lcd touch screen manufacturers in india factory
Searching for the best TFT LCD module manufacturers in India? Well, that is admittedly a daunting task. With the growing number of TFT LCD display suppliers and manufacturers, it’s truly hard to pick which ones are reputable and which ones are not.
STONE Technologies is a proud manufacturer of superior quality TFT LCD modules and LCD screens. The company also provides intelligent HMI solutions that perfectly fit in with its excellent hardware offerings.
There is also a downloadable design software called STONE Designer. This is a completely free GUI design software you can use to create responsive digital module-ready user interfaces.
STONE TFT LCD modules come with a microcontroller unit that has a 1GHz Cortex-A8 CPU. Such a module can easily be transformed into an HMI screen. Simple hexadecimal instructions can be used to control the module through the UART port. Furthermore, you can seamlessly develop STONE TFT LCD color user interface modules and add touch control, features to it.
You can also use a peripheral MCU to serially connect STONE’s HMI display via TTL. This way, your HMI display can supply event notifications and the peripheral MCU can then execute them. Moreover, this TTL-connected HMI display can further be linked to microcontrollers such as:
Becoming a reputable TFT LCD manufacturer is no piece of cake. It requires a company to pay attention to detail, have excellent manufacturing processes, the right TFT display technology, and a consumer’s mindset.
Hence, we’ve rounded up 7 famous and reputable Indian LCD module manufacturers. These companies all produce quality display and screen-related products such as:
Videocon Industries Ltd is a well-known Indian manufacturer of TFT display modules, color TVs, home appliances, and consumer electronics. Videocon is a large company based in Mumbai, India.
Videocon has several manufacturing plants across different countries. It also boasts of several brands under its name, including Videocon Telecom, DigiWorld, Next, and Planet M.
The company takes pride in being India’s pioneer in color TV production and retail. Before the advent of the TFT display module, Videocon has been the world’s third-largest picture tube (CRT) manufacturer.
Videocon is popular for its high-quality products. Videocon manufactures an LCD display screen for LCD TV sets. A lot of Indians trust Videocon’s television sets.
Videocon assembles and manufactures their TFT LCD module products in world-class factories. The company’s main factories are in India. However, they also have manufacturing plants in Mainland China, Mexico, Poland, and Italy.
All of Videocon’s TFT LCD display products passed strict quality control checks. Testing is done throughout the entire manufacturing and assembly process. Furthermore, quality checks are done from the raw materials phase until the products’ release.
Videocon’s TFT display screens and TVs are affordable of good quality. The company knows how to manufacture quality TV sets at pocket-friendly prices since it is a pioneer in the Indian color TV industry.
Videocon’s mobile phone range is equipped with the latest touch LCD display technology. Smartphones are assembled in the company’s TFT touch screen factory. Hence, customers are ensured of high-performance mobile phones with a crisp touch screen LCD display.
To sum it up, Videocon Industries Limited is a strong TFT LCD display manufacturer. The company’s quality manufacturing plants, good end-products, and affordable prices make it among the famous TF LCD manufacturers in India.
Teronix is an Indian electronics company based in New Delhi. It specializes in TV sets with LED and LCD screen module technology. The company also offers a range of smart mobiles and power banks.
Teronix has been in the electronics industry since 2017. But the company has proven that it has what it takes to be a reputable LCD manufacturer in India. Teronix has risen to popularity among Indian consumers because of the following qualities:
The company’s products are all high-quality and durable. Teronix sees to it that its range of smart LCD and LED TVs, along with their other products, reach their customers in good condition, and perform at their best all the time.
Teronix knows that good quality LCD module and other electronic parts are the cores of high-performance products. Hence, their assembly and product research units are stocked with the latest technology to produce the best possible products. Furthermore, Teronix’s research and assembly hubs are strategically located in Delhi.
Special teams are assigned to run quality control tests for all of Teronix’s products. Tests are done before and after launch to ensure that their LED TV range and power banks are all working well with no defects. Also, Teronix has a minimum quality test duration of 3 years.
BPL Limited is a recognized Indian leader in health care equipment and consumer electronics. The Bangalore-based company operates business groups which include:
The company started manufacturing televisions and telecom equipment in the 1980s. BPL joined forces with Japanese company Sanyo in 2006 to strengthen BPL’s consumer electronics brand, including TF-LCD display products and color televisions. The joint venture ended in 2007, leaving BPL to focus on its healthcare equipment sector.
1. BPL takes pride in its superior-quality television sets. The TVs are made with combinations of TFT-LCD display and LED output. The products are manufactured by third-party TFT LCD suppliers. Then, the TV parts are assembled at a plant in Baddi, Himachal Pradesh.
2. BPL also takes the lead when it comes to medical display equipment. BPL uses different combinations of TFT display, VGA output, LED, and touch LCD display to manufacture the following devices:
3. The company upholds strict quality standards in all TFT LCD display products. This is achieved through quality tests at all stages of production and assembly. Even the third-party suppliers providing the raw materials for TFT-LCD modules are required to run through tests to ensure quality.
4. BPL is known to create innovative products ever since its heydays. This continues up to now, as BPL strives to improve market research to manufacture better televisions, consumer electronics, and healthcare equipment.
In a nutshell, BPL continues to be an industry leader in India’s consumer electronics and medical equipment industries. BPL provides households and health facilities with top-notch TFT-LCD display module sets used in televisions and health monitoring equipment. And in recent years, BPL has clearly shown no signs of slowing down.
Dixon Technologies Limited is a long-standing company providing consumer electronics, LED and LCD TVs, light fixtures, appliances, mobile phones, and CCTV systems. The company was founded in 1993 with its current headquarters in New Delhi and Uttar Pradesh.
Dixon’s creed is providing consumers with world-class products at affordable prices. Consequently, the company is among the top TFT LCD manufacturers in India because:
Dixon is proud to create its products in local factories. For instance, the company has an LCD display module factoryin Tirupati, Andhra Pradesh. Furthermore, the company also operates three facilities in Uttarakhand and three more in Noida, Uttar Pradesh.
