wuxga vs lcd display pricelist
Manufacturers have discontinued their lines of bulky CRT monitors in favor of slimmer, brighter LCD monitors. Many monitors are designed to double as TV and movie screens or computer displays. Selecting the right LCD monitor depends a lot on how users intend to use the product, be it for working, playing games or watching movies.
A budget-priced LCD monitor can be purchased for about $100to $200. This type of LCD monitor is a low cost way for students or general-purpose users to upgrade from an old CRT unit. Expect a 15- to 20-inch screen, either standard 4:3 or widescreen format, with a maximum resolution of up to 1600 x 900. Even budget monitors should have a response time of at least 12ms, fast enough to play video games or watch DVDs. An example of an inexpensive monitor is the Acer V173b, a 17-Inch LCD monitor with 1280 x 1024 maximum resolution available for a shade under $100. The HP 2009M[1] is available for about $150and offers a 20-inch HD screen with a maximum resolution of 1600 x 900.
Video gamers require a monitor with a large, bright screen, accurate colors and plenty of connectivity options. Look for a full HD screen that can be connected to Blu-ray and DVD players as well as video game consoles. Expect to pay $400to $1,500and above for this type of monitor with a 24- to 30-inch screen. The Dell Ultrasharp 2709W costs about $700and offers a 27-inch WUXGA full-HD screen with 1920 x 1200 maximum resolution and high brightness rating.
For editing or watching movies, users need a monitor that delivers crisp images with accurate black levels and flesh tones. Look for a 24- to 30-inch widescreen unit with a fast pixel response time and multiple connectivity options. An HDMI connection preserves HD content from a Blu-ray player or HDTV signal without degradation. Expect to pay $500to $1,800and up for a monitor suitable for viewing movies. The Dell UltraSharp 2408WFP is a 24-inch WUGA 1920 x 1200 display available for under $600,while the Gateway XHD3000 costs about $1,000and offers a 30-inch HD screen with many home theater style features as well as 6 video inputs and 6 USB ports. For Mac users, the Apple Cinema HD 30-inch Display[2] costs about $1,800and offers an optimal resolution of 2560 x 1600 and a wide 178 degree viewing angle.
Modern workspaces are driven today by video presentation and communications technology. That"s even more true in recent times as workers practice remotely, either at home or in small office clusters, and meeting environments lean increasingly toward the virtual. Despite the growing size of flatpanel monitors in recent years, attaining images larger than 75- or 85-inches diagonal in a conference room or even a home work environment with a one-piece display remains prohibitively expensive. And in these days of Zoom meetings with a half-dozen or more attendees on screen at once, even those panels can suddenly look awfully small.
Resolution is quoted in two numbers, such as "1920x1200," where the first number refers to the pixels horizontally across the screen, and the second number refers to the pixels vertically from top to bottom. This particular 1920x1200 resolution is also referred to as WUXGA. Each of the most common resolution formats has a name like this to shortcut the need to quote the numbers. The names don"t make much common sense but there are only a few of them in popular usage and a web search or sites like ProjectorCentral are a resource to remind you what pixel counts go with each designation .
4K projectors deliver at least four times the total pixel count of Full HD 1080p projectors. They provide an extremely high level of detail and virtually undetectable pixels at large image sizes, which is especially beneficial for viewers sitting closer to the screen, but they still carry a significant premium over the WUXGA and 1080p models that represent the next step down. This additional detail may be important if your projections will include critical scientific or engineering images, or perhaps screenings of entertainment content. But for most conventional applications such as business slide presentations or virtual meetings, 4K resolution will be overkill.
WUXGA (1920x1200). WUXGA is nearly equivalent to the 1080p Full HD (1920x1080) format used for digital broadcasts, except that the image is a little taller to coincide with a 16:10 aspect ratio as opposed to the 16:9 aspect ratio for Full HD. This format became popular in business with the advent of high resolution computer monitors and laptops. WUXGA projectors have the advantage of being able to display 1080p HD signals as well as 1920x1200. The cost advangtage for WUXGA projectors over 4K puts them in a sweet spot for business projectors today along with 1080p models, as these offer the best value proposition in terms of both high brightness and flexible resolution suitable for either business presentations or photographic and video content.
Full HD 1080p (1920x1080). As noted, this 16:9 aspect ratio format became popular among consumer home theater projectors with the introduction of digital broadcasting, which has resulted in a wide availability of 1080p models designed specifically with business and commercial use in mind. For most applications, they may be viewed interchangeably with WUXGA projectors.
WXGA (1280x800). WXGA projectors have the same widescreen 16:10 aspect ratio as WUXGA projectors, but they are lower resolution and are therefore less expensive, all other things being equal. New projector introductions in WXGA and lower resolutions like XGA are becoming more rare, but these projectors are still widely available and worth considering when budgets are a key factor—for example, as with school districts outfitting a large number K-12 classrooms. They can also be an option for large scale digital signage applications where spending more on higher brightness is the better choice and the subject matter being displayed does not demand high resolution presentation.
SVGA (800x600). SVGA projectors are very low resolution, and like XGA they are 4:3 aspect ratio. These are disappearing from the market, but their major attraction is high brightness at an extremely low price. At this writing, lamp-based models rated at 4,000 lumens can be had for less than $350. They may be an option for signage or other applications where large text or basic graphics are being displayed and there is no need to resolve much image detail.
With that data it is easy to narrow down the list of projectors that will fit your space and screen size. Let"s take an example. Say you"ve got a large conference room and you have a 170-inch diagonal 16:10 screen already installed. You"ve decided you want a WUXGA projector that puts out about 5,000 lumens. Which projectors that have these performance criteria will fit your screen and throw distance?
To find out, go to the ProjectorCentral Projector Database. Select WUXGA in the Resolution list. Then enter a lumen range, say 4500 to 6000 lumens if you are looking for models that put out around 5000. Finally, enter your anticipated throw distance (the distance from the lens to the screen) and 170 inches as your diagonal image size. Then click the "Find Projectors" button, and the search will show you all models that meet your stated requirements. The Database search results are initially presented in order of the projectors" popularity, but you can re-sort the list by price, by first ship date, or whatever other criterion you want.
At some point in your selection process, presumably after you"ve established your resolution, brightness, and image size/throw requirements, you"ll want to make a fundamental decision about going with a traditional lamp-based light engine or a laser model. Although prices of the most basic laser projectors (those with a single laser vs. multiple lasers) have been dropping rapidly year to year, these still do carry a noticeable premium over an equivalently bright lamp model of the same resolution.
A final consideration you"ll make before purchasing your business projector will be the type of imaging technology. The two primary options here will be Texas Instrument"s DLP technology, which uses light bounced off a grid of microscopic pivoting mirrors, and LCD, which passes light through a trio of liquid crystal panels before sending it to the screen. A third option, LCoS (liquid crystal on silicone) is used much less frequently in some higher-end commercial projectors.
DLP and LCD each has its own advantages, but the reality is that the differences won"t come much into play in most typical non-critical business environments where the projector is being used for presentations and virtual meetings. You can read more about all three imaging technologies in LCD, LCoS, or DLP: Choosing a Projector Imaging Technology.
