different types of lcd monitors in stock
These LCD displays are the most common among others, mainly because they are lightweight, produce the best images, and use less power. The display is composed of millions of pixels that form images.
If you are looking for information about LCD Monitors (see HP monitors) then you are at the right place. You will find everything you want to know about LCD Monitor with its definition, description, function, benefits, how to use it, where to buy, and links for reviews and comparisons to make the most out of your investment.
An LCD monitor (Liquid Crystal Display Monitor) is a video display device commonly used in computers and televisions. It is a flat panel display as opposed to the more traditional cathode-ray tube (CRT) for television sets and oscilloscope monitors.
Also, this flat panel display has other advantages over CRT displays that include higher resolution, brighter images, better contrast ratios, deeper black ranges, more color palettes, and most importantly extremely lower power demands. In most cases, LCD monitors are lightweight and thinner than CRT monitors, which makes them perfect as portable monitors, too.
There are various types of LCD monitors on the market, with each having its pros and cons. Some are designed to provide wide viewing angles, while others are made to provide great image quality. If you are looking for an LCD monitor for your Mac Mini, PC, or laptop, here are the main types to choose from;
Twisted Nematic (TN) is one of the most common LCD technologies. It has been the dominant technology for regular home and office displays from 2001 to 2010 until it was replaced by better alternative technologies of In-Plane Switching (IPS), and VA.
One of the biggest selling points of TN displays is their incredibly fast response time, which is at 1ms. This makes them excellent for competitive FPS gaming, or for that awesome snappy feel when browsing the web or editing photos.
Vertical Alignment (VA) panels are a type of LCD display panel that features better contrast ratios and black uniformity when compared to IPS and TN panels.
As a result of this, they are best suited for multi-user or collaborative environments, though it must be said that this kind of technology is also appreciated by individuals who look for wider screen views.
The additional characteristics of this type of LCD monitor include high image quality, adaptability to bright light conditions, color accuracy, and competitive pricing - all factors which have made them very popular.
At the back of the LCD display, there is a backlight that emits white light. It goes through a horizontal polarizer; this is a kind of filter that allows only horizontal polarized light beams to pass through it.
Most modern LCD monitors have several parts that work together to produce an image. The main parts include;The panel,The cables (power cable and connectivity cables)The stand
LCD Monitor is one of the most important technologies that exist today, especially if you are working on a project. One of the very first LCD monitors was developed in 1970 by inventor J. Fergason (see also who created the first monitor historically).
Before that, cathode ray displays were bulky, consumed a lot of electricity, did not last a long time, and did not produce great images like today’s Acer LCD monitor, Dell LCD monitor, or AOC LCD monitor.
It is not until 1981 when Solartron introduced the first color LCD monitor; his name is always mentioned when one is researching thehistory ofmonitors. Since then, LCD monitors have evolved at an alarming rate. Even now, more innovations are being made to make them more durable and useful for customers.
Liquid crystals are made up of organic material that has special properties that change when an electric current is applied to them. This material is sandwiched between two layers. The electric current makes the crystals change their shape so they can either let light through or block it at will.
The inventor of the LCD monitor is inventor J. Fergason. He was a business entrepreneur as well as an American inventor. He was born on January 12, 1934, and died on December 9, 2008.
Before he died, he had over 100 US patents on his name. He began experimenting with liquid crystals when he was hired by Westinghouse Research Laboratories. His research led to the development of a Liquid crystal thermometer and a mood ring.
Tests have proved that Samsung monitors such as Samsung u32j590 31.5 16 9 4k UHD LCD monitor and AOC 27b1h 27 LCD monitor black are much better than the traditional cathode ray and Plasma monitors. Why?
In order to have a better understanding of what makes this type of monitor superior, it is first necessary to understand its features which are;Are lightweight
LCD is the best technology for most people, but it does have its downsides. The most obvious one is price. While LCD panels are getting cheaper, they"re still more expensive than CRT displays.
An LCD Monitor gives sharp clear image quality with its high resolution. The high resolution means viewing more pixels on the screen for a superior picture. Combining super-resolution, vivid colors, and extreme brightness, LCD monitors will amaze you. Nonetheless, when looking for your movies monitor, it is essential to go for high-resolution models.
The price of an LCD monitor depends on its size and features. Generally, prices range from roughly $150 to over $2000, although some models may be less expensive or more expensive.
It is possible that buying one of the less expensive models could save you money in the long run, and it is also possible that buying one of the more expensive models could save you money in the long run.
There are various models of LCD monitors on the market. The power consumption of each model depends on the display size, resolution, brightness, etc. The power consumption of a 19-inch LCD monitor averages around 20 watts.
There are various brands that manufacture LCD monitors. Some of the most common brands include:Lenovo such as Lenovo l22e 20 21.5-inch LCD backlit lcd monitorDELL such as dell 2407wfp 24-inch widescreen ultrasharp lcd monitorSamsung such as Samsung 32 curved 1920x1080 HDMI 60hz 4ms fhd lcd monitorAcerHPLG such as LG 34 ips lcd ultrawide fhd freesync monitor blackSanyoSony
Huge number of professionals enjoy numerous benefits of LCD technology. No matter what you do, whether you use your computer monitor for editing videos, graphic design, programming, or if you are someone who plays computer games frequently, you will need the best LCD because of its great features.
LED monitors (a form of LCD) are your best choice as monitors for graphic design. They are a bit pricier than VA panels but the difference in performance is worth it. You get a faster response time and better color rendition while keeping everything within a budget.
If you are a photographer, working with monitors for photo editing is as important as the camera you work with. The key feature you should look for is backlight. LED"s (a form of LCD) will have brighter, sharper blacks than that of an regular LCD, making them ideal for the digital photo editor. The fact is also that you won"t have to spend a fortune as there are many affordable options.
When looking for a monitor for architects one should focus on color, brightness, and contrast. Optimal color performance and resolution is what most monitors for architecture are equiped with. We should also point out that best monitors for CAD and similar demanding software share similar features and technology.
Without a shadow of a doubt, to trade without hinderence you will need the best monitor for traders out there. The screen size matters, with better resolution, you get the better image quality, and most importantly with flicker free, and anti-glare screen features, you won"t to strain your eyes in artificial light.