Dixon is an Original Design Manufacturer (ODM) company. This means that the company takes its designs from its Research and Development Center. Eventually, Dixon turns them into original products that stand out on the market.
Reasonable prices also make Dixon’s LCD module products and TVs appealing to the public. Couple that with features that are on par with the world’s best TV sets. Dixon believes that quality shouldn’t be sacrificed at the expense of affordability.
In conclusion, Dixon Technologies (India) Limited is among India’s famous TFT LCD manufacturers simply because it provides original, feature-packed, high-quality, and pocket-friendly products to both tech companies and end-consumers.
Oriole Electronics is an electronics company based in Mumbai. It was established in 1972 and is among the famous long-standing TFT LCD manufacturers in India.
Oriole is an Original Equipment Manufacturer (OEM). Hence, the company produces high-quality products marketed under its name. However, product parts and components are sourced from reputable third-party suppliers.
Oriole’s strongest quality lies in its extensive experience in the TFT LCD and electronics industry. The company’s experience puts them at an edge against many younger industry competitors. All these thanks to several insights and expertise the company collected since 1972.
Furthermore, Oriole is dedicated to meeting its client’s needs as much as it can. The company partners with its customers throughout the product cycle, making sure that client inputs are incorporated into the products’ final design and functionality. This type of customer partnership uniquely reflects Oriole’s commitment to creating products that truly meet its customers’ various needs.
Another Oriole advantage is its in-house Research and Development team. Oriole’s R&D team conceptualizes products for its customers. They also formulate quality control guidelines that are strictly implemented during the production and testing phases. All these things are done to ensure the highest quality of Oriole’s TFT, LCD modules, and other product ranges.
Speaking of quality, Oriole is also ISO 9001:2008 certified. This credential ultimately proves the company’s utmost dedication to quality processes. Also, this ensures consistent operations of Oriole’s TFT LCD display factory network throughout India.
To wrap it all up, Oriole Electronics is indeed a quality display module manufacturer in India. Superior quality products, customized services, and affordable rates – all of these are testaments to Oriole’s good reputation.
RandServ proudly provides and even encourages custom manufacturing services. The company responds to unique client needs by creating LCD display modules and designs according to customer requirements. RandServ lets clients specify custom shapes, display sizes, and interactive touch support integration.
Another good point of RandServ is its superior-quality product range. The company may be new to the industry, but its products are made with world-class technology and attention to detail. RandServ’s electronic, TFT, LCD, and LED technologies make their end-products among the most long-lasting and robust electronic/digital products in the Indian market today.
Businesses across several industries tend to neglect ethical business practices. But not RandServ. The company takes pride in its clean business practices and integrity. Commitment to ethical standards enabled RandServ to steadily grow as a reputable LCD screen manufacturer.
In conclusion, RandServ Systems deserves a spot in our 7 famous TFT LCD manufacturers list mainly because of three things – cutting-edge LCD and digital products, customized client services, and high regard for ethical business practices.
Royal Display India is a reputable TFT display supplier and manufacturer based in Mumbai. Royal Display is relatively new, being in the business since 2003. But the company didn’t let their newness stop them from growing into a successful LCD display supplier and manufacturer.
A major factor that Royal Display holds in regard is value for money. The company keeps this in mind when creating and supplying display modules to their clients. Furthermore, Royal Display firmly believes that people need not shell out several bucks to get world-class quality products.
Another considerable advantage of Royal Display is its spacious manufacturing and warehousing units. Both are located in Maharashtra. The manufacturing unit boasts of specialized techniques used to produce modules for TFT, LCD, and OLED. Meanwhile, the warehouse unit is large enough to accommodate bulk orders from clients.
To wind this up, Royal Display is a young yet quality manufacturer for LCD modules and other related display screens in India. The company continues to grow with its plethora of quality display products coupled with many satisfied clients.
To conclude, Teronix is a young but reputable and promising LCD manufacturer in India. Lots of satisfied customers flock to them because of their dedication to high-quality products and top-notch manufacturing technologies.
To conclude this post, we’ve rounded up 7 Famous TFT LCD Manufacturers in India. Some of them are industry pioneers, while some are novices. However, we’re sure all these reputable companies will be a good source of products for all your display module needs.
STONE provides a full range of 3.5 inches to 15.1 inches of small and medium-size standard quasi TFT LCD module, LCD display, TFT display module, display industry, industrial LCD screen, under the sunlight visually highlight TFT LCD display, industrial custom TFT screen, TFT LCD screen-wide temperature, industrial TFT LCD screen, touch screen industry. The TFT LCD module is very suitable for industrial control equipment, medical instruments, POS system, electronic consumer products, vehicles, and other products.