The graphics display resolution is the width and height dimension of an electronic visual display device, measured in pixels. This information is used for electronic devices such as a computer monitor. Certain combinations of width and height are standardized (e.g. by VESA) and typically given a name and an initialism that is descriptive of its dimensions. A graphics display resolution can be used in tandem with the size of the graphics display to calculate pixel density. An increase in the pixel density often correlates with a decrease in the size of individual pixels on a display.
The favored aspect ratio of mass-market display industry products has changed gradually from 4:3, then to 16:10, then to 16:9, and is now changing to 18:9 for smartphones.cathode ray tube (CRT). The 16:10 aspect ratio had its largest use in the 1995–2010 period, and the 16:9 aspect ratio tends to reflect post-2010 mass-market computer monitor, laptop, and entertainment products displays. On CRTs, there was often a difference between the aspect ratio of the computer resolution and the aspect ratio of the display causing non-square pixels (e.g. 320 × 200 or 1280 × 1024 on a 4:3 display).
The 4:3 aspect ratio was common in older television cathode ray tube (CRT) displays, which were not easily adaptable to a wider aspect ratio. When good quality alternate technologies (i.e., liquid crystal displays (LCDs) and plasma displays) became more available and less costly, around the year 2000, the common computer displays and entertainment products moved to a wider aspect ratio, first to the 16:10 ratio. The 16:10 ratio allowed some compromise between showing older 4:3 aspect ratio broadcast TV shows, but also allowing better viewing of widescreen movies. However, around the year 2005, home entertainment displays (i.e., TV sets) gradually moved from 16:10 to the 16:9 aspect ratio, for further improvement of viewing widescreen movies. By about 2007, virtually all mass-market entertainment displays were 16:9. In 2011, 1920 × 1080 (Full HD, the native resolution of Blu-ray) was the favored resolution in the most heavily marketed entertainment market displays. The next standard, 3840 × 2160 (4K UHD), was first sold in 2013.
Also in 2013, displays with 2560 × 1080 (aspect ratio 64:27 or 2.370, however commonly referred to as "21:9" for easy comparison with 16:9) appeared, which closely approximate the common CinemaScope movie standard aspect ratio of 2.35–2.40. In 2014, "21:9" screens with pixel dimensions of 3440 × 1440 (actual aspect ratio 43:18 or 2.38) became available as well.
The computer display industry maintained the 16:10 aspect ratio longer than the entertainment industry, but in the 2005–2010 period, computers were increasingly marketed as dual-use products, with uses in the traditional computer applications, but also as means of viewing entertainment content. In this time frame, with the notable exception of Apple, almost all desktop, laptop, and display manufacturers gradually moved to promoting only 16:9 aspect ratio displays. By 2011, the 16:10 aspect ratio had virtually disappeared from the Windows laptop display market (although Mac laptops are still mostly 16:10, including the 2880 × 1800 15" Retina MacBook Pro and the 2560 × 1600 13" Retina MacBook Pro). One consequence of this transition was that the highest available resolutions moved generally downward (i.e., the move from 1920 × 1200 laptop displays to 1920 × 1080 displays).
In response to usability flaws of now common 16:9 displays in office/professional applications, Microsoft and also Huawei started to offer notebooks with a 3:2 aspect ratio. By 2021, Huawei also offers a monitor display offering this aspect ratio, targeted towards professional uses.
All standard HD resolutions share a 16∶9 aspect ratio, although some derived resolutions with smaller or larger ratios also exist. Most of the narrower resolutions are only used for storing, not for displaying videos.
nHD (ninth HD) is a display resolution of 640 × 360 pixels, which is exactly one-ninth of a Full HD (1080p) frame and one-quarter of a HD (720p) frame. Pixel doubling (vertically and horizontally) nHD frames will form one 720p frame and pixel tripling nHD frames will form one 1080p frame.
To avoid storing the eight lines of padded pixels, some people prefer to encode video at 624 × 352, which only has one stored padded line. When such video streams are either encoded from HD frames or played back on HD displays in full-screen mode (either 720p or 1080p) they are scaled by non-integer scale factors. True nHD frames on the other hand has integer scale factors, for example Nokia 808 PureView with nHD display.
One of the few tabletop TVs to use this as its native resolution was the Sony XEL-1. Similar to DVGA, this resolution became popular for high-end smartphone displays in early 2011. Mobile phones including the Jolla, Sony Xperia C, HTC Sensation, Motorola Droid RAZR, LG Optimus L9, Microsoft Lumia 535 and Samsung Galaxy S4 Mini have displays with the qHD resolution, as does the PlayStation Vita portable game system.
This resolution is often referred to as p (which stands for progressive scan and is important for transmission formats) is irrelevant for labeling digital display resolutions. When distinguishing 1280 × 720 from 1920 × 1080, the pair has sometimes been labeled HD1 or HD-1 and HD2 or HD-2, respectively.
The 27-inch version of the Apple Cinema Display monitor introduced in July 2010 has a native resolution of 2560 × 1440, as does its successor, the 27-inch Apple Thunderbolt Display.
The resolution is also used in portable devices. In September 2012, Samsung announced the Series 9 WQHD laptop with a 13-inch 2560 × 1440 display.LG announced a 5.5-inch QHD smartphone display, which was used in the LG G3.Vivo announced a smartphone with a 2560 × 1440 display.Galaxy Note 4,GoogleMotorolaNexus 6HTC 10, the Lumia 950, and the Galaxy S6
This resolution is equivalent to two Full HD (1920 × 1080) displays side by side or one vertical half of a 4K UHD (3840 × 2160) display. It has an aspect ratio of 32:9 (3.5:1), close to the 3.6:1 ratio of IMAX UltraWideScreen 3.6. Samsung monitors at this resolution contain built-in firmware to divide the screen into two 1920 × 1080 screens, or one 2560 × 1080 and one 1280 × 1080 screen.
3840 × 2160 was chosen as the resolution of the UHDTV1 format defined in SMPTE ST 2036-1,4K UHDTV system defined in ITU-R BT.2020UHD-1 broadcast standard from DVB.Ultra HD display.QFHD (Quad Full HD).
The first commercial displays capable of this resolution include an 82-inch LCD TV revealed by Samsung in early 2008,PPI 4K IPS monitor for medical purposes launched by Innolux in November 2010.Toshiba announced the REGZA 55x3,
DisplayPort supports 3840 × 2160 at 30Hz in version 1.1 and added support for up to 75Hz in version 1.2 (2009) and 120Hz in version 1.3 (2014),HDMI added support for 3840 × 2160 at 30Hz in version 1.4 (2009)Hz in version 2.0 (2013).