In this category LCD monitor represents an excellent choice. You can have all features of a business-style monitor with full customibility according to what your work requires. We must point out that you should look at monitors for programming that provide vibrant colors and excellent viewing angles usually found in a 4k monitor - see Ultrawide Vs. 4K here - which may not be within your budget. If you must compromise than go for these budget monitors we reviewed.
For non-professionals, too, a good monitor is critical for daily use, whether you are creating spreadsheets, editing videos, or, surfing the Internet.
I have made it simple for you to pick the best computer LCD monitors currently by listing them in this section. I have evaluated each monitor based on its price, display technology, panel type, size, inputs, speakers, ergonomics, and video performance.
If you want to buy an LCD monitor, there are several key factors to consider. They include screen size, screen resolution, response time, brightness, and refresh rate.
When buying an LCD monitor, one of the most important parameters to consider is screen resolution (the number of pixels). The higher the resolution, like in these 40 inch 4K monitors, the more you will see your documents (see here which monitors are our top choice for reading), spreadsheets, or photos on your screen. You"ll also enjoy sharper images and smoother lines.
The refresh rate of a small LCD monitor, curved LCD monitor, or a touch screen LCD monitor is very important, especially when playing video games. The refresh rate is measured in Hertz or Hz. It refers to the number of times the picture on the screen is refreshed per second. With 60Hz there could be plenty of ghosting, but with 120hz monitors, or, even better, 144Hz monitors, the difference will be obvious.
The higher the refresh rate, the more fluid video content will appear on your screen. A refresh rate is crucial when you are playing games, so the safest bet is to go for a 240Hz monitor. Also, you will give your games an immersive feel with one of the ultra-wide computer monitors.
Screen size is also an important thing to consider when you"re in the market for a new LCD monitor. The most common sizes used for monitors are 14, 17,21, 27,32 and 42 inches. Anything less than a 24 inch monitor would be considered a small LCD monitor.
These are the required steps to install an LCD monitor. Your new monitor can come with all the necessary accessories you"ll need, including cables and screws.
The first step to installing any LCD monitor is to unbox the product. Feel free to take your time as you unpack and familiarize yourself with the product. Look at all of the contents and verify that everything is accounted for.
The second step to installing an LCD monitor is gathering the tools required for the job such as a screwdriver, gloves, and screws and the cables needed.
Most monitors come with an instruction manual that can be read to better understand how to install the LCD screen. The user manual details the screen resolution, cable connection placement, and how to mount the monitor to its stand.
To connect an LCD monitor to a computer using a cable, insert one end of the cable into the appropriate port at the rear or the side of the computer. Connect the other end to the display.
Are you afraid of making a mistake when cleaning it? Don"t worry, I have a great solution for you. You can follow my simple guidelines and learn how to clean a monitor in a matter of minutes.
Before cleaning your monitor, use the power button to switch it off or unplug it from the electric socket if it is still connected. Leaving this step out may cause serious injury as you risk the danger of electric shock if you do not turn off your monitor first.
If you want to clean your entire monitor, you will also need to remove it from its frame. You can do this by removing the screws at the back of the frame with a screwdriver. Then slide the monitor out of the frame.
To clean the LCD monitor of your computer, find some monitor wipes. These are available at most office supply stores and are perfect for cleaning monitor screens.
Many monitor experts recommend that you purchase a monitor cleaning kit because these kits include all the products that you will need to effectively clean your monitor. This kit contains a monitor cleaning solution, which you can use to clean any oil or dirt off the surface of your monitor.
Each type, depending upon the needs of the user, has its own benefits and drawbacks. In order to determine which is the best for your individual needs, it is necessary to know what you are connecting with.
Yes, LCD monitors are suitable for gaming. High resolution, high refresh rates, and low response times are some of the features that make LCD monitors suitable for both professional gamers and amateur gamers.
The combination of high refresh rates and low response times enables gamers to react quickly and enjoy a smooth visual performance. Features like in G-sync monitors help eliminate motion blur and other issues that can reduce your performance.
Yes, LCD monitors are suitable for business. Business owners with limited space, or workers traveling on business, now can take their lightweight computer monitor with them. Moreover, since convenience is your number one goal in that case, it helps to have monitors with speakers built into them already!
The best work monitorsare superbly suited for the display of data, tables with rows and columns of numbers, figures, or other information. The performance is consistent and they help save energy as they are energy efficient. And for best productivity, if you are able to pull it off, using multiple monitors for which the bezel less monitors are best suited, is the right way to go.
It is also important that the monitor has some type of heat sink; the way it dissipates heat away from the circuitry. The most common heat sink is a base plate or duct that channels air through the back of the monitor. This helps prevent discoloration on the screen that can happen with some LCD monitors when they are left in a car continuously.
They are typically well-shielded against RFI/EMI to prevent interference from cellular phone signals, thunderstorm lighting, and other types of interference that might disrupt the video signal from your device.
LCD monitors use cold cathode fluorescent lamps (CCFLs) to illuminate the display while LED monitors use diode-based lights. Also, in terms of eye strain, visuals, and energy consumption, LEDs outperform LCDs.
IPS is a technology used in LCD screens. IPS monitors are preferred by professionals for their true-to-life color representation, wide viewing angles, and superior-high-quality image clarity.
They are the ultimate solution for professional photo editing, graphic designing, and video editing. Generally, LCD monitors are the most affordable and popular display options available today (see monitors under 200 dolars). These monitors are ideal for both office and home use, whether you want to game or watch movies. As for games exclusively, curved gaming monitors, which are mostly IPS, are especially comfortable for your eyes and they are probably the ones to turn to (see also top curved monitors overall)
Apart from LCD monitors, other types of computer monitors are;The first is the CRT or cathode ray tube monitor.Another type of monitor is an OLED Monitor. It is brighter, thinner, and with better color contrast than most other monitors.Plasma monitorsTouch Screen monitor
Again, IPS is the clear winner here. The vertical viewing angles are very similar to the horizontal ones on both IPS and VA panels. Unfortunately, this is one area where TN panels are usually much, much worse. TN monitors degrade rapidly from below, and colors actually inverse - resulting in a negative image that can be distracting. For this reason, if you decide to buy a TN monitor, look for one with an excellent height adjustment, or consider buying a VESA mounting arm, as you should mount TN monitors at eye level. Even when mounted properly, larger TN displays can appear non-uniform at the edges.