Appachi Nagar, Tiruppur, Dist. Coimbatore Bharath Complex, B2, Appachi Nagar, 3rd Street Kongu Main Road, Appachi Nagar, Tiruppur - 641607, Dist. Coimbatore, Tamil Nadu
Vasai East, Mumbai Rajprabha Param Ind Estate, Bldg No. 1 Gala No. 22 & 23 Opposite Die Plast Factory, Vasai East, Mumbai - 401208, Dist. Mumbai, Maharashtra
New India Colony, Ahmedabad A-604, six floor Adarsh Lifestyle, Opposite Vedant School,near devasya schoolm new india colony, New India Colony, Ahmedabad - 380030, Dist. Ahmedabad, Gujarat
Jamalpur Colony, Ludhiana Siemens System House, House No. 133, Parkash Colony, Chandigarh Road Behind Veer Palace, Jamalpur Colony, Ludhiana - 141010, Dist. Ludhiana, Punjab
Dabhel, Daman Plot No. 36, Daman Industrial Estate Somnath Road, Nani Daman, Dabhel, Daman - 396210, Dist. Daman, Dadra and Nagar Haveli and Daman and Diu
Tronica City Industrial Area, Ghaziabad Plot No. A-75, Sector A-4, Tronica City, Loni, Tronica City Industrial Area, Ghaziabad - 201102, Dist. Ghaziabad, Uttar Pradesh
Industrial Automation Systems, AC Drives, AC Drives with Starters, Soft Starters, AC Servo Drives, Servo Drives, Stepper Drives, Stepper Motor Drives, Systems Integrators, PLCs, PLC Based Automation Systems, HMI, HIO, SC...More
Manufacturer & Distributor Of Electronic Products, Laboratory Instruments & Flow Indicators, Wireless Equipments, Industrial Automation Systems, Raspberry Pi3, Raspberry Pi3, Beagle Bone Black 4C, Olinuxino, Arduino, Int...More
Manufacturing and Service Providing a Broad Range of PCB Assembly, LED Strips, Circuit Board, LED Bulb PCB, Touch Switch and Soldering Services. ...More
LED Display, Outdoor And Indoor Video Wall, Digital Signage, Bank Displays, Electronic Displays, Large Format Display, Car Parking Guidance Systems, Touch Screen Panels, Make Your Car Products ...More
Products & Services Led Display Solution, Led Sign Boards, Moving Massage Boards, Graphic & Animation Display, Token Display Board, Signage, Currency & Interest Rate Display Boards, Electronic Display Systems & Electroni...More
ROYAL DISPLAY was established in the year 2003 in Mumbai, India with a single goal of bringing the best technology in Display-world to its customers. Back then, Display industry in India was still very new and LCD was a thing of fancy. Royal display began operations with an aim to distribute LCD displays to all prospective industries. In the initial stages, while in 2003, all our displays were sourced from Tiawan and we managed to set up an efficient supply chain for display from Taiwan in to India. This not only leveraged us the first-movers advantage but also put us on top of a very fast growing customer base in India A further expansion of customer base in year 2007, we have started TFT,, Touch screen and OLED marketing and started direct dialogue with most manufacturers in Korea & Taiwan making it possible for us to buy from origin. This was our answer to customers on quality-assurance. From supplying LCD Modules to public phone Manufacturer back in year 2003 to selling Displays for Military applications, Medical & Industrial Application, Royal Display has come a long way in defining and redefining values for its products to customers in India. We enjoy a niche customer segment in all industry verticals due to the technical expertise we acquired in all these years. Our focus still remains to be `Bringing the best display technology? to our customer. However a newer multi-dimensional approach has carved a way out for us in this world of stiff competition. At Royal Display, all are commitments are abiding and we take pride in delivering our best when it matters most.
Our commitment towards successfully catering to the requirements of market for LCD display has motivated us to consistently engaged in trading comprehensive range of these products. This range comprises of technically advanced LCD modules such as RS232 interface colour TFT, SPI interface colour TFT, and many more. Adding to this, this range also encompasses various OLED display TFT display open frames form 5.6” to 10.4” with A/D card and many more which are widely appreciated for a number of in-built high quality facilities. We also offer wide range of Touch screens in various technology which are absolutely latest of its kind in domestic market. Apart from these, we also now offering Tablet PC, MID(Mobile internet Device), Panel PC and Projected Capacitive Touch screen
Further, we are also engaged in manufacturing superior range of customized lift LCDs that have large number of quality features. The entire range of our products is acknowledged for entailing different advanced qualitative features; some of which include:
Understanding the value for money and time of clients, we always emphasize on sourcing our entire range of LCD display products strictly from reliable vendors who already have recognized place in their domain of expertise. In addition to this, we take care of the needs of market and clients along with upcoming trends at the time of market survey and bargaining with vendors that enable us to be updated in terms of technically advanced Display products for mobile, computer and other electronic items.
Our technically advanced products have varied applications in a large number of industries that successfully cater to specific requirements of their user. Some of the significant industries in which our LCD display products are proficiently utilized entail:
Across various industries, aforementioned and including many others, we serve a large number of satisfied and regular clients who have firm belief in our products and services that motivate them of continue with us.
Over the years of our operation, we have garnered a viable team of industry experts who have extensive experience in their domain of activity. This team forms the backbone of our organization capitalizing on which we have made inroads in trading business and gained a position of repute across the Indian market as a dependable trader, distributor and marketer. Our team comprises of:
Each of the team members is filled with true team spirit that consistently motivate them to proceed in right way with right efforts to achieve aims and goals of our organization. Procurement specialists and distribution experts work in close coordination in order to source the most reliable product from the premises of vendor. They are proficiently supported by our marketing experts and market analysts who provide them significant information on latest market developments in terms of trends, requirements and demands for LCD display products. This helps our procurement expert to draw effective strategy for approaching the most suitable vendor and initiating discussions on procurement issues.
Further, our business managers are innovative and quite capable to manage entire business procedure and in maintaining appropriate balance among various team members. They guide marketing expert & analysts on various issues involved in marketing and gathering requisite information on analyzing market for LCD display units that are demanded in a host of industries. Moreover, we undertake in-house training session for our team members that help them to upgrade their skills.
Further, we have made appropriate arrangements for packaging of these products which are a significant stage of our activity. In order to package each of the LCD display product, we utilize sturdy & dependable material that ensure safety of these products during the process of transit. Adding to this, we undertake customized packaging which is guided by details of packaging as per the specifications provided by our clients.
This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.
This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.
Headquartered in Pune India, SoftTouch Technologies is high end Technology Company specialized in providing latest information technology solutions to global market.
Leader in providing technology solutions and services to customers across India, APCA region. Company operates in verticals such as Touch Screen Technologies, Software Integration & Solutions, and Information Technology Consulting Services.