When support for 4K at 60Hz was added in DisplayPort 1.2, no DisplayPort timing controllers (TCONs) existed which were capable of processing the necessary amount of data from a single video stream. As a result, the first 4K monitors from 2013 and early 2014, such as the Sharp PN-K321, Asus PQ321Q, and Dell UP2414Q and UP3214Q, were addressed internally as two 1920 × 2160 monitors side by side instead of a single display and made use of DisplayPort"s Multi-Stream Transport (MST) feature to multiplex a separate signal for each half over the connection, splitting the data between two timing controllers.Asus PB287Q no longer rely on MST tiling technique to achieve 4K at 60Hz,
This resolution is equivalent to 4K UHD (3840 × 2160) extended in width by 33%, giving it a 64:27 aspect ratio (2.370 or 21.3:9, commonly marketed as simply "21:9") and 11,059,200 total pixels. It is exactly double the size of 2560 × 1080 in both dimensions, for a total of four times as many pixels. The first displays to support this resolution were 105-inch televisions, the LG 105UC9 and the Samsung UN105S9W.5120 × 2160 monitor, the 34WK95U,5K2K WUHD.
DisplayPort version 1.3 added support for 5K at 60Hz over a single cable, whereas DisplayPort1.2 was only capable of 5K at 30Hz. Early 5K 60Hz displays such as the Dell UltraSharp UP2715K and HP DreamColor Z27q that lacked DisplayPort1.3 support required two DisplayPort1.2 connections to operate at 60Hz, in a tiled display mode similar to early 4K displays using DP MST.
DisplayPort1.3, finalized by VESA in late 2014, added support for 7680 × 4320 at 30Hz (or 60Hz with Y′CBCR 4:2:0 subsampling). VESA"s Display Stream Compression (DSC), which was part of early DisplayPort1.3 drafts and would have enabled 8K at 60Hz without subsampling, was cut from the specification prior to publication of the final draft.
DSC support was reintroduced with the publication of DisplayPort1.4 in March 2016. Using DSC, a "visually lossless" form of compression, formats up to 7680 × 4320 (8K UHD) at 60Hz with HDR and 30bit/px color depth are possible without subsampling.
Quarter-QVGA (QQVGA or qqVGA) denotes a resolution of 160 × 120 or 120 × 160 pixels, usually used in displays of handheld devices. The term Quarter-QVGA signifies a resolution of one fourth the number of pixels in a QVGA display (half the number of vertical and half the number of horizontal pixels) which itself has one fourth the number of pixels in a VGA display.
Half-QVGA denotes a display screen resolution of 240 × 160 or 160 × 240 pixels, as seen on the Game Boy Advance. This resolution is half of QVGA, which is itself a quarter of VGA, which is 640 × 480 pixels.
Quarter VGA (QVGA or qVGA) is a popular term for a computer display with 320 × 240 display resolution. QVGA displays were most often used in mobile phones, personal digital assistants (PDA), and some handheld game consoles. Often the displays are in a "portrait" orientation (i.e., taller than they are wide, as opposed to "landscape") and are referred to as 240 × 320.
The name comes from having a quarter of the 640 × 480 maximum resolution of the original IBM Video Graphics Array display technology, which became a de facto industry standard in the late 1980s. QVGA is not a standard mode offered by the VGA BIOS, even though VGA and compatible chipsets support a QVGA-sized Mode X. The term refers only to the display"s resolution and thus the abbreviated term QVGA or Quarter VGA is more appropriate to use.
While QVGA is a lower resolution than VGA, at higher resolutions the "Q" prefix commonly means quad(ruple) or four times higher display resolution (e.g., QXGA is four times higher resolution than XGA). To distinguish quarter from quad, lowercase "q" is sometimes used for "quarter" and uppercase "Q" for "Quad", by analogy with SI prefixes like m/M and p/P, but this is not a consistent usage.
Wide QVGA or WQVGA is any display resolution having the same height in pixels as QVGA, but wider. This definition is consistent with other "wide" versions of computer displays.
WQVGA has also been used to describe displays that are not 240 pixels high, for example, Sixteenth HD1080 displays which are 480 pixels wide and 270 or 272 pixels high. This may be due to WQVGA having the nearest screen height.
Video Graphics Array (VGA) refers specifically to the display hardware first introduced with the IBM PS/2 line of computers in 1987.D-subminiature VGA connector, or the 640 × 480 resolution itself. While the VGA resolution was superseded in the personal computer market in the 1990s, it became a popular resolution on mobile devices in the 2000s.
Wide VGA or WVGA, sometimes just WGA is any display resolution with the same 480-pixel height as VGA but wider, such as 720 × 480 (3:2 aspect ratio), 800 × 480 (5:3), 848 × 480, 852 × 480, 853 × 480, or 854 × 480 (≈16:9).
It is a common resolution among LCD projectors and later portable and hand-held internet-enabled devices (such as MID and Netbooks) as it is capable of rendering websites designed for an 800 wide window in full page-width. Examples of hand-held internet devices, without phone capability, with this resolution include: Spice stellar nhance mi-435, ASUS Eee PC 700 series, Dell XCD35, Nokia 770, N800, and N810.
FWVGA is an abbreviation for Full Wide Video Graphics Array which refers to a display resolution of 854 × 480 pixels. 854 × 480 is approximately the 16:9 aspect ratio of anamorphically "un-squeezed" NTSC DVD widescreen video and is considered a "safe" resolution that does not crop any of the image. It is called Full WVGA to distinguish it from other, narrower WVGA resolutions which require cropping 16:9 aspect ratio high-definition video (i.e. it is full width, albeit with a considerable reduction in size).
In 2010, mobile phones with FWVGA display resolution started to become more common. A list of mobile phones with FWVGA displays is available. In addition, the Wii U GamePad that comes with the Nintendo Wii U gaming console includes a 6.2-inch FWVGA display.
Super Video Graphics Array, abbreviated to Super VGA or SVGA, also known as Ultra Video Graphics Array,Ultra VGA or UVGA, is a broad term that covers a wide range of computer display standards.
Examples of devices that use DVGA include the Meizu MX mobile phone and the Apple iPhone 4 and 4S with the iPod Touch 4, where the screen is called the "Retina Display".
The Extended Graphics Array (XGA) is an IBM display standard introduced in 1990. Later it became the most common appellation of the 1024 × 768 pixels display resolution, but the official definition is broader than that. It was not a new and improved replacement for Super VGA, but rather became one particular subset of the broad range of capabilities covered under the "Super VGA" umbrella.
Wide XGA (WXGA) is a set of non-standard resolutions derived from the XGA display standard by widening it to a widescreen aspect ratio. WXGA is commonly used for low-end LCD TVs and LCD computer monitors for widescreen presentation. The exact resolution offered by a device described as "WXGA" can be somewhat variable owing to a proliferation of several closely related timings optimised for different uses and derived from different bases.
When referring to televisions and other monitors intended for consumer entertainment use, WXGA is generally understood to refer to a resolution of 1366 × 768,1024 × 768 pixels, 4:3 aspect) extended to give square pixels on the increasingly popular 16:9 widescreen display ratio without having to effect major signalling changes other than a faster pixel clock, or manufacturing changes other than extending panel width by one third. As 768 is not divisible by 9, the aspect ratio is not quite 16:9 – this would require a horizontal width of 13651⁄3 pixels. However, at only 0.05%, the resulting error is insignificant.
In 2006, 1366 × 768 was the most popular resolution for liquid crystal display televisions (versus XGA for Plasma TVs flat panel displays);1920 × 1080.