There"s usually not much difference between VA and IPS panels in terms of gray uniformity. It"s rare for monitors to have uniformity issues, and even on monitors that perform worse than average, it"s usually not noticeable with regular content. TN monitors tend to perform a bit worse than usual, though, and the top half of the screen is almost always darker than the rest, but that"s an artifact of the bad vertical viewing angles.
Black uniformity tends to vary significantly, even between individual units of the same model, and there"s no single panel type that performs the best. It"s rare for monitors to have good black uniformity, and almost every monitor we"ve tested has some noticeable cloudiness or backlight bleed. IPS and TN panels can look slightly worse due to their low contrast ratios, as the screen can take on more of a bluish tint when displaying dark scenes. Like with contrast, black uniformity issues usually aren"t very noticeable unless you"re looking at dark content and you"re in a dark room. If you only use your monitor in a bright environment, generally speaking, you don"t need to worry about black uniformity.
Historically, TN panels used to have the worst colors, as many of them were cheaper models that only supported 6-bit colors or used techniques like dithering (FRC) to approximate 8-bit colors. Most displays today, including TN models, are at least 8 bit, and many of them are even able to approximate 10-bit colors through dithering. New technologies, like LG"s Nano IPS and Samsung"s Quantum Dot, add an extra layer to the LCD stack and have significantly improved the color gamut of modern IPS and VA displays, leaving TN a bit behind. Between them, NANO IPS is slightly better, as it tends to offer better coverage of the Adobe RGB color space. Although the difference is minor, IPS panels still have a slight edge over VA and TN displays.
Although TN panels have caught up a bit in the SDR color space, they"re far behind when it comes to HDR, so if you"re looking for a good HDR color gamut, avoid TN panels. Between VA and IPS panels, the difference isn"t as significant; however, IPS panels still have a slight edge. The best VA panels top out at around 90% coverage of the DCI P3 color space used by most current HDR content. IPS panels go as high as 98% coverage of DCI P3, rivaling even some of the best TVs on the market. Due to the very high coverage of DCI P3 on both VA and IPS, the difference isn"t that noticeable, though, as most content won"t use the entire color space anyway.
Although not necessarily as noticeable to everyone as the differences in picture quality, there can also be a difference in motion handling between IPS, VA, and TN displays. TN panels historically offered the best gaming performance, as they had the highest refresh rates and extremely fast response times. Manufacturers have found ways to drastically improve the motion handling of VA and IPS panels, though, and the difference isn"t as pronounced.
LCD panel technology has changed drastically over the last few years, and the historical expectations for response time performance don"t necessarily hold anymore. For years, TN monitors had the fastest response times by far, but that"s started to change. New high refresh-rate IPS monitors can be just as fast.
VA panels are a bit of a strange situation. They typically have slightly slower response times overall compared to similar TN or IPS models. It"s especially noticeable in near-black scenes, where they tend to be significantly slower, resulting in dark trails behind fast-moving objects in dark scenes, commonly known as black smear. Some recent VA panels, such as the Samsung Odyssey G7 LC32G75T, get around it by overdriving the pixels. It results in much better dark scene performance but a more noticeable overshoot in brighter areas.
The examples listed above aren"t perfect. The average response time metrics shown don"t necessarily show the whole picture. Monitors also usually offer a certain level of control over the pixel overdrive, so it"s possible to adjust the response time to match your usage and personal preference. Some overdrive settings deliver a sharper image but introduce overshoot and reverse ghosting artifacts, while other modes might not be as sharp but have no distracting artifacts. You can learn more about our response time testing here.
Within each of the three types of LCD we mentioned, other related panel types use the same basic idea but with slight differences. For example, two popular variants of IPS panels include ADS (technically known as ADSDS, or Advanced Super Dimension Switch) and PLS (Plane to Line Switching). It can be hard to tell these panels apart simply based on the subpixel structure, so we"ll usually group them all as IPS, and in the text, we"ll usually refer to them as IPS-like or IPS family. There are slight differences in colors, viewing angles, and contrast, but generally speaking, they"re all very similar.
There"s another display technology that"s growing in popularity: OLED. OLED, or organic light-emitting diode, is very different from the conventional LCD technology we"ve explored above. OLED panels are electro-emissive, which means each pixel emits its own light when it receives an electric signal, eliminating the need for a backlight. Since OLED panels can turn off individual pixels, they have deep, inky blacks with no blooming around bright objects. They also have excellent wide viewing angles, a near-instantaneous response time, and excellent gray uniformity.
OLED panels aren"t perfect, though. There"s a risk of permanent burn-in, especially when there are lots of static elements on screen, like the UI elements of a PC. There aren"t many OLED monitors available, either, but they"ve started to gain popularity as laptop screens and for high-end monitors, but they"re very expensive and hard to find. They"re also not very bright in some cases, especially when large bright areas are visible on screen. The technology is still maturing, and advances in OLED technology, like Samsung"s highly-anticipated QD-OLED technology, are promising.
As you can probably tell by now, no one panel type works best for everyone; it all depends on your exact usage. Although there used to be some significant differences between panel types, as technology has improved, these differences aren"t as noticeable. The two exceptions to this are viewing angles and contrast. If you"re in a dark room, a VA panel that can display deep blacks is probably the best choice. If you"re not in a dark room, you should focus on the other features of the monitor and choose based on the features that appeal to your exact usage. IPS panels are generally preferred for office use, and TN typically offers the best gaming experience, but recent advancements in VA and IPS technology are starting to change those generalizations. For the most part, the differences between each panel type are so minor now that it doesn"t need to be directly factored into your buying decision.
A crucial part of every system build, a well-made computer monitor ensures that you will realize the performance output by your computer hardware. Perhaps you spent days, weeks, and months choosing the right CPU and the best graphics card to play the games at the resolutions you want. However, suppose you blew your budget on all the horsepower and left none for the display. In that case, you’re not going to appreciate the intensity of all those pixels that your computer renders at incredible speeds. With PC games getting more graphically intense, you must ensure your display can keep up.