Touch ScreenLeading Manufacturer and Supplier from Bengaluru, our product range includes Touch Screen such as 4 Wire Resistive Touch Screen, 5 Wire Resistive Touch Screen, SAW Touch Screen, IR Multi Touch Screen, Touch Screen Panel, Capacitive Touch Screen and many more items.
To beat the competition and stand tall in the market, we have committed in delivering a high quality range of 5 Wire Resistive Touch Screen. Offered touch screen is well tested from our side on numerous parameters so as to deliver a defect free range to customers. This touch screen is developed by our highly experienced professionals using latest technology & top quality of electrical components. As well, our touch screen is comes in numerous customized options in accordance with the customer’s choice.
Instantly converts any standard monitor (LCD CRT) or notebook computer into a touch-interactive device at a very affordable cost. Easy installation and maintenance. Compatible with WIN 98 up to Win 7 8, Linux, Mac 9.22-10.x.
Measure your monitor size and compare to the sizes of the touch screens. Compare monitor"s view area (VW x VH) with the active area of the touch screen. It is ok if the touch screen"s active area is slightly larger than the monitor"s view area
We are among the eminent manufacturers and suppliers of Touch Screen in the industry. The offered product have been designed with the application of latest technology and deliver optimum performance to the customers. Premium quality materials are procured from established vendors for manufacturing these product. We subject these product to tests based on multiple parameters to ensure that the desired quality standards are maintained.
Instantly converts any standard monitor (LCD & CRT) or notebook computer into a touch-interactive device at a very affordable cost. Easy installation and maintenance. Compatible with WIN 98 up to Win 7 & 8, Linux, & Mac 9.22-10.x.
Measure your monitor size and compare to the sizes of the touch screens. Compare monitor"s view area (VW x VH) with the active area of the touch screen. It is ok if the touch screen"s active area is slightly larger than the monitor"s view area
Keeping in the mind various requirements of our clients, we are offering premium quality Infrared Multi Touch Screen in chennai. At vendors" end, IR Multi touch screen is designed utilizing high grade raw material and advanced technology as per the defined industry norms. Two fingers moving together on screen can zoom in/out. The gesture one finger anchored and the other moving around can lead to a 3D rotating. This range is available in different sizes and designs as per the needs of the clients.IR Multi toch screen in chennai in most attractive model of touch screen
Remarked for our superior quality and on time delivery, we are the proud manufacturer, wholesaler, trader, retailer, supplier of 4 Wire Resistive Touch Screen. Our provided touch screen is designed & developed by our experienced professionals utilizing the best grade electrical components & modernized technology as per the international standards. Offered touch screen is highly appreciated by our clients for its high transmission rate. Our customers can avail this touch screen from us at nominal rates.
We are a professional supplier of all types of HMI unit touchscreen glasses in India.Remarked for our superior quality and on time delivery, we are the proud manufacturer, exporter, wholesaler, trader, retailer, importer, distributor & supplier of HMI unit touchscreen glasses. Our provided touch screen is designed & developed by our experienced professionals utilizing the best grade electrical components & modernized technology as per the international standards. Offered touch screen is highly appreciated by our clients for its high transmission rate. Our customers can avail this touch screen from us at nominal rates.
Being the topmost brand in industry, we are engaged in offering a superior quality range of SAW Touch Screen. Our given touch screen is known for its high durability and fine finish in the market. This touch screen is developed from the best electrical components and hi tech technology in accordance with universally verified standards. Also, our touch screen is tested on several provisions for delivering a flawless range to customer’s end.
Our comprehensive range of touch Panels are based on latest technology for ‘lightweight’ user interfaces such as in Windows CE® Limelight Wall/PC. . With touch Panel technology set points and other parameters can be easily changed. Our touch panels find its uses in air handlers & chiller plants, control lighting, arm security and alarm functions and in many more areas
We have thousands of standard products that are in stock and available from our Seattle, WA and Hong Kong warehouses to support fast product development and preproduction without MOQ. The stock covers TN, STN LCD display panels, COB, COG character LCD display, graphic LCD display, PMOLED, AMOLED display, TFT display, IPS display, high brightness and transflective, blanview sunlight readable display, super high contrast ratio display, lightning fast response displays, efficient low power consumption display, extreme temperature range display, HMI display, HDMI display, Raspberry Pi Display, Arduino display, embedded display, capacitive touch screen, LED backlight etc. Customers can easily purchase samples directly from our website to avoid time delays with setting up accounts and credit terms and shipping within 24 hours.
Many of our customers require customized OEM display solutions. With over two decades of experience, we apply our understanding of available display solutions to meet our customer’s requirements and assist from project concept to mass production. Using your ideas and requirements as a foundation, we work side by side with you to develop ideas/concepts into drawings, build prototypes and to final production seamlessly. In order to meet the fast changing world, we can provide the fastest turnaround in the industry, it takes only 3-4 weeks to produce LCD panels samples and 4-6 weeks for LCD display module, TFT LCD, IPS LCD display, and touch screen samples. The production time is only 4-5 weeks for LCD panels and 5-8 weeks for LCD display module, TFT LCD, IPS LCD display, and touch screen.
LCD manufacturers are mainly located in China, Taiwan, Korea, Japan. Almost all the lcd or TFT manufacturers have built or moved their lcd plants to China on the past decades. Top TFT lcd and oled display manufactuers including BOE, COST, Tianma, IVO from China mainland, and Innolux, AUO from Tianwan, but they have established factories in China mainland as well, and other small-middium sizes lcd manufacturers in China.
China flat display revenue has reached to Sixty billion US Dollars from 2020. there are 35 tft lcd lines (higher than 6 generation lines) in China,China is the best place for seeking the lcd manufacturers.
The first half of 2021, BOE revenue has been reached to twenty billion US dollars, increased more than 90% than thesame time of 2020, the main revenue is from TFT LCD, AMoled. BOE flexible amoled screens" output have been reach to 25KK pcs at the first half of 2021.the new display group Micro LED revenue has been increased to 0.25% of the total revenue as well.