A common variant on this resolution is 1360 × 768, which confers several technical benefits, most significantly a reduction in memory requirements from just over to just under 1MB per 8-bit channel (1366 × 768 needs 1024.5KB per channel; 1360 × 768 needs 1020KB; 1MB is equal to 1024KB), which simplifies architecture and can significantly reduce the amount–and speed–of VRAM required with only a very minor change in available resolution, as memory chips are usually only available in fixed megabyte capacities. For example, at 32-bit color, a 1360 × 768 framebuffer would require only 4MB, whilst a 1366 × 768 one may need 5, 6 or even 8MB depending on the exact display circuitry architecture and available chip capacities. The 6-pixel reduction also means each line"s width is divisible by 8 pixels, simplifying numerous routines used in both computer and broadcast/theatrical video processing, which operate on 8-pixel blocks. Historically, many video cards also mandated screen widths divisible by 8 for their lower-color, planar modes to accelerate memory accesses and simplify pixel position calculations (e.g. fetching 4-bit pixels from 32-bit memory is much faster when performed 8 pixels at a time, and calculating exactly where a particular pixel is within a memory block is much easier when lines do not end partway through a memory word), and this convention persisted in low-end hardware even into the early days of widescreen, LCD HDTVs; thus, most 1366-width displays also quietly support display of 1360-width material, with a thin border of unused pixel columns at each side. This narrower mode is of course even further removed from the 16:9 ideal, but the error is still less than 0.5% (technically, the mode is either 15.94:9.00 or 16.00:9.04) and should be imperceptible.
When referring to laptop displays or independent displays and projectors intended primarily for use with computers, WXGA is also used to describe a resolution of 1280 × 800 pixels, with an aspect ratio of 16:10.both dimensions vs. the old standard (especially useful in portrait mode, or for displaying two standard pages of text side by side), a perceptibly "wider" appearance and the ability to display 720p HD video "native" with only very thin letterbox borders (usable for on-screen playback controls) and no stretching. Additionally, like 1360 × 768, it required only 1000KB (just under 1MB) of memory per 8-bit channel; thus, a typical double-buffered 32-bit colour screen could fit within 8MB, limiting everyday demands on the complexity (and cost, energy use) of integrated graphics chipsets and their shared use of typically sparse system memory (generally allocated to the video system in relatively large blocks), at least when only the internal display was in use (external monitors generally being supported in "extended desktop" mode to at least 1600 × 1200 resolution). 16:10 (or 8:5) is itself a rather "classic" computer aspect ratio, harking back to early 320 × 200 modes (and their derivatives) as seen in the Commodore 64, IBM CGA card and others. However, as of mid-2013, this standard is becoming increasingly rare, crowded out by the more standardised and thus more economical-to-produce 1366 × 768 panels, as its previously beneficial features become less important with improvements to hardware, gradual loss of general backwards software compatibility, and changes in interface layout. As of August 2013, the market availability of panels with 1280 × 800 native resolution had been generally relegated to data projectors or niche products such as convertible tablet PCs and LCD-based eBook readers.
First, the HDTV-standard 1280 × 720720p"), which offers an exact 16:9 aspect with square pixels; naturally, it displays standard 720p HD video material without stretching or letterboxing and 1080i/1080p with a simple 2:3 downscale. This resolution has found some use in tablets and modern, high-pixel-density mobile phones, as well as small-format "netbook" or "ultralight" laptop computers. However, its use is uncommon in larger, mainstream devices as it has an insufficient vertical resolution for the proper use of modern operating systems such as Windows 7 whose UI design assumes a minimum of 768 lines. For certain uses such as word processing, it can even be considered a slight downgrade (reducing the number of simultaneously visible lines of text without granting any significant benefit as even 640 pixels is sufficient horizontal resolution to legibly render a full page width, especially with the addition of subpixel anti-aliasing).
Widespread availability of 1280 × 800 and 1366 × 768 pixel resolution LCDs for laptop monitors can be considered an OS-driven evolution from the formerly popular 1024 × 768 screen size, which has itself since seen UI design feedback in response to what could be considered disadvantages of the widescreen format when used with programs designed for "traditional" screens. In Microsoft Windows operating system specifically, the larger taskbar of Windows Vista and 7 occupies an additional 16-pixel lines by default, which may compromise the usability of programs that already demanded a full 1024 × 768 (instead of, e.g. 800 × 600) unless it is specifically set to use small icons; an "oddball" 784-line resolution would compensate for this, but 1280 × 800 has a simpler aspect and also gives the slight bonus of 16 more usable lines. Also, the Windows Sidebar in Windows Vista and 7 can use the additional 256 or 336 horizontal pixels to display informational "widgets" without compromising the display width of other programs, and Windows 8 is specifically designed around a "two-pane" concept where the full 16:9 or 16:10 screen is not required. Typically, this consists of a 4:3 main program area (typically 1024 × 768, 1000 × 800 or 1440 × 1080) plus a narrow sidebar running a second program, showing a toolbox for the main program or a pop-out OS shortcut panel taking up the remainder.
XGA+ stands for Extended Graphics Array Plus and is a computer display standard, usually understood to refer to the 1152 × 864 resolution with an aspect ratio of 4:3. Until the advent of widescreen LCDs, XGA+ was often used on 17-inch desktop CRT monitors. It is the highest 4:3 resolution not greater than 220 pixels (≈1.05 megapixels), with its horizontal dimension a multiple of 32 pixels. This enables it to fit closely into a video memory or framebuffer of 1MB (1 × 220 bytes), assuming the use of one byte per pixel. The common multiple of 32 pixels constraint is related to alignment.
Historically, the resolution also relates to the earlier standard of 1152 × 900 pixels, which was adopted by Sun Microsystems for the Sun-2 workstation in the early 1980s. A decade later, Apple Computer selected the resolution of 1152 × 870 for their 21-inch CRT monitors, intended for use as two-page displays on the Macintosh II computer. These resolutions are even closer to the limit of a 1MB framebuffer, but their aspect ratios differ slightly from the common 4:3.
WXGA+ and WSXGA are non-standard terms referring to a computer display resolution of 1440 × 900. Occasionally manufacturers use other terms to refer to this resolution.1440 × 900 resolution as WXGA(II).
WXGA+ (1440 × 900) resolution is common in 19-inch widescreen desktop monitors (a very small number of such monitors use WSXGA+), and is also optional, although less common, in laptop LCDs, in sizes ranging from 12.1 to 17 inches.
Super XGA (SXGA) is a standard monitor resolution of 1280 × 1024 pixels. This display resolution is the "next step" above the XGA resolution that IBM developed in 1990.
SXGA is the most common native resolution of 17-inch and 19-inch LCD monitors. An LCD monitor with SXGA native resolution will typically have a physical 5:4 aspect ratio, preserving a 1:1 pixel aspect ratio.
Any CRT that can run 1280 × 1024 can also run 1280 × 960, which has the standard 4:3 ratio. A flat panel TFT screen, including one designed for 1280 × 1024, will show stretching distortion when set to display any resolution other than its native one, as the image needs to be interpolated to fit in the fixed grid display. Some TFT displays do not allow a user to disable this, and will prevent the upper and lower portions of the screen from being used forcing a "letterbox" format when set to a 4:3 ratio.