You’ve probably seen terms like HD and Full HD on the boxes of monitors and TVs, but what does that mean? As you may have guessed, HD refers to “High Definition,” a quick way to refer to a high-quality video output. So if you see the term “Full HD” on a monitor box, that’s just a shorthand to denote its resolution, which would be 1920 by 1080, also called 1080p. The reason why it’s specified as “Full HD” is that there are also some TVs and monitors that output at 720p (high definition but not relatively as high as 1080p), which is 1280 by 720 pixels. 1080p is considered the current standard for monitors, and popular manufacturers, including Dell, Acer, Samsung, LG, BenQ and Viewsonic, offer a variety of 1080p monitors in their product lineups.
When it comes to resolution, 4K is all the buzz right now. Game developers and graphics card manufacturers focus on making and running games at 4k resolutions, twice the horizontal and vertical resolution of 1080p. Officially labeled as 4K UHD, the full pixel resolution is 3840 by 2160. That’s why there had to be a new term to define the resolution scale because 4k is much clearer and more vibrant than 1080p. Many people would call it hyper-realistic because of how many pixels populate the display area. To make it easier to distinguish between the two resolution types, 1080p is often referred to as 2k resolution.
As you can imagine, the more pixels there are to display, the more critical it is that your monitor has a high refresh rate, especially when it comes to gaming. Typically, the standard has been a 120-hertz refresh rate in gaming monitors, but many features a 144-hertz refresh rate. The quicker a monitor can refresh the display, and the smoother the visual experience will be. This is because the refresh rate in the monitor works in tandem with a low response time (which specifies how quickly the monitor can send and receive new information) to make a seamless visual transition. Sometimes, if the response rate is not quick enough, some residual pixels can remain on the screen as the monitor is trying to refresh new ones. This is called ‘ghosting.’ Although it’s standard to have a four-millisecond response time on many gaming monitors, Samsung, LG, BenQ, Viewsonic, and more all offer 2k and 4k monitors with one-millisecond response times. It is also important to ensure refresh rates are identical if you plan to sync two monitors for your display.
Regarding the internal specs, response time and refresh rate are the main factors contributing to a smooth, immersive viewing experience. Still, the physical panel type of the monitor can also play into this. First, there’s the matter of how the monitor lights up: either with LCD or LED. The main difference lies in the material that is used to light the liquid crystals in the display. In LCD, it’s cold cathode fluorescent lamps (CCFLs), and in LEDs, it’s tiny light emitting and low-energy consuming diodes. This is the preferred type in most monitors because it consumes less power and produces less harsh light, so darker colors appear more vivid. Additionally, LED monitors can be much thinner than LCD ones.
Newer LCD monitors have improved with the implementation of IPS (In-Plane Switching) panels. For some, it’s a matter of preference, but where the IPS panels have shown their strength with accurate color reproduction, which is great for content creators who want to do photo editing or graphic design. The panel type you choose depends more on preference than anything else. Samsung is well known for championing the IPS panel in their monitors, and many people also enjoy using them for gaming.
For some people, it’s essential, not just the monitor specs. Having a monitor that is fast, intuitive, and also looks nice on their desk is a crucial part of a computer build designed to make a statement. Asus’ Predator X34 shows off with its 34-inch curved IPS panel that also features Nvidia’s Gsync technology, which matches the gaming framerates with the monitor’s native refresh rate to prevent screen tearing. For those who want the style without the price tag, Samsung offers a 29-inch curved monitor with a 4-millisecond response time.
As touch navigation becomes more normalized due to mobile browsing, you may also want to consider a touch monitor for maximum accessibility. Planar offers a 22-inch optical touchscreen monitor that is highly portable due to its USB connection type. For something you can use in meetings for presentations, Dell provides a capacitive touchscreen monitor that also features an IPS panel.
Finally, another consideration is whether there are enough HDMI (High-Definition Multimedia Interface) ports. HDMI allows simultaneous digital video and audio transmission from one source to another. While HDMI ports are often standard, especially on gaming monitors, verifying that a monitor has enough HDMI compatibility for your setup before purchasing is essential.
When you’ve picked out the perfect display, don’t forget the essential accessories to go with it. For a two or three-screen setup, Ergotron, Rosewill, and SIIG offer a variety of stationary and swivel monitor mounts for both the wall and your desk. Soon, you’ll have a command center that you’ll never want to leave. So, ready to get started?
Since monitors have to be lit in order for the viewer to see anything, the difference between the two types is in what is used to light up the crystals within the display. For LCD, that’s cold cathode fluorescent lamps (CCFL’s) and in LEDs, it’s tiny light emitting and low-energy consuming diodes. LED monitors tend to be thinner and more power-efficient, but improvements in the panel types have made LCDs more competitive.
The general consumer typically has very limited knowledge about the different types of LCD panels on the market and they take all of the information, specifications, and features printed on the packaging to heart. The reality is that advertisers tend to take advantage of the fact that most people conduct very minimal research before making big technological purchases—in fact, they depend on this to sell higher quantities of commercial monitors. With that in mind, how exactly do you know if you’re actually getting a good quality product that’ll suit your needs? Reading up on all of the different types of industrial LCD monitors is a good place to start!
LCD stands for liquid-crystal display. Over the years, LCD technology has become ubiquitous with various commercial and industrial screen manufacturing. LCDs are constructed of flat panels that contain liquid crystals with light modulating properties. This means that these liquid crystals use a backlight or reflector to emit light and produce either monochromatic or coloured images. LCDs are used to construct all sorts of displays from cellphones to computer screens to flat-screen TVs. Keep reading to learn everything you need to know about the different types of LCD displays on the market.
Twisted Nematic LCDs are the most commonly manufactured and used types of monitors across a wide range of industries. They’re most commonly used by gamers because they’re inexpensive and boast faster response times than most of the other display types on this list. The only real downside to these monitors is that they possess low quality and limited contrast ratios, colour reproduction, and viewing angles. However, they suffice for everyday operations.