Established in 1993 BOE Technology Group Co. Ltd. is the top1 tft lcd manufacturers in China, headquarter in Beijing, China, BOE has 4 lines of G6 AMOLED production lines that can make flexible OLED, BOE is the authorized screen supplier of Apple, Huawei, Xiaomi, etc,the first G10.5 TFT line is made in BOE.BOE main products is in large sizes of tft lcd panel,the maximum lcd sizes what BOE made is up to 110 inch tft panel, 8k resolution. BOE is the bigger supplier for flexible AM OLED in China.
As the market forecast of 2022, iPhone OLED purchasing quantity would reach 223 million pcs, more 40 million than 2021, the main suppliers of iPhone OLED screen are from Samsung display (61%), LG display (25%), BOE (14%). Samsung also plan to purchase 3.5 million pcs AMOLED screen from BOE for their Galaxy"s screen in 2022.
Technology Co., Ltd), established in 2009. CSOT is the company from TCL, CSOT has eight tft LCD panel plants, four tft lcd modules plants in Shenzhen, Wuhan, Huizhou, Suzhou, Guangzhou and in India. CSOTproviding panels and modules for TV and mobile
three decades.Tianma is the leader of small to medium size displays in technologyin China. Tianma have the tft panel factories in Shenzhen, Shanhai, Chendu, Xiamen city, Tianma"s Shenzhen factory could make the monochrome lcd panel and LCD module, TFT LCD module, TFT touch screen module. Tianma is top 1 manufactures in Automotive display screen and LTPS TFT panel.
Tianma and BOE are the top grade lcd manufacturers in China, because they are big lcd manufacturers, their minimum order quantity would be reached 30k pcs MOQ for small sizes lcd panel. price is also top grade, it might be more expensive 50%~80% than the market price.
Panda electronics is established in 1936, located in Nanjing, Jiangshu, China. Panda has a G6 and G8.6 TFT panel lines (bought from Sharp). The TFT panel technologies are mainly from Sharp, but its technology is not compliance to the other tft panels from other tft manufactures, it lead to the capacity efficiency is lower than other tft panel manufacturers. the latest news in 2022, Panda might be bougt to BOE in this year.
Established in 2005, IVO is located in Kunsan,Jiangshu province, China, IVO have more than 3000 employee, 400 R&D employee, IVO have a G-5 tft panel production line, IVO products are including tft panel for notebook, automotive display, smart phone screen. 60% of IVO tft panel is for notebook application (TOP 6 in the worldwide), 23% for smart phone, 11% for automotive.
Besides the lcd manufacturers from China mainland,inGreater China region,there are other lcd manufacturers in Taiwan,even they started from Taiwan, they all have built the lcd plants in China mainland as well,let"s see the lcd manufacturers in Taiwan:
Chimei Innolux Corporation was the successor company, and it initially preserved the Chimei name. In order to differentiate itself from the ChiMei brand, the company was renamed "Innolux Corporation" in December 2012.
Innolux"s 14 plants in Taiwan possess a complete range of 3.5G, 4G, 4.5G, 5G, 6G, 7.5G, and 8.5G-8.6G production line in Taiwan and China mainland, offering a full range of large/medium/small LCD panels and touch-control screens.including 4K2K ultra-high resolution, 3D naked eye, IGZO, LTPS, AMOLED, OLED, and touch-control solutions,full range of TFT LCD panel modules and touch panels, including TV panels, desktop monitors, notebook computer panels, small and medium-sized panels, and medical and automotive panels.
AUO is the tft lcd panel manufacturers in Taiwan,AUO has the lcd factories in Tianma and China mainland,AUOOffer the full range of display products with industry-leading display technology,such as 8K4K resolution TFT lcd panel, wide color gamut, high dynamic range, mini LED backlight, ultra high refresh rate, ultra high brightness and low power consumption. AUO is also actively developing curved, super slim, bezel-less, extreme narrow bezel and free-form technologies that boast aesthetic beauty in terms of design.Micro LED, flexible and foldable AMOLED, and fingerprint sensing technologies were also developed for people to enjoy a new smart living experience.
Hannstar was found in 1998 in Taiwan, Hannstar display hasG5.3 TFT-LCD factory in Tainan and the Nanjing LCM/Touch factories, providing various products and focus on the vertical integration of industrial resources, creating new products for future applications and business models.
driver, backlight etc ,then make it to tft lcd module. so its price is also more expensive than many other lcd module manufacturers in China mainland.
Maclight is a China based display company, located in Shenzhen, China. ISO9001 certified, as a company that more than 10 years working experiences in display, Maclight has the good relationship with top tft panel manufacturers, it guarantee that we could provide a long term stable supply in our products, we commit our products with reliable quality and competitive prices.
Maclight products included monochrome lcd, TFT lcd module and OLED display, touch screen module, Maclight is special in custom lcd display, Sunlight readable tft lcd module, tft lcd with capacitive touch screen. Maclight is the leader of round lcd display. Maclight is also the long term supplier for many lcd companies in USA and Europe.
If you want tobuy lcd moduleorbuy tft screenfrom China with good quality and competitive price, Maclight would be a best choice for your glowing business.
Established in 1998, Winstar Display Co., Ltd. is a reliable LCD Display Module Manufacturer and LCD Panel Supplier. Winstar has development of high-quality display module products. We operate worldwide, configure, service products, and also provide logistics support to deliver products and services competitively. We provide LCM Modules including monochrome TN/STN/FSTN LCM, COG LCD, TFT LCM / TFT panels, FSC-LCD, graphic LCM, character LCD displays, OLED display modules (PMOLED), custom LCD displays, OLED and LCD panel.
