or front of screen sensors. Note that the luminance values obtained remotely are as reliable as the electronic sensors that measure them. Periodic, on-site evaluation of medical imaging grade LCDs is recommended to ensure overall display quality. Experience has shown that quarterly on-site evaluation is initially appropriate. It may be reasonable to modify the frequency of the on-site visits based on the frequency and severity of the problems found during these initial quarterly visits.
The luminance and contrast properties of LCDs are dependent upon the angle (with respect to the plane of the display face) from which the light photons are emitted and subsequently observed. Grayscale calibration of medical imaging grade LCDs assures conformance to the GSDF when a display is viewed from an angle perpendicular (or nearly so) to the display face. As has been recognized for some time, the changing optical properties of LCDs as a function of viewing angle can have a substantial influence on perceived contrast.,,,,8 shows an example of the change in the macro-grayscale conformance to the DICOM GSDF for various viewing angle deviations from perpendicular. In Figure 8, the data are plotted as the relative change in luminance contrast (dL/L) per DDL as a function of DDL. Notice that conformance to the standard starts to break down for relatively shallow viewing angle changes, where the viewing angle (θ) is the angular deviation from perpendicular and, for Figure 8, is specified along the horizontal axis of the display (φϕ = 0°). In Figure 9, note that the influence of viewing angle may vary for the long (ϕ = 90°) versus short axis (ϕ = 0°) of a display, or along diagonals (ϕ = 45°, 135°). The potential influence of viewing angle should be considered and accommodated during specification and installation, as well as routine use, of LCDs.
The light emitted by a LCD as luminance can be considered to carry useful image information. In general, ambient light, which is incident upon a display face (including front-of-screen shields and filters) and reflected back toward an observer, has the potential to degrade the contrast properties of the image or otherwise affect an observer’s perception of that image. Reflected ambient light is a source of luminance coming from the display face and acts in addition to the luminance generated by the display. The optical properties of a display dictate the influence of ambient light. “Specularly” reflected light represents a mirror-like reflection with only minimal spatial or angular spread.
As an example, consider an LCD with Lmin = 0.5 cd/m2 (JNDmin = 47), Lmax = 200 cd/m2 (JNDmax = 572), and a coefficient of diffuse reflection of 0.005 cd m−2 lx−15. A typical office might have an illuminance of 200 lx15. In this case, the reflected ambient light results in an additional luminance of 1 cd/m2, with corresponding Lmin = 0.5 + 1.0 cd/m2 (JNDmin = 90) and Lmax = 200 + 1 cd/m2 (JNDmax = 573). The ambient light resulted in a loss of 42 JNDs (of an original 525) to the overall display function. If the display was calibrated assuming zero contribution from ambient light, then the JND (and perceived contrast) loss occurs in the low DDL, low-luminance portion of the display function. The calibration software for most medical imaging grade displays can account for the loss of contrast as a result of ambient light. If a display is recalibrated to accommodate additional luminance from reflected ambient light, then the JND loss is distributed equally throughout the entire DDL range.
At first, it might seem that the best way to deal with ambient light is to eliminate it. However, it is reasonable to expect that LCDs will continue to be used in