In Plane Switching displays are considered to be among the best of the best when it comes to LCD technology as they offer superior viewing angles, excellent image quality, and vibrant colour accuracy and contrast. They’re most commonly used by graphic designers and in other applications that require the highest possible standards for image and colour reproduction.
AFFS LCDs offers far superior performance and a wider range of colour reproduction than even IPS panel technology. The applications involved in this type of LCD display are so advanced that they can minimize colour distortion without compromising on the extremely wide viewing angle. This screen is typically used in highly advanced and professional environments such as in the cockpits of commercial airplanes.
Nauticomp Inc. is the leading designer and manufacturer of high-quality LCD panels and displays. All of our touchscreen displays are made to order and customized according to your specific needs and applications. To learn more about our products, please contact us today.
Picture quality of a monitor is affected by many factors. These factors include panel type, driver IC and PCB, backlight system, different light filters, etc., but without any doubt, panel type is one of the most important aspects of picture quality on a monitor screen.
Right now, the mainstream monitor panel types include TN (Twisted Nematic), IPS (In Plane Switching), and VA (Vertical Alignment). Each type of panel carries their own set of unique features and qualities. To assist you in your next purchase decision, this article will compare the three panel types and provide you a better understanding of how these panels differ.
TN panel is the first LCD panel that has been widely used in desktop monitors, and it still holds a large share of the market. It is a very basic LCD panel, with a backlight module on which the position of each pixel dot has three light filters that allow only red, green, or blue light to pass respectively. The mix of three colors at different levels of brightness produces the content on the screen.
Faster response time. It’s max response time of 1ms is simply superior and unachievable by other panel types. As a result, it’s great for enthusiast gaming.
IPS, also known as Super TFT, it was invented by Hitachi in 1995. Its greatest characteristic is both its electrodes, they are on the same plain unlike all other panel types that locate them on two different plains. Because of this feature, its liquid crystal molecules are always parallel to the panel. This reduces the light pass through rate and requires more back lighting.
Great picture quality. IPS panel on monitors was originally intended for professional monitors for content creators who require great color reproduction, color accuracy, and viewing angles.
Backlight bleed. Since it needs more back lighting, it also causes inevitable backlight bleed. In some monitors, it is very noticeable during night time.
VA was invented by Fujitsu in 1998 in search of a middle ground between TN and IPS. Once it’s powered on, its liquid molecules are aligned in vertical arrays that allow light to pass through different arrays. At the time it was believed VA would take over the throne from TN immediately, but it never happened, due to VA pane’s higher cost of production and slower response time.
Though TN panel still holds a large share of the monitor market, it is completely unacceptable if you have any expectations in picture quality and viewing angles.
High end IPS monitors are superior if you are a professional content creator or simply want the best picture quality. Mid-tier IPS monitors should be considered only if you don’t game at all.
VA monitors strike a perfect balance in cost and performance. Considering the era of HDR is right around the corner, the deep contrast ratio of VA will continue to shine even more.
These cookies help to improve the performance of BenQ. If you want to opt-out of advertising cookies, you have to turn-off performance cookies. We also use Google Analytics, SessionCam and Hotjar to track activity and performance on the BenQ website. You can control the information provided to Google, SessionCam and Hotjar. To opt out of certain ads provided by Google you can use any of the methods set forth here or using the Google Analytics opt out browser add-on here. To opt-out of SessionCam collecting data, you can disable tracking completely by following link:https://www.hotjar.com/privacy/do-not-track/.
These cookies are used to track your activity on the BenQ website and other websites across the Internet, help measure the effectiveness of our advertising campaign and deliver advertisements that are more relevant to you and your interests. We use various advertising partners, including Amazon, Facebook, and Google. These cookies and other technologies capture data like your IP address, when you viewed the page or email, what device you were using and where you were. You can find out how to avoid them below.
Picking a monitor may feel more like art than science, but the technology behind the screen isn"t hard to understand. Learning about those technologies is key to navigating the minefield of marketing buzzwords separating you from your next monitor.
For example, numbers like contrast ratio and grey-to-grey response time are important, but they don’t tell the whole story—other specifications like input delay and color bit-depth are just as important. And while it"s sort of possible to find a monitor that can do it at all, the price can be very high. There are displays suited to gaming, design work, and ultra-high resolution detail, but mixing priorities often results in compromise. Fast, colorful, or high-DPI—pick any two, but the third will cost you.
Our guide to the best monitors for PC gaming explains why those monitors are ideal for playing games at high resolutions and high framerates, but it doesn’t dig deep into the details of monitor technology. That’s what this guide is for: it breaks down what you need to know about modern displays: resolutions, aspect ratios, refresh rates, and the differences between panel types like IPS, VA, and TN.
While you might be inclined to go after the highest pixel count you can find or afford, this isn"t always the best strategy for finding an optimal display. Higher resolutions offer greater detail but require faster graphics cards for gaming purposes, and Windows" DPI scaling still isn"t perfect. How you use your PC as well as your hardware will help determine the ideal resolution and size for your next display.
LCD displays have a native resolution, and running games (or the desktop) below that resolution degrades image quality due to the scaling process of enlarging the image. Using lower resolution modes isn"t really a substitute for picking the right number of pixels in the first place.
PC Gamer is going back to the basics with a series of guides, how-tos, and deep dives into PC gaming"s core concepts that we"re calling The Complete Guide to PC Gaming. There"s much more to come, and it"s all being made possible by Razer(opens in new tab), which stepped up to support this months-long project. Thanks, Razer!
1440p has become our recommendation as the best overall option. It"s great for office work, professional work, and gaming. You can still get higher refresh rate 144Hz panels (see below), plus G-Sync or FreeSync, and you can run at 100 percent scaling in Windows. For gaming purposes, however, you"ll want at least a GTX 1070/RTX 2060 or RX Vega 56 (or equivalent) graphics card.
Beyond 1440p, gaming gets dicey and expensive multi-GPU setups are often required for acceptable performance (though many games don"t even support multi-GPU, so that"s not always a viable solution). 4k displays are where most PCs top out, and while 5k and even 8k displays exist, those resolutions represent the bleeding edge of monitor design and generally aren"t useful for gaming purpose.