With our background in high-caliber German engineering, coupled with efficient production and design in Shenzhen, China, has made faytech NA a world-renowned player in the touch device marketplace. faytech NA also specializes in developing customized products and project-based applications, creating loyal customers in over six continents across the globe. faytech North America is based in New York City, with offices and distribution centers throughout the US, Canada and Mexico
Faytech NA products are used in an array of industries, from consumer products and POS systems to ruggedized industrial solutions. Our engineering, design and production teams create the opportunity for our customers to discover the right solution and product for their respective application. Due to our wide range of manufacturing capabilities, experience with product customization, and our trained professionals, Faytech NA can accomodate for a wide range of industries, businesses, and technologies.
Faytech NA products are used in an array of industries, from consumer products and POS systems to ruggedized industrial solutions. Our engineering, design and production teams create the opportunity for our customers to discover the right solution and product for their respective application. Due to our wide range of manufacturing capabilities, experience with product customization, and our trained professionals, faytech can accomodate for a wide range of industries, businesses, and technologies.
Faytech NA products are in use throughout a number of industries, from consumer products and POS systems to ruggedized industrial solutions. Our engineering, design and production teams create the opportunity for our customers to discover the right solution and product for their respective application. With our range of manufacturing capabilities, experience with product customization, and our trained professionals, Faytech NA can service a wide range of industries, businesses, and technologies.
Faytech NA products are in use throughout a number of industries, from consumer products and POS systems to ruggedized industrial solutions. Our engineering, design and production teams create the opportunity for our customers to discover the right solution and product for their respective application. With our range of manufacturing capabilities, experience with product customization, and our trained professionals, Faytech NA can service a wide range of industries, businesses, and technologies.
A touchscreen or touch screen is the assembly of both an input ("touch panel") and output ("display") device. The touch panel is normally layered on the top of an electronic visual display of an information processing system. The display is often an LCD, AMOLED or OLED display while the system is usually used in a laptop, tablet, or smartphone. A user can give input or control the information processing system through simple or multi-touch gestures by touching the screen with a special stylus or one or more fingers.zooming to increase the text size.
The touchscreen enables the user to interact directly with what is displayed, rather than using a mouse, touchpad, or other such devices (other than a stylus, which is optional for most modern touchscreens).
Touchscreens are common in devices such as game consoles, personal computers, electronic voting machines, and point-of-sale (POS) systems. They can also be attached to computers or, as terminals, to networks. They play a prominent role in the design of digital appliances such as personal digital assistants (PDAs) and some e-readers. Touchscreens are also important in educational settings such as classrooms or on college campuses.
The popularity of smartphones, tablets, and many types of information appliances is driving the demand and acceptance of common touchscreens for portable and functional electronics. Touchscreens are found in the medical field, heavy industry, automated teller machines (ATMs), and kiosks such as museum displays or room automation, where keyboard and mouse systems do not allow a suitably intuitive, rapid, or accurate interaction by the user with the display"s content.
Historically, the touchscreen sensor and its accompanying controller-based firmware have been made available by a wide array of after-market system integrators, and not by display, chip, or motherboard manufacturers. Display manufacturers and chip manufacturers have acknowledged the trend toward acceptance of touchscreens as a user interface component and have begun to integrate touchscreens into the fundamental design of their products.
The prototypeCERNFrank Beck, a British electronics engineer, for the control room of CERN"s accelerator SPS (Super Proton Synchrotron). This was a further development of the self-capacitance screen (right), also developed by Stumpe at CERN
One predecessor of the modern touch screen includes stylus based systems. In 1946, a patent was filed by Philco Company for a stylus designed for sports telecasting which, when placed against an intermediate cathode ray tube display (CRT) would amplify and add to the original signal. Effectively, this was used for temporarily drawing arrows or circles onto a live television broadcast, as described in US 2487641A, Denk, William E, "Electronic pointer for television images", issued 1949-11-08. Later inventions built upon this system to free telewriting styli from their mechanical bindings. By transcribing what a user draws onto a computer, it could be saved for future use. See US 3089918A, Graham, Robert E, "Telewriting apparatus", issued 1963-05-14.
The first version of a touchscreen which operated independently of the light produced from the screen was patented by AT&T Corporation US 3016421A, Harmon, Leon D, "Electrographic transmitter", issued 1962-01-09. This touchscreen utilized a matrix of collimated lights shining orthogonally across the touch surface. When a beam is interrupted by a stylus, the photodetectors which no longer are receiving a signal can be used to determine where the interruption is. Later iterations of matrix based touchscreens built upon this by adding more emitters and detectors to improve resolution, pulsing emitters to improve optical signal to noise ratio, and a nonorthogonal matrix to remove shadow readings when using multi-touch.
The first finger driven touch screen was developed by Eric Johnson, of the Royal Radar Establishment located in Malvern, England, who described his work on capacitive touchscreens in a short article published in 1965Frank Beck and Bent Stumpe, engineers from CERN (European Organization for Nuclear Research), developed a transparent touchscreen in the early 1970s,In the mid-1960s, another precursor of touchscreens, an ultrasonic-curtain-based pointing device in front of a terminal display, had been developed by a team around Rainer Mallebrein[de] at Telefunken Konstanz for an air traffic control system.Einrichtung" ("touch input facility") for the SIG 50 terminal utilizing a conductively coated glass screen in front of the display.
In 1972, a group at the University of Illinois filed for a patent on an optical touchscreenMagnavox Plato IV Student Terminal and thousands were built for this purpose. These touchscreens had a crossed array of 16×16 infrared position sensors, each composed of an LED on one edge of the screen and a matched phototransistor on the other edge, all mounted in front of a monochrome plasma display panel. This arrangement could sense any fingertip-sized opaque object in close proximity to the screen. A similar touchscreen was used on the HP-150 starting in 1983. The HP 150 was one of the world"s earliest commercial touchscreen computers.infrared transmitters and receivers around the bezel of a 9-inch Sony cathode ray tube (CRT).