SXGA+ stands for Super Extended Graphics Array Plus and is a computer display standard. An SXGA+ display is commonly used on 14-inch or 15-inch laptop LCD screens with a resolution of 1400 × 1050 pixels. An SXGA+ display is used on a few 12-inch laptop screens such as the ThinkPad X60 and X61 (both only as tablet) as well as the Toshiba Portégé M200 and M400, but those are far less common. At 14.1 inches, Dell offered SXGA+ on many of the Latitude C-Series laptops, such as the C640, and IBM since the ThinkPad T21. Sony also used SXGA+ in their Z1 series, but no longer produce them as widescreen has become more predominant.
In desktop LCDs, SXGA+ is used on some low-end 20-inch monitors, whereas most of the 20-inch LCDs use UXGA (standard screen ratio), or WSXGA+ (widescreen ratio).
WSXGA+ stands for Widescreen Super Extended Graphics Array Plus. WSXGA+ displays were commonly used on Widescreen 20-, 21-, and 22-inch LCD monitors from numerous manufacturers (and a very small number of 19-inch widescreen monitors), as well as widescreen 15.4-inch and 17-inch laptop LCD screens like the Thinkpad T61p, the late 17" Apple PowerBook G4 and the unibody Apple 15" MacBook Pro. The resolution is 1680 × 1050 pixels (1,764,000 pixels) with a 16:10 aspect ratio.
WSXGA+ is the widescreen version of SXGA+, but it is not approved by any organization. The next highest resolution (for widescreen) after it is WUXGA, which is 1920 × 1200 pixels.
UXGA has been the native resolution of many fullscreen monitors of 15 inches or more, including laptop LCDs such as the ones in the IBM ThinkPad A21p, A30p, A31p, T42p, T43p, T60p, Dell Inspiron 8000/8100/8200 and Latitude/Precision equivalents; some Panasonic Toughbook CF-51 models; and the original Alienware Area 51M gaming laptop. However, in more recent times, UXGA is not used in laptops at all but rather in desktop UXGA monitors that have been made in sizes of 20 inches and 21.3 inches. Some 14-inch laptop LCDs with UXGA have also existed (such as the Dell Inspiron 4100), but these are very rare.
WUXGA stands for Widescreen Ultra Extended Graphics Array and is a display resolution of 1920 × 1200 pixels (2,304,000 pixels) with a 16:10 screen aspect ratio. It is a wide version of UXGA, and can be used for viewing high-definition television (HDTV) content, which uses a 16:9 aspect ratio and a 1280 × 720 (720p) or 1920 × 1080 (1080i or 1080p) resolution.
The 16:10 aspect ratio (as opposed to the 16:9 used in widescreen televisions) was chosen because this aspect ratio is appropriate for displaying two full pages of text side by side.
WUXGA resolution has a total of 2,304,000 pixels. One frame of uncompressed 8BPC RGB WUXGA is 6.75MiB (6.912MB). Initially, it was available in widescreen CRTs such as the Sony GDM-FW900 and the Hewlett-Packard A7217A (introduced in 2003), and in 17-inch laptops. Most QXGA displays support 1920 × 1200. WUXGA is also available in some mobile phablet devices such as the Huawei Honor X2 Gem.
The next lower standard resolution (for widescreen) before it is WSXGA+, which is 1680 × 1050 pixels (1,764,000 pixels, or 30.61% fewer than WUXGA); the next higher resolution widescreen is an unnamed 2304 × 1440 resolution (supported by the above GDM-FW900 and A7217A) and then the more common WQXGA, which has 2560 × 1600 pixels (4,096,000 pixels, or 77.78% more than WUXGA).
The QXGA, or Quad Extended Graphics Array, display standard is a resolution standard in display technology. Some examples of LCD monitors that have pixel counts at these levels are the Dell 3008WFP, the Apple Cinema Display, the Apple iMac (27-inch 2009–present), the iPad (3rd generation), the iPad Mini 2, and the MacBook Pro (3rd generation). Many standard 21–22-inch CRT monitors and some of the highest-end 19-inch CRTs also support this resolution.
QWXGA (Quad Wide Extended Graphics Array) is a display resolution of 2048 × 1152 pixels with a 16:9 aspect ratio. A few QWXGA LCD monitors were available in 2009 with 23- and 27-inch displays, such as the Acer B233HU (23-inch) and B273HU (27-inch), the Dell SP2309W, and the Samsung 2343BWX. As of 2011, most 2048 × 1152 monitors have been discontinued, and as of 2013, no major manufacturer produces monitors with this resolution.
QXGA (Quad Extended Graphics Array) is a display resolution of 2048 × 1536 pixels with a 4:3 aspect ratio. The name comes from it having four times as many pixels as an XGA display. Examples of LCDs with this resolution are the IBM T210 and the Eizo G33 and R31 screens, but in CRT monitors this resolution is much more common; some examples include the Sony F520, ViewSonic G225fB, NEC FP2141SB or Mitsubishi DP2070SB, Iiyama Vision Master Pro 514, and Dell and HP P1230. Of these monitors, none are still in production. A related display size is WQXGA, which is a widescreen version. CRTs offer a way to achieve QXGA cheaply. Models like the Mitsubishi Diamond Pro 2045U and IBM ThinkVision C220P retailed for around US$200, and even higher performance ones like the ViewSonic PerfectFlat P220fB remained under $500. At one time, many off-lease P1230s could be found on eBay for under $150. The LCDs with WQXGA or QXGA resolution typically cost four to five times more for the same resolution. IDTech manufactured a 15-inch QXGA IPS panel, used in the IBM ThinkPad R50p. NEC sold laptops with QXGA screens in 2002–05 for the Japanese market.iPad (starting from 3rd generation and Mini 2) also has a QXGA display.
WQXGA (Wide Quad Extended Graphics Array) is a display resolution of 2560 × 1600 pixels with a 16:10 aspect ratio. The name comes from it being a wide version of QXGA1280 × 800) display.
To obtain a vertical refresh rate higher than 40Hz with DVI, this resolution requires dual-link DVI cables and devices. To avoid cable problems monitors are sometimes shipped with an appropriate dual link cable already plugged in. Many video cards support this resolution. One feature that is currently unique to the 30-inch WQXGA monitors is the ability to function as the centerpiece and main display of a three-monitor array of complementary aspect ratios, with two UXGA (1600 × 1200) 20-inch monitors turned vertically on either side. The resolutions are equal, and the size of the 1600 resolution edges (if the manufacturer is honest) is within a tenth of an inch (16-inch vs. 15.89999"), presenting a "picture window view" without the extreme lateral dimensions, small central panel, asymmetry, resolution differences, or dimensional difference of other three-monitor combinations. The resulting 4960 × 1600 composite image has a 3.1:1 aspect ratio. This also means one UXGA 20-inch monitor in portrait orientation can also be flanked by two 30-inch WQXGA monitors for a 6320 × 1600 composite image with an 11.85:3 (79:20, 3.95:1) aspect ratio. Some WQXGA medical displays (such as the Barco Coronis 4MP or the Eizo SX3031W) can also be configured as two virtual 1200 × 1600 or 1280 × 1600 seamless displays by using both DVI ports at the same time.