Realizing any serious performance aspirations at 3840x2160 requires an ultrafast graphics card (eg, GTX 1080 Ti/RTX 2080 or even 2080 Ti), and possibly two such GPUs. That could mean a cool $1400-$2400 just for the graphics subsystem. But if you want bragging rights and the ultimate rig, there"s nothing equal to a 4K display. 4k HDTVs have also become quite affordable, some of which can make a good alternative to a computer monitor.
If you want something more than the standard 16:9 aspect ratio, there are three primary options. Multi-monitor solutions are the most cost effective choice, where you buy two or three (preferably identical) displays and use them independently. Software developers, content creators, and other professionals can increase productivity by adding displays, and most graphics cards can easily drive three monitors.
Ultrawide 2560x1080 and 3440x1440 displays go after a middle ground, and are particularly popular among movie viewers. Most films are natively recorded at a 21:9 (or similar) "cinemascope" aspect ratio, and viewing these on a 16:9 display means you"ll end up with black bars on the top and bottom. The wider screens also provide a more immersive experience in 3D games, mimicking a full field of vision closely without the bezel interruptions of multi-monitor setups.
The most common and least expensive LCD panels are based on TN, or Twisted Nematic designs. Since TN screens are made on a vast scale and have been around a long time, they are very affordable. Online retailers stock an abundance of attractive 27-inch 1080p monitors(opens in new tab) with reasonable features starting at just $150. The price is nice, but the pixel density isn’t—and neither are the color quality or viewing angles, TN’s greatest weaknesses.
All TFT LCDs work by passing light, such as an LED, through a pair of polarized screens, a color filter, and liquid crystals that twist when current is applied to them. The more current applied, the more the liquid crystals twist and block light. Precise adjustments allow virtually any color or shade to be reproduced, but TN implementations have some limits.
Each pixel in an LCD display is made of red, green and blue subpixels. Colors are made by mixing varying brightness levels for these pixels, resulting in a perceived solid color to the user. The problem with TN is its widespread adoption of a 6-bit per channel model, instead of the 8-bit per channel used in better displays.
TN compensates for this shortcoming via FRC (Frame Rate Control), a pixel trick that uses alternating colors to produce a perceived third, but it"s a poor substitute for proper 24-bit color reproduction. When combined with the inversion and washout that comes from narrow viewing angles, TN"s elderly status in the LCD display world becomes clear.
IPS, short for In-Plane-Switching, was designed to overcome TN"s shortcomings as a display technology. IPS screens also use liquid crystals, polarized filters, and transmitters, but the arrangement is different, with the crystals aligned for better color visibility and less light distortion. Additionally, IPS panels typically use 8-bit depth per color instead of TN"s 6-bit, resulting in a full 256 shades to draw upon for each color.
While touted as the high end display technology of choice by giants such as Apple, the truth is that IPS screens still have drawbacks. Due to their more complex construction and the additional transmitters and lighting required for each pixel, IPS screens cost more than their TN counterparts. Thankfully, over the past few years, the popularity of no-frills import IPS monitors from Asia has helped drive down prices and force bigger monitor brands to sell more reasonably priced IPS displays.
A lot of research has been done with IPS and many variants exist, including Samsung"s popular PLS panels and AU Optronics AHVA (Advanced Hyper-Viewing Angle). The differences amount to subtle manufacturer variations or generational improvements on the technology, which has been around since 1996.
In between the high speed of TN and the color richness of IPS sits a compromise technology, the VA, or Vertically Aligned, panel. VA and its variants (PVA and MVA, but not AHVA) normally take the IPS approach with 8-bit color depth per channel and a crystal design that reproduces rich colors but retains some of the low latency and high refresh speed of TN. The result is a display that"s theoretically almost as colorful as IPS and almost as fast as TN.
VA panels have a few unique qualities, both positive and negative. They have superior contrast to both IPS and TN screens, often reaching a static 5000:1 ratio, and produce better black levels as a result. Advanced VA variants, such as the MVA panel used by Eizo in the Foris FG2421, support 120Hz officially and offer pixel latencies on par or better than IPS.
The flood of innovation in the display market shows no signs of abating, with TVs on one side and smartphones on the other driving new technologies such as curved screens and desktop-grade OLED panels that promise speeds, contrast and color beyond anything seen so far.
Most standard TFT-LCDs support a refresh rate of 60Hz, which means the screen is redrawn 60 times each second. While 60Hz may be sufficient for many desktop applications, higher refresh rates are desirable since they provide a smoother experience moving windows, watching video, and especially when gaming.
A refresh rate of 120Hz or even 144Hz alone isn"t sufficient for blur-free gaming however, and closing that gap has been an area of focus for display makers in recent years. Much work has been done to supplement high refresh rates with additional features meant to reduce motion blur further.
One method popular in gaming monitors is the inclusion of a strobed backlight, which disrupts eye tracking blur by cutting off the backlight for an instant, creating a CRT-like stable image. A strobed 120Hz display is more blur-free than a non-strobed 144Hz panel, but flickering the backlight understandably cuts down on the overall brightness of the image. Users with sensitive eyes can suffer from eyestrain and headaches induced from the flicker as well.
In addition to motion blur, another visual artifact that frustrates gamers is tearing. Tearing occurs on a monitor when a GPU sends a frame to the display before it"s finished displaying the current one. This results in the lower part of the screen displaying one frame and the top part displaying the other, separated by a line across the image. Enabling V-Sync, which forces the graphics card to wait on the monitor for refresh, can reduce this problem, but V-Sync has issues of its own including increased input latency and rigid frame rate requirements.
To get around this, GPU manufacturers have introduced a pair of technologies that dynamically synchronize the monitor and GPU framerate, eliminating tearing without VSync"s lag or heavy overhead. Nvidia calls their implementation G-Sync, and it requires a module built into the monitor as well as a GTX 650 Ti or later graphics card.
AMD has responded with the similar FreeSync, which doesn"t require special hardware on the monitor"s side other than support for the new Adaptive-Sync optional standard in the DisplayPort 1.2a specification, but does require a newer AMD graphics card (GCN 1.1 or later) to implement. (Nvidia cards now support G-Sync on some FreeSync monitors, too. You can force enable the feature even if a monitor isn"t certified, though the result may have problems.)