In 1977, an American company, Elographics – in partnership with Siemens – began work on developing a transparent implementation of an existing opaque touchpad technology, U.S. patent No. 3,911,215, October 7, 1975, which had been developed by Elographics" founder George Samuel Hurst.World"s Fair at Knoxville in 1982.
In 1984, Fujitsu released a touch pad for the Micro 16 to accommodate the complexity of kanji characters, which were stored as tiled graphics.Sega released the Terebi Oekaki, also known as the Sega Graphic Board, for the SG-1000 video game console and SC-3000 home computer. It consisted of a plastic pen and a plastic board with a transparent window where pen presses are detected. It was used primarily with a drawing software application.
Touch-sensitive control-display units (CDUs) were evaluated for commercial aircraft flight decks in the early 1980s. Initial research showed that a touch interface would reduce pilot workload as the crew could then select waypoints, functions and actions, rather than be "head down" typing latitudes, longitudes, and waypoint codes on a keyboard. An effective integration of this technology was aimed at helping flight crews maintain a high level of situational awareness of all major aspects of the vehicle operations including the flight path, the functioning of various aircraft systems, and moment-to-moment human interactions.
In the early 1980s, General Motors tasked its Delco Electronics division with a project aimed at replacing an automobile"s non-essential functions (i.e. other than throttle, transmission, braking, and steering) from mechanical or electro-mechanical systems with solid state alternatives wherever possible. The finished device was dubbed the ECC for "Electronic Control Center", a digital computer and software control system hardwired to various peripheral sensors, servos, solenoids, antenna and a monochrome CRT touchscreen that functioned both as display and sole method of input.stereo, fan, heater and air conditioner controls and displays, and was capable of providing very detailed and specific information about the vehicle"s cumulative and current operating status in real time. The ECC was standard equipment on the 1985–1989 Buick Riviera and later the 1988–1989 Buick Reatta, but was unpopular with consumers—partly due to the technophobia of some traditional Buick customers, but mostly because of costly technical problems suffered by the ECC"s touchscreen which would render climate control or stereo operation impossible.
Multi-touch technology began in 1982, when the University of Toronto"s Input Research Group developed the first human-input multi-touch system, using a frosted-glass panel with a camera placed behind the glass. In 1985, the University of Toronto group, including Bill Buxton, developed a multi-touch tablet that used capacitance rather than bulky camera-based optical sensing systems (see History of multi-touch).
The first commercially available graphical point-of-sale (POS) software was demonstrated on the 16-bit Atari 520ST color computer. It featured a color touchscreen widget-driven interface.COMDEX expo in 1986.
In 1987, Casio launched the Casio PB-1000 pocket computer with a touchscreen consisting of a 4×4 matrix, resulting in 16 touch areas in its small LCD graphic screen.
Touchscreens had a bad reputation of being imprecise until 1988. Most user-interface books would state that touchscreen selections were limited to targets larger than the average finger. At the time, selections were done in such a way that a target was selected as soon as the finger came over it, and the corresponding action was performed immediately. Errors were common, due to parallax or calibration problems, leading to user frustration. "Lift-off strategy"University of Maryland Human–Computer Interaction Lab (HCIL). As users touch the screen, feedback is provided as to what will be selected: users can adjust the position of the finger, and the action takes place only when the finger is lifted off the screen. This allowed the selection of small targets, down to a single pixel on a 640×480 Video Graphics Array (VGA) screen (a standard of that time).
Sears et al. (1990)human–computer interaction of the time, describing gestures such as rotating knobs, adjusting sliders, and swiping the screen to activate a switch (or a U-shaped gesture for a toggle switch). The HCIL team developed and studied small touchscreen keyboards (including a study that showed users could type at 25 wpm on a touchscreen keyboard), aiding their introduction on mobile devices. They also designed and implemented multi-touch gestures such as selecting a range of a line, connecting objects, and a "tap-click" gesture to select while maintaining location with another finger.
In 1990, HCIL demonstrated a touchscreen slider,lock screen patent litigation between Apple and other touchscreen mobile phone vendors (in relation to
An early attempt at a handheld game console with touchscreen controls was Sega"s intended successor to the Game Gear, though the device was ultimately shelved and never released due to the expensive cost of touchscreen technology in the early 1990s.
Touchscreens would not be popularly used for video games until the release of the Nintendo DS in 2004.Apple Watch being released with a force-sensitive display in April 2015.
In 2007, 93% of touchscreens shipped were resistive and only 4% were projected capacitance. In 2013, 3% of touchscreens shipped were resistive and 90% were projected capacitance.
A resistive touchscreen panel comprises several thin layers, the most important of which are two transparent electrically resistive layers facing each other with a thin gap between. The top layer (that which is touched) has a coating on the underside surface; just beneath it is a similar resistive layer on top of its substrate. One layer has conductive connections along its sides, the other along top and bottom. A voltage is applied to one layer and sensed by the other. When an object, such as a fingertip or stylus tip, presses down onto the outer surface, the two layers touch to become connected at that point.voltage dividers, one axis at a time. By rapidly switching between each layer, the position of pressure on the screen can be detected.
Resistive touch is used in restaurants, factories and hospitals due to its high tolerance for liquids and contaminants. A major benefit of resistive-touch technology is its low cost. Additionally, as only sufficient pressure is necessary for the touch to be sensed, they may be used with gloves on, or by using anything rigid as a finger substitute. Disadvantages include the need to press down, and a risk of damage by sharp objects. Resistive touchscreens also suffer from poorer contrast, due to having additional reflections (i.e. glare) from the layers of material placed over the screen.3DS family, and the Wii U GamePad.
Surface acoustic wave (SAW) technology uses ultrasonic waves that pass over the touchscreen panel. When the panel is touched, a portion of the wave is absorbed. The change in ultrasonic waves is processed by the controller to determine the position of the touch event. Surface acoustic wave touchscreen panels can be damaged by outside elements. Contaminants on the surface can also interfere with the functionality of the touchscreen.