An early consumer WQXGA monitor was the 30-inch Apple Cinema Display, unveiled by Apple in June 2004. At the time, dual-link DVI was uncommon on consumer hardware, so Apple partnered with Nvidia to develop a special graphics card that had two dual-link DVI ports, allowing simultaneous use of two 30-inch Apple Cinema Displays. The nature of this graphics card, being an add-in AGP card, meant that the monitors could only be used in a desktop computer, like the Power Mac G5, that could have the add-in card installed, and could not be immediately used with laptop computers that lacked this expansion capability.
In March 2009, Apple updated several Macintosh computers with a Mini DisplayPort adapter, such as the Mac mini and iMac. These allow an external connection to 2560x1600 display.
In 2010, WQXGA made its debut in a handful of home theater projectors targeted at the Constant Height Screen application market. Both Digital Projection Inc and projectiondesign released models based on a Texas Instruments DLP chip with a native WQXGA resolution, alleviating the need for an anamorphic lens to achieve 1:2.35 image projection. Many manufacturers have 27–30-inch models that are capable of WQXGA, albeit at a much higher price than lower resolution monitors of the same size. Several mainstream WQXGA monitors are or were available with 30-inch displays, such as the Dell 3007WFP-HC, 3008WFP, U3011, U3014, UP3017, the Hewlett-Packard LP3065, the Gateway XHD3000, LG W3000H, and the Samsung 305T. Specialist manufacturers like NEC, Eizo, Planar Systems, Barco (LC-3001), and possibly others offer similar models. As of 2016, LG Display make a 10-bit 30-inch AH-IPS panel, with wide color gamut, used in monitors from Dell, NEC, HP, Lenovo and Iiyama.
Released in November 2012, Google"s Nexus 10 is the first consumer tablet to feature WQXGA resolution. Before its release, the highest resolution available on a tablet was QXGA (2048 × 1536), available on the Apple iPad 3rd and 4th generations devices. Several Samsung Galaxy tablets, including the Note 10.1 (2014 Edition), Tab S 8.4, 10.5 and TabPRO 8.4, 10.1 and Note Pro 12.2, as well as the Gigaset QV1030, also feature a WQXGA resolution display.
QSXGA (Quad Super Extended Graphics Array) is a display resolution of 2560 × 2048 pixels with a 5:4 aspect ratio. Grayscale monitors with a 2560 × 2048 resolution, primarily for medical use, are available from Planar Systems (Dome E5), Eizo (Radiforce G51), Barco (Nio 5, MP), WIDE (IF2105MP), IDTech (IAQS80F), and possibly others.
Recent medical displays such as Barco Coronis Fusion 10MP or NDS Dome S10 have a native panel resolution of 4096 × 2560. These are driven by two dual-link DVI or DisplayPort outputs. They can be considered to be two seamless virtual QSXGA displays as they have to be driven simultaneously by both dual-link DVI or DisplayPort since one dual-link DVI or DisplayPort cannot single-handedly display 10 megapixels. A similar resolution of 2560 × 1920 (4:3) was supported by a small number of CRT displays via VGA such as the Viewsonic P225f when paired with the right graphics card.
WQSXGA (Wide Quad Super Extended Graphics Array) describes a display standard that can support a resolution up to 3200 × 2048 pixels, assuming a 1.5625:1 (25:16) aspect ratio. The Coronis Fusion 6MP DL by Barco supports 3280 × 2048 (approximately 16:10).
QUXGA (Quad Ultra Extended Graphics Array) describes a display standard that can support a resolution up to 3200 × 2400 pixels, assuming a 4:3 aspect ratio.
WQUXGA (Wide Quad Ultra Extended Graphics Array) describes a display standard that supports a resolution of 3840 × 2400 pixels, which provides a 16:10 aspect ratio. This resolution is exactly four times 1920 × 1200 (in pixels). On their XPS 13 2‑in‑1 (7390) laptop computer Dell seems to have referred to this resolution as "UHD+".
Most display cards with a DVI connector are capable of supporting the 3840 × 2400 resolution. However, the maximum refresh rate will be limited by the number of DVI links connected to the monitor. 1, 2, or 4 DVI connectors are used to drive the monitor using various tile configurations. Only the IBM T221-DG5 and IDTech MD22292B5 support the use of dual-link DVI ports through an external converter box. Many systems using these monitors use at least two DVI connectors to send video to the monitor. These DVI connectors can be from the same graphics card, different graphics cards, or even different computers. Motion across the tile boundary(ies) can show tearing if the DVI links are not synchronized. The display panel can be updated at a speed between 0Hz and 41Hz (48Hz for the IBM T221-DG5, -DGP, and IDTech MD22292B5). The refresh rate of the video signal can be higher than 41Hz (or 48Hz) but the monitor will not update the display any faster even if graphics card(s) do so.
In June 2001, WQUXGA was introduced in the IBM T220 LCD monitor using a LCD panel built by IDTech. LCD displays that support WQUXGA resolution include: IBM T220, IBM T221, Iiyama AQU5611DTBK, ViewSonic VP2290,Hz and 48Hz, made them less attractive for many applications.
Other manufacturers have also introduced phones with irregular display resolutions and aspect ratios, e.g. Samsung"s various Infinity displays with 37:18 = 18+1/2:9 (Galaxy S8/S9 and A8/A9), i.e. 2960 × 1440 (Quad HD+, WQHD+) or 2220 × 1080 (Full HD+), and 19:9 (S10) aspect ratios: 3040 × 1440 and 2280 × 1080 (S10e).
Some air traffic control monitors use displays with a resolution of 2048 x 2048, with an aspect ratio of 1:1,Eizo is major supplier of panels and monitors in this aspect ratio. Also in 2022, a 16:18 (2560x2880) monitor was released for general productivity work by LG Electronics.
VESA CVT 1.2 from 2003 recommends only 4:3, 16:9 and 16:10 (8:5) aspect ratios for newly introduced display resolutions. The discouraged legacy aspect ratios 5:4 and 15:9 (5:3) are only kept for SXGA and WXGA. VESA CVT 1.2
Bhagat, Hitesh Raj; Bajaj, Karan (26 January 2018). "The 18:9 display dilemma: Will the new smartphone screens make our lives easier or do the opposite?". The Economic Times. Bennett, Coleman & Co. Retrieved 2018-10-01.
"CMO showcases latest "green" and "innovative" LCD panels". Chi Mei Optoelectronics. 24 October 2008. Archived from the original on 2010-03-13. Retrieved 2008-10-26.
Anthony, Sebastian (5 September 2014). "Dell unveils 5K desktop monitor with almost 2x the pixels of your puny 4K display". ExtremeTech. Ziff Davis. Retrieved 2014-10-19.
Shin, Min-Seok; Choi, Jung-Whan; Kim, Yong-Jae; Kim, Kyong-Rok; Lee, Inhwan; Kwon, Oh-Kyong (2007). "Accurate Power Estimation of LCD Panels for Notebook Design of Low-Cost 2.2-inch qVGA LTPS TFT-LCD Panel". SID 2007 Digest. 38 (1): 260–263. doi:10.1889/1.2785279.