Action gamers looking for competition-level, frame-accurate inputs are best served by displays with minimal onscreen menus, little to no post-processing of images, and just a single port or two. This insures the video signal spends as little time bouncing around the monitor"s scaling and processing hardware as possible and gets displayed without delay.
The good news is that higher performance scaler hardware has helped reduce input latencies, and modern displays can offer multiple inputs while still providing excellent responsiveness. Along with FreeSync 2 monitors, Nvidia"s BFGD (Big Format Gaming Displays) aim to be a one size fits all solution.
Most computer monitors range from 19� to 29�, but larger screens of 40� to 55� are also increasingly popular. Additionally, 60� to 90� monitors are perfect for the boardroom or classroom interaction. It really depends on how you�re using your computer. If it�s just for emailing and word processing, a smaller screen should be sufficient. But if you�re using your computer for designing, gaming or for viewing movies, a larger screen may be a better choice.
LED (Light- Emitting Diode) monitors essentially the same as LCD monitors � the only difference is in the backlighting technology. LCD monitors use fluorescent lamps to light the display, while LED monitors use the more energy-efficient light-emitting diodes. LED monitors use up to 40% less energy and contain no mercury, making them a more environmentally friendly choice. They may also help reduce eye strain, which is important if you spend a lot of time in front of your computer.
LED monitors tend to be more expensive than LCDs. But when selecting a computer monitor, it�s best to go with the highest quality and largest size that fits your budget.
Choosing the perfect computer monitor can be tough, so that"s why we"re here to help. Watch our video and learn how to pick out the perfect one. We"ll go over three different monitors for PC builds ranging from basic to high performance.
So, why is this important? A monitor’s panel technology is important because it affects what the monitor can do and for which uses it is best suited. Each of the monitor panel types listed above offer their own distinctive benefits and drawbacks.
Choosing which type of monitor panel type to buy will depend largely on your intended usage and personal preference. After all, gamers, graphic designers, and office workers all have different requirements. Specific types of displays are best suited for different usage scenarios.
The reason for this is because none of the different monitor panel types as they are today can be classified as “outstanding” for all of the attributes mentioned above.
Below we’ll take a look at how IPS, TN, and VA monitors affect screen performance and do some handy summaries of strengths, weaknesses, and best-case uses for each type of panel technology.
IPS monitors or “In-Plane Switching” monitors, leverage liquid crystals aligned in parallel to produce rich colors. IPS panels are defined by the shifting patterns of their liquid crystals. These monitors were designed to overcome the limitations of TN panels. The liquid crystal’s ability to shift horizontally creates better viewing angles.
IPS monitors continue to be the display technology of choice for users that want color accuracy and consistency. IPS monitors are really great when it comes to color performance and super-wide viewing angles. The expansive viewing angles provided by IPS monitors help to deliver outstanding color when being viewed from different angles. One major differentiator between IPS monitors and TN monitors is that colors on an IPS monitor won’t shift when being viewed at an angle as drastically as they do on a TN monitor.
IPS monitor variations include S-IPS, H-IPS, e-IPS and P-IPS, and PLS (Plane-to-Line Switching), the latter being the latest iteration. Since these variations are all quite similar, they are all collectively referred to as “IPS-type” panels. They all claim to deliver the major benefits associated with IPS monitors – great color and ultra-wide viewing angles.
When it comes to color accuracy, IPS monitors surpass the performance of TN and VA monitors with ease. While latest-gen VA technologies offer comparative performance specs, pro users still claim that IPS monitors reign supreme in this regard.
Another important characteristic of IPS monitors is that they are able to support professional color space technologies, such as Adobe RGB. This is due to the fact that IPS monitors are able to offer more displayable colors, which help improve color accuracy.
In the past, response time and contrast were the initial weakness of IPS technology. Nowadays, however, IPS monitor response times have advanced to the point where they are even capable of satisfying gamers, thus resulting in a rising popularity in IPS monitors for gaming.
With regard to gaming, some criticisms IPS monitors include more visible motion blur coming as a result of slower response times, however the impact of motion blur will vary from user to user. In fact, mixed opinions about the “drawbacks” of IPS monitor for gaming can be found all across the web. Take this excerpt from one gaming technology writer for example: “As for pixel response, opinions vary. I personally think IPS panels are quick enough for almost all gaming. If your gaming life is absolutely and exclusively about hair-trigger shooters, OK, you’ll want the fastest response, lowest latency LCD monitor. And that means TN. For the rest of us, and certainly for those who place even a modicum of importance on the visual spectacle of games, I reckon IPS is clearly the best panel technology.” Read the full article here.
IPS monitors deliver ultra-wide 178-degree vertical and horizontal viewing angles. Graphic designers, CAD engineers, pro photographers, and video editors will benefit from using an IPS monitor. Many value the color benefits of IPS monitors and tech advances have improved IPS panel speed, contrast, and resolution. IPS monitors are more attractive than ever for general desktop work as well as many types of gaming. They’re even versatile enough to be used in different monitor styles, so if you’ve ever compared an ultrawide vs. dual monitor setup or considered the benefits of curved vs. flat monitors, chances are you’ve already come into contact with an IPS panel.
TN monitors, or “Twisted Nematic” monitors, are the oldest LCD panel types around. TN panels cost less than their IPS and VA counterparts and are a popular mainstream display technology for desktop and laptop displays.
Despite their lower perceived value, TN-based displays are the panel type preferred by competitive gamers. The reason for this is because TN panels can achieve a rapid response time and the fastest refresh rates on the market (like this 240Hz eSports monitor). To this effect, TN monitors are able to reduce blurring and screen tearing in fast-paced games when compared to an IPS or VA panel.
On the flip side, however, TN panel technology tends to be ill-suited for applications that benefit from wider viewing angles, higher contrast ratios, and better color accuracy. That being said, LED technology has helped shift the perspective and today’s LED-backlit TN models offer higher brightness along with better blacks and higher contrast ratios.
The greatest constraint of TN panel technology, however, is a narrower viewing angle as TN monitors experience more color shifting than other types of panels when being viewed at an angle.
