3 5 tft lcd shield in stock
This TFT 3.5 Inch LCD display support 480x320 pixel resolutions. The display uses the ILI9481 graphics controller. The module includes the 5V-3.3V power conversion circuit and no additional level conversion circuitry is required. This Module can be inserted directly into the Arduino Mega2560 Board.
For beginners to Arduino, it can be daunting and risky to wire LCD driver circuits - one wrong connection and your component can be damaged. This LCD expansion board removes all the complications and risks.
The TELEMATICS 3.5" TFT Touch LCD Shield is an Arduino compatible display designed by DFRobot, with a resolution of 320x480, three serial ports, and one I2C interface. It is perfectly compatible with Arduino DUE, Mega1280/2560, and Bluno Mega1280/2560. There is an on-board voltage switch which supports changing the output voltage between 3.3V and 5V to ensure that it won"t damage your DUE. In addition, the LCD shield comes with a MicroSD card slot on the back that can be used for data storage up to a maximum of 32GB. We also offer a variety of driver packages to help you implement different features.
Shield for Arduino Uno consisting of a TFT LCD display with 3.5" resistive touch screen, ILI9486 graphic controller, 480x320 pixel resolution, 65,000 colors, white LED backlight, SD card slot and SPI interface. Ideal for creating applications that need to display data, photos and videos. Suitable for interfacing with Arduino Uno, it is also compatible with Fishino, Nucleo, Xnucleo, MAKERUNO and UNO PLUS (see related products).
The official ODROID Ubuntu image is required to configure the display shield. You can simply download the Kernel updates (via dist-upgrade) and configure your ODROID for this display shield.
GPU/VPU hardware acceleration requiring OpenGL-ES and video playback are not supported - To playback video on this screen, the file has to be transcoded to 480x320 with FFMPEG software decoding.
ER-TFTM035-6 is 320x480 dots 3.5" color tft lcd module display with ILI9488 controller and breakout board,superior display quality,super wide viewing angle and easily controlled by MCU such as 8051, PIC, AVR, ARDUINO,ARM and Raspberry PI.It can be used in any embedded systems,industrial device,security and hand-held equipment which requires display in high quality and colorful image.
It supports 8080 8-bit /9-bit/16-bit /18-bit parallel ,3-wire,4-wire serial spi interface.Built-in microSD card slot, optional 3.5" 4-wire resistive touch panel with controller XPT2046 and capacitive touch panel with controller FT6236, so you can detect finger presses anywhere on the screen and doesn"t require pressing down on the screen with a stylus and has nice glossy glass cover . It"s optional for font chip, flash chip and microsd card. We offer two types connection,one is pin header and the another is ZIF connector with flat cable mounting on board by default and suggested. Lanscape mode is also available.
Of course, we wouldn"t just leave you with a datasheet and a "good luck!".Here is the link for 3.5"TFT Touch Shield with Libraries, EXxamples.Schematic Diagram for Arduino Due,Mega 2560 and Uno . For 8051 microcontroller user,we prepared the detailed tutorial such as interfacing, demo code and development kit at the bottom of this page.
In this Arduino touch screen tutorial we will learn how to use TFT LCD Touch Screen with Arduino. You can watch the following video or read the written tutorial below.
The next example is controlling an RGB LED using these three RGB sliders. For example if we start to slide the blue slider, the LED will light up in blue and increase the light as we would go to the maximum value. So the sliders can move from 0 to 255 and with their combination we can set any color to the RGB LED, but just keep in mind that the LED cannot represent the colors that much accurate.
As an example I am using a 3.2” TFT Touch Screen in a combination with a TFT LCD Arduino Mega Shield. We need a shield because the TFT Touch screen works at 3.3V and the Arduino Mega outputs are 5 V. For the first example I have the HC-SR04 ultrasonic sensor, then for the second example an RGB LED with three resistors and a push button for the game example. Also I had to make a custom made pin header like this, by soldering pin headers and bend on of them so I could insert them in between the Arduino Board and the TFT Shield.
Here’s the circuit schematic. We will use the GND pin, the digital pins from 8 to 13, as well as the pin number 14. As the 5V pins are already used by the TFT Screen I will use the pin number 13 as VCC, by setting it right away high in the setup section of code.
I will use the UTFT and URTouch libraries made by Henning Karlsen. Here I would like to say thanks to him for the incredible work he has done. The libraries enable really easy use of the TFT Screens, and they work with many different TFT screens sizes, shields and controllers. You can download these libraries from his website, RinkyDinkElectronics.com and also find a lot of demo examples and detailed documentation of how to use them.
After we include the libraries we need to create UTFT and URTouch objects. The parameters of these objects depends on the model of the TFT Screen and Shield and these details can be also found in the documentation of the libraries.
So now I will explain how we can make the home screen of the program. With the setBackColor() function we need to set the background color of the text, black one in our case. Then we need to set the color to white, set the big font and using the print() function, we will print the string “Arduino TFT Tutorial” at the center of the screen and 10 pixels down the Y – Axis of the screen. Next we will set the color to red and draw the red line below the text. After that we need to set the color back to white, and print the two other strings, “by HowToMechatronics.com” using the small font and “Select Example” using the big font.
Ok next is the RGB LED Control example. If we press the second button, the drawLedControl() custom function will be called only once for drawing the graphic of that example and the setLedColor() custom function will be repeatedly called. In this function we use the touch screen to set the values of the 3 sliders from 0 to 255. With the if statements we confine the area of each slider and get the X value of the slider. So the values of the X coordinate of each slider are from 38 to 310 pixels and we need to map these values into values from 0 to 255 which will be used as a PWM signal for lighting up the LED. If you need more details how the RGB LED works you can check my particular tutorialfor that. The rest of the code in this custom function is for drawing the sliders. Back in the loop section we only have the back button which also turns off the LED when pressed.
The 3.5" TFT LCD Touch Display Shield for Arduino has been fully assembled, tested, and is ready to use. Install the touch display without any wiring or soldering! Simply plug it in and load a library; you"ll be up and running in less than 10 minutes! It works best with any traditional Arduino ATMEGA328 board. So add a beautiful touchscreen display shield with a built-in microSD card connection to your Arduino project. This TFT display is large (3.5′′ diagonal), bright (4 white LED backlights), and colorful (262,000 different shades)!
The TFT display has 480x320 pixels and individual pixel control. It has significantly higher resolution than a black and white 128x64 display. As an added bonus, this TFT display includes a resistive touchscreen, allowing you to detect finger presses anywhere on the screen.
The control and driving circuit of TFT displaymodules is low voltage and FRIDA micro-power CMOS circuit, can be easily damaged by static, static damage is an irreparable damage, and sometimes human have hundreds of volts of high voltage static electricity, therefore, in handling, assembling and use should be extremely careful to prevent static electricity:
This 3.5 inch TFT display can be used as an interface for the Raspberry PI, but also as a television, terminal, computer or another application where a 3.5 inch screen with a 1920 x 1080 resolution comes in handy. This display has an integrated HDMI driver, so no other hardware or drivers are required. With the compact HDMI plug, this screen can be easily connected to the Raspberry PI. The built-in touchscreen is very useful for providing input without external devices.