"ViewSonic Brings World"s Highest Resolution Monitor To Its LCD Lineup" (Press release). ViewSonic. 25 June 2002. Archived from the original on 2002-12-07. Retrieved 2013-05-22.
WUXGA stands for widescreen ultra extended graphics array and is a type of display resolution. Resolution explains how many pixels a display has in width x height format (the more pixels, the sharper the image quality). WUXGA displays have a resolution of 1920 x 1200.
Today"s laptops mostly stick to 1080p(opens in new tab)or 4K(opens in new tab)resolution. On the other hand, there are a few PC monitors that offer WUXGA, which is a nice little step up from the most common resolution of 1080p. It"s rate, but that extra screen real estate means that you"ll see more of your favorite documents and web pages without scrolling.
* Rewards 3% back excludes taxes and shipping. Rewards are issued to your online Dell Rewards Account (available via your Dell.com My Account) typically within 30 business days after your order’s ship date. Rewards expire in 90 days (except where prohibited by law). “Current rewards balance” amount may not reflect the most recent transactions. Check Dell.com My Account for your most up-to-date reward balance. Total rewards earned may not exceed $2,000 within a 3-month period. Outlet purchases do not qualify for rewards. Expedited Delivery not available on certain TVs, monitors, batteries and adapters, and is available in Continental (except Alaska) U.S. only. Other exceptions apply. Not valid for resellers and/or online auctions. Offers and rewards subject to change without notice, not combinable with all other offers. See Dell.com/rewardsfaq. $50 in bonus rewards for Dell Rewards Members who open a new Dell Preferred Account (DPA), or Dell Business Credit (DBC) account on or after 8/10/2022. $50 bonus rewards typically issued within 30 business days after DPA or DBC open date.
*Expedited Delivery: * Expedited Delivery not available on certain TVs, monitors, batteries and adapters, and is available in Continental (except Alaska) U.S. only. Other exceptions apply. Not valid for resellers and/or online auctions. Offers subject to change, not combinable with all other offers. See Dell.com/rewardsfaq.
The number of 4Kmonitors for PCs is gradually increasing. It may seem a little like speculation, but they solve various problems with displays and are smart and progressive choicesoffering the best display environment. EIZO"s 4K display, the FlexScan EV3237, in particular is a major contender when looking at display choices from a long-term perspective.
Full HDliquid crystaldisplays were once considered high-end, but in recent years, the prices have come down considerably, and today 23" full HD models have penetrated the domestic market to the point of becoming main stream. Around the time of the transition to terrestrial digital broadcasting, the shift to full HD displays accelerated. Although there was a perception of stagnation following that, the next wave has finally rolled in. Of course, this was brought about by the rise of 4K displays.
"4K" refers to horizontal resolutions of around 4,000 pixels. The "K" stands for "kilo" (thousand). As things stand, the majority of 4K displays come with 3840 x 2160 pixel (4K UHDTV) resolution, which is exactly four times the pixel count of full HD displays (1920 x 1080 pixels). There are also 4096 x 2160 pixel (DCI 4K) displays for the film industry that are referred to as 4K displays.
Against a backdrop of ever higher digital camera photograph resolutions, higher resolution content of home video cameras supporting 4K, increasingly high definition displays on smartphones and tablets, and other such developments, full HD displays on PCs are becoming less and less attractive. At the same time, interest is increasing in large screens and multi-screen environments that allow larger work spaces to increase the efficiency of multi-tasking, which is essential for PCs.
In the midst of these circumstances, EIZO introduced its much-awaited new FlexScan EV3237 display. Thisnew flagship model witha large 31.5" wide screen (visiblediagonal size:79.9cm) is the first of its universal displays to support 3840 x 2160 pixel 4Kresolution. It"s a high-end display for a new age that meets the two needs of high-definition and a large work space with top-level specs.
That said, there are probably many out there who wonder whether it"s still too early to buy a 4K display. In thisarticle, we"ll take a look at how the FlexScan EV3237 4K display can solve problems and complaints frequently experienced in display environments of late in Q&A format. We think you"ll see that the FlexScan EV3237 should be one of the purchase candidates on your list right now.
QI"ve gotten used to the high-definition display on my smartphone, tablet or laptop, and now the screen on my external display looks rough and dull to me. Is this just how it is?
AThe detail on displays is expressed in terms of pixel density or definition, and the numerical representation of that degree is expressed in ppi. Ppi stands for "pixels per inch." Reducing the distance between pixels (pixel pitch) without changing the screen size of the LCD panel increases the ppi, and the higher this number, the higher the definition of the display.
Pixel density on smartphones is increasing at a furious pace, and many smartphones today have pixel densities of 300ppi or more. The display is so smooth that even if you look closely at the screen you cannot see pixel grains or jagged diagonal lines. There are also some high-end devices that are almost overkill and exceed 500ppi.
When it comes to PC displays, most products have a pixel density of about 96ppi to match the display density of 96dpi (dots per inch) which has been the standard for the Windows desktop UI. The standard for the new Start screen and other aspects of the Modern UI of Windows 8 and later is 135dpi (automatically switching between 100%, 140% and 180% depending on the pixel density of the display device), but the standard for the desktop UI is still 96dpi. So it"s no surprise that the display looks rough in comparison to smartphones.
However, the display density (dpi) of PCoperating systemsis now variable, so smooth magnification is now possible with scaling according to the pixel density of the display. Since Windows XP, it has been possible to change the display density on Windows OS, but it wasn"t until Windows 7 that it could be done at a practical level where the screen layout did not break down significantly.
Since Windows 8.1, it has been possible to apply different display density settings to different displays when multiple displays are connected, and the sense of incongruity experienced in a multi-screen environment with displays of different pixel densities has been reduced (however, the number of setting levels is limited, so the combination of display densities cannot be elaborately customized).
Mac OS X has also adopted a design even before Windows that allows display density to be changed on high-definition displays (referred to as "Retina displays" by Apple). Since OS X Mavericks 10.9.3, this support has been available for external displays.
Support for the high pixel density display environment in the PC OS is called HiDPI support. Along with support on the OS side, support by applications is also progressing, and the PC environment surrounding HiDPI has risen to a practical level. Accordingly, high pixel density PC displays are on the rise.
The FlexScan EV3237 is one of those products, and as a large-screen external display, it has a high-definition pixel density of around 140ppi. This is quite low in comparison to the pixel density of smartphones mentioned earlier, but note that the distance at which smartphones and PC displays are used is quite different.
In the case of the 31.5" FlexScan EV3237, people use it from a distance of around 50-60 centimeters, so the display appears as smooth as that of smartphones. Moreover, the display size is dramatically larger than that of smartphones, so a lot more information can be seen at once. Photographs and movies are more impressive, too.
The 31.5" FlexScan EV3237 is viewed from a much greater distance than smartphones, tablets and laptops, so even with a pixel density of around 140ppi, the display appears smooth and high-definition. It"s hard to tell from photographs, but watching a high-definition video at 4K resolution on a 31.5" wide screen (roughly 80 centimetersdiagonallyfrom corner to corner) is an amazing experience that cannot be enjoyed with a full HD display.