Today’s maximum possible viewing angles are 178 degrees both horizontally and vertically (178º/178º), yet TN panels are limited to viewing angles of approximately 170 degrees horizontal and 160 degrees vertical (170º /160º).
In fact, TN monitor can sometimes be easily identified by the color distortion and contrast shifting that’s visible at the edges of the screen. As screen sizes increase, this issue becomes even more apparent as reduced color performance can even begin to be seen when viewing the screen from a dead-center position.
For general-purpose use, these shifts in color and contrast are often irrelevant and fade from conscious perception. However, this color variability makes TN monitors a poor choice for color-critical work like graphic design and photo editing. Graphic designers and other color-conscious users should also avoid TN displays due to their more limited range of color display compared to the other technologies.
TN monitors are the least expensive panel technology, making them ideal for cost-conscious businesses and consumers. In addition, TN monitors enjoy unmatched popularity with competitive gamers and other users who seek rapid graphics display.
Vertical alignment (VA) panel technology was developed to improve upon the drawbacks of TN. Current VA-based monitors offer muchhigher contrast, better color reproduction, and wider viewing angles than TN panels. Variations you may see include P-MVA, S-MVA, and AMVA (Advanced MVA).
These high-end VA-type monitors rival IPS monitors as the best panel technology for professional-level color-critical applications. One of the standout features of VA technology is that it is particularly good at blocking light from the backlight when it’s not needed. This enables VA panels to display deeper blacks and static contrast ratios of up to several times higher than the other LCD technologies. The benefit of this is that VA monitors with high contrast ratios can deliver intense blacks and richer colors.
Contrast ratio is the measured difference between the darkest blacks and the brightest whites a monitor can produce. This measurement provides information about the amount of grayscale detail a monitor will deliver. The higher the contrast ratio, the more visible detail.
These monitors also provide more visible details in shadows and highlights, making them ideal for enjoying videos and movies. They’re also a good fit for games focused on rich imagery (RPG games for example) rather than rapid speed (such as FPS games).
MVA and other recent VA technologies offer the highest static contrast ratios of any panel technology. This allows for an outstanding visual experience for movie enthusiasts and other users seeking depth of detail. Higher-end, feature-rich MVA displays offer the consistent, authentic color representation needed by graphic designers and other pro users.
There is another type of panel technology that differs from the monitor types discussed above and that is OLED or “Organic Light Emitting Diode” technology. OLEDs differ from LCDs because they use positively/negatively charged ions to light up every pixel individually, while LCDs use a backlight, which can create an unwanted glow. OLEDs avoid screen glow (and create darker blacks) by not using a backlight. One of the drawbacks of OLED technology is that it is usually pricier than any of the other types of technology explained.
When it comes to choosing the right LCD panel technology, there is no single right answer. Each of the three primary technologies offers distinct strengths and weaknesses. Looking at different features and specs helps you identify which monitor best fits your needs.
With the lowest cost and fastest response times, TN monitors are great for general use and gaming. VA monitor offers a step up for general use. Maxed-out viewing angles and high contrast ratios make VA monitors great for watching movies and image-intensive gaming.
IPS monitors offer the greatest range of color-related features and remain the gold standard for photo editing and color-critical pro uses. Greater availability and lower prices make IPS monitors a great fit for anyone who values outstanding image quality.
LCD or “Liquid Crystal Display” is a type of monitor panel that embraces thin layers of liquid crystals sandwiched between two layers of filters and electrodes.
While CRT monitors used to fire electrons against glass surfaces, LCD monitors operate using backlights and liquid crystals. The LCD panel is a flat sheet of material that contains layers of filters, glass, electrodes, liquid crystals, and a backlight. Polarized light (meaning only half of it shines through) is directed towards a rectangular grid of liquid crystals and beamed through.
Liquid Crystals (LCs) are used because of their unique ability to maintain a parallel shape. Acting as both a solid and liquid, LCs are able to react quickly to changes in light patterns. The optical properties of LCs are activated by electric current, which is used to switch liquid crystals between phases. In turn, each pixel generates an RGB (red, green, blue) color based on the phase it’s in.
Note: When searching for monitors you can be sure to come across the term “LED Panel” at some point or another. An LED panel is an LCD screen with an LED – (Light Emitting Diode) – backlight. LEDs provide a brighter light source while using much less energy. They also have the ability to produce white color, in addition to traditional RGB color, and are the panel type used in HDR monitors.
Early LCD panels used passive-matrix technology and were criticized for blurry imagery. The reason for this is because quick image changes require liquid crystals to change phase quickly and passive matrix technology was limited in terms of how quickly liquid crystals could change phase.
Thanks to active-matrix technology, LCD monitor panels were able to change images very quickly and the technology began being used by newer LCD panels.
Ultimately, budget and feature preferences will determine the best fit for each user. Among the available monitors of each panel type there will also be a range of price points and feature sets. Additionally, overall quality may vary among manufacturers due to factors related to a display’s components, manufacturing, and design.
If you’re interested in learning more about IPS monitors, you can take a look at some of these professional monitors to see if they would be the right fit for you.
Alternatively, if you’re into gaming and are in the market for TN panel these gaming monitor options may be along the lines of what you’re looking for.
A computer monitor gives a desktop system the window to show its configuration and features. You might have a high clock speed, a fast processor or great graphics, all you need is the right screen to flaunt all the cool features. Target offers you a wide range of options for different sizes and features that meet your requirements and style. Are you confused about choosing a monitor? We are here to help you. If you are wondering about size, then always go for the biggest one depending on your space. There are different types of screens such as ultrawide, curved or flat to help you narrow down your choice. Find monitors with different resolutions, HD or Full HD is the basic one. If you are looking for crisp and detailed quality then there are QHD and 4K options. Keep in mind about the pixel density, it decreases as the size of the computer monitor increases. For gamers, it’s ideal to choose a screen with a high refresh rate and a low response, while color accuracy should be a top priority for professionals. Then there are other features for accessibility such as HDMI and USB-C ports. From gaming monitors to a high-end professional one, we have computer monitors of top brands such as Dell, Samsung, ASUS, Sony and many more. Browse through and find your perfect computer screen.