The Casio TC500 Capacitive touch sensor watch from 1983, with angled light exposing the touch sensor pads and traces etched onto the top watch glass surface.
A capacitive touchscreen panel consists of an insulator, such as glass, coated with a transparent conductor, such as indium tin oxide (ITO).electrostatic field, measurable as a change in capacitance. Different technologies may be used to determine the location of the touch. The location is then sent to the controller for processing. Touchscreens that use silver instead of ITO exist, as ITO causes several environmental problems due to the use of indium.complementary metal-oxide-semiconductor (CMOS) application-specific integrated circuit (ASIC) chip, which in turn usually sends the signals to a CMOS digital signal processor (DSP) for processing.
Unlike a resistive touchscreen, some capacitive touchscreens cannot be used to detect a finger through electrically insulating material, such as gloves. This disadvantage especially affects usability in consumer electronics, such as touch tablet PCs and capacitive smartphones in cold weather when people may be wearing gloves. It can be overcome with a special capacitive stylus, or a special-application glove with an embroidered patch of conductive thread allowing electrical contact with the user"s fingertip.
A low-quality switching-mode power supply unit with an accordingly unstable, noisy voltage may temporarily interfere with the precision, accuracy and sensitivity of capacitive touch screens.
Some capacitive display manufacturers continue to develop thinner and more accurate touchscreens. Those for mobile devices are now being produced with "in-cell" technology, such as in Samsung"s Super AMOLED screens, that eliminates a layer by building the capacitors inside the display itself. This type of touchscreen reduces the visible distance between the user"s finger and what the user is touching on the screen, reducing the thickness and weight of the display, which is desirable in smartphones.
A simple parallel-plate capacitor has two conductors separated by a dielectric layer. Most of the energy in this system is concentrated directly between the plates. Some of the energy spills over into the area outside the plates, and the electric field lines associated with this effect are called fringing fields. Part of the challenge of making a practical capacitive sensor is to design a set of printed circuit traces which direct fringing fields into an active sensing area accessible to a user. A parallel-plate capacitor is not a good choice for such a sensor pattern. Placing a finger near fringing electric fields adds conductive surface area to the capacitive system. The additional charge storage capacity added by the finger is known as finger capacitance, or CF. The capacitance of the sensor without a finger present is known as parasitic capacitance, or CP.
In this basic technology, only one side of the insulator is coated with a conductive layer. A small voltage is applied to the layer, resulting in a uniform electrostatic field. When a conductor, such as a human finger, touches the uncoated surface, a capacitor is dynamically formed. The sensor"s controller can determine the location of the touch indirectly from the change in the capacitance as measured from the four corners of the panel. As it has no moving parts, it is moderately durable but has limited resolution, is prone to false signals from parasitic capacitive coupling, and needs calibration during manufacture. It is therefore most often used in simple applications such as industrial controls and kiosks.
Although some standard capacitance detection methods are projective, in the sense that they can be used to detect a finger through a non-conductive surface, they are very sensitive to fluctuations in temperature, which expand or contract the sensing plates, causing fluctuations in the capacitance of these plates.
This diagram shows how eight inputs to a lattice touchscreen or keypad creates 28 unique intersections, as opposed to 16 intersections created using a standard x/y multiplexed touchscreen .
Projected capacitive touch (PCT; also PCAP) technology is a variant of capacitive touch technology but where sensitivity to touch, accuracy, resolution and speed of touch have been greatly improved by the use of a simple form of
"Artificial Intelligence". This intelligent processing enables finger sensing to be projected, accurately and reliably, through very thick glass and even double glazing.
Some modern PCT touch screens are composed of thousands of discrete keys,etching a single conductive layer to form a grid pattern of electrodes, by etching two separate, perpendicular layers of conductive material with parallel lines or tracks to form a grid, or by forming an x/y grid of fine, insulation coated wires in a single layer . The number of fingers that can be detected simultaneously is determined by the number of cross-over points (x * y) . However, the number of cross-over points can be almost doubled by using a diagonal lattice layout, where, instead of x elements only ever crossing y elements, each conductive element crosses every other element .
In some designs, voltage applied to this grid creates a uniform electrostatic field, which can be measured. When a conductive object, such as a finger, comes into contact with a PCT panel, it distorts the local electrostatic field at that point. This is measurable as a change in capacitance. If a finger bridges the gap between two of the "tracks", the charge field is further interrupted and detected by the controller. The capacitance can be changed and measured at every individual point on the grid. This system is able to accurately track touches.
Unlike traditional capacitive touch technology, it is possible for a PCT system to sense a passive stylus or gloved finger. However, moisture on the surface of the panel, high humidity, or collected dust can interfere with performance.
These environmental factors, however, are not a problem with "fine wire" based touchscreens due to the fact that wire based touchscreens have a much lower "parasitic" capacitance, and there is greater distance between neighbouring conductors.
This is a common PCT approach, which makes use of the fact that most conductive objects are able to hold a charge if they are very close together. In mutual capacitive sensors, a capacitor is inherently formed by the row trace and column trace at each intersection of the grid. A 16×14 array, for example, would have 224 independent capacitors. A voltage is applied to the rows or columns. Bringing a finger or conductive stylus close to the surface of the sensor changes the local electrostatic field, which in turn reduces the mutual capacitance. The capacitance change at every individual point on the grid can be measured to accurately determine the touch location by measuring the voltage in the other axis. Mutual capacitance allows multi-touch operation where multiple fingers, palms or styli can be accurately tracked at the same time.
Self-capacitance sensors can have the same X-Y grid as mutual capacitance sensors, but the columns and rows operate independently. With self-capacitance, the capacitive load of a finger is measured on each column or row electrode by a current meter, or the change in frequency of an RC oscillator.
Self-capacitive touch screen layers are used on mobile phones such as the Sony Xperia Sola,Samsung Galaxy S4, Galaxy Note 