QI"d like to increase my work efficiency, but I don"t have enough space for a multi-display setup. I also don"t like having a frame between the screens. Is there a way to increase work efficiency with a single screen?
AThere are basically two patterns when it comes to environments where multiple displays are lined up side by side. One is where multiple displays are connected to make more work space for a single PC. The other is where information is displayed from multiple PCs to work in parallel.
The FlexScan EV3237 can be used for either purpose. First, in the former case, the 31.5" wide LCD panel with 4K resolution offers a large work space (however, magnification via scaling also has to be taken into account; more details are provided later).
In the latter case, image input from four systems (DisplayPort x 2, HDMI x 1 and DVI-D 24-pin x 1) coupled with PbyP (Picture by Picture) and PinP (Picture in Picture) functions, which can simultaneously display multiple image signals, comes into play.
FlexScan EV3237 input terminals. From left to right: DVI-D, HDMI and two DisplayPort 1.2 terminals. To the right of these are the USB 3.0 hub’supstreamport and line input. There is a built-in power supply unit, and it is also equipped with a main power switch to cut power consumption when not in use. It"s also equipped with three USB 3.0 downstreamports andaheadphone ojackon the left side.
Using thepicture-by-picture (PbyP)function, images from multiple sources can be displayed side by side on the large screen. PbyP supports many display modes:horizontal split (two 3840 x 1080 pixel screens), vertical split (two 1920 x 2160 pixel screens), horizontally splitting the left (or right) half (1920 x 2160 pixel + two full HD screens) and splittingboth horizontally and verticallyinto four screens (four full HD screens).
There are never any lines dividing the screens with any of the settings, which means that the multi-display setup is completely frameless, so it"s easy to use. Incidentally, with four-screen display, it"s like having four 15-16" full HD displays side by side without any gaps between them.
With the PbyP function, image signals from multiple PCs can be simultaneously displayed side by side on a single screen. There are five layouts to choose from. It"s also conceivable that it could be used like digital signage for simultaneous display of videos, advertisements and other information.
With the PbyP function, image signals from multiple PCs can be simultaneously displayed side by side on a single screen. There are five layouts to choose from. It"s also conceivable that it could be used like digital signage for simultaneous display of videos, advertisements and other information.
Three image signals displayed side by side using the PbyP function. The left half is 1920 x 2160 pixels, and the top and bottom of the right half are both 1920 x 1080 pixels. Taking advantage of the large 31.5" screen and high definition 4K display, a multi-display setup can be achieved with no frames between screens.
On the other hand, if a small sub-screen is enough, using thepicture-in-picture (PinP)function, you can do parallel work while taking advantage of the large display area. There are two sizes of sub-screens to choose from, and they can be placed in any corner.
Sub-screen displayed in the upper right corner using the PinP function. The sub-screen is smaller than the minimum size offered by PbyP, allowing more of the main screen to be used, so it is suited to uses like working while playing a video.
QFull HD(1920 x 1080)and WUXGA(1920 x 1200)leave something to be desired when editing high pixel photographs and videos. Should I go with WQHD or ultra-wide (CinemaScope)? Or should I choose 4K already?
AThe spread of 4K may be faster than expected. From a broadcasting standpoint, there are major movements underway in the United States, South Korea and other countries. In Japan, there is an accelerated road map being worked on for 4K/8K broadcasts. In the PC world, the environment has been prepared for HiDPI, and products have been hitting the shelves all at once. Additionally, game manufacturers have begun talking about 4K support with new games (even though the required specs are shockingly high). In the coming months, there will be increasing demand for 4K displays, and manufacturers will likely accelerate their production.
Going one notch down and choosing WQHD (2560 x 1440 pixels) or casting aside versatility and going with ultra-wide (e.g.21:9 aspect ratio/2560 x 1080 pixels) would not be ill-advised as an "in-between" until 4K becomes main stream. These do not have the pixel density of 4K displays, so magnification with scaling is not required, and it"s easy to secure a large work space. At this point in time, they also have an advantage in terms of cost.
However,if youalreadyhave aPC environment for 4K display at this point in time,andwant a high-definition display that you will use for many years to come, there is no reason to hold off on the FlexScan EV3237. Conversely, displays under 4K may quickly become obsolete, so if you are thinking of medium- tolong-term use, a 4K display may work for you longer and, as a result, pay for itself over time.
EIZO"s 27" FlexScan EV2736W wide LCD. The resolution is WQHD (2560 x 1440 pixels/109ppi). Before the FlexScan EV3237, this was the flagship model of the FlexScan EV series, but if you are just now starting to look at different products, you should include 4K displays in your consideration.
QI bought a laptop with a super high pixel density display, but it"s not practical unless I use scaling to magnify the display 150-200%. Won"t a 4K display ultimately be the same?
AAs mentioned earlier, today as HiDPI has reached a practical level, more and more laptops are being equipped with high-definition LCDs. These products offer high-definition display as the selling point with the assumption that scaling will be used for magnification, so high resolution does not mean a large work space as it did when display density was assumed to be fixed.
Visibility and legibility are greatly affected by pixel pitch, but the distance at which laptops are viewed is closer than it is with external displays, so pixel density is higher (approx. 220ppi on a 13.3" 2560 x 1440 pixel display), which means that pixel pitch is that much narrower (approx. 0.12mm). At 100% magnification without scaling, text and icon display is too fine.
At the same time, the pixel pitch on the FlexScan EV3237 is also narrow owing to the high-definition display. For example, if you wanted to keep the same pixel pitch (approx. 0.27mm) as a currently main stream 23" full HD display with a 4K resolution display, you would need to double the screen size with a 46" display. This is crammed into a 31.5" display, so the pixel pitch is naturally narrower.
That said, the large 31.5" screen means that it"s not so extremely fine as it would be on a 23.8" or 28" 4K display. The pixel pitch is about 0.18mm, so if you pick the right installation location and adjust the viewing distance, it"s usable without scaling. However, when using a large 31.5" screen up close, it places more stress on the eyes and neck, so it"s advisable to use the scaling feature.
The pixel pitch is not too narrow, so not much magnification is required. Under the Windows DPIDisplay Sizesettings, it"s pretty usable from around "Medium - 125%" and up, so you can have both high-definition display and a large work space. If you want to have it around a standard 23" full HD display (approx. 96ppi), you can set it to "Larger- 150%" to get the display to about the sametext size.
Display area at "Smaller- 100%." This is normal magnification, and the 3840 x 2160 pixel 4K resolution can be used to the fullest. The pixel density is about 140ppi, and the pixel pitch is approximately 0.18mm. This setting is not unusable, but the screen is easier to see at "Medium - 125%" or "Larger- 150%."
Display area at "Larger- 150%." Scaling is used for 150% magnification, so the work space is smaller, but the textand icons are that much more visible. This setting is optimal if you want the Windows desktop UI at around the standard 96dpi. This setting offers a balance between definition and work space.
AIt"s necessary to be mindful of various things to mitigate the burden placed on the eyes, neck and shoulders by working on a PC. The minimum requirement of displays is that the LCD panel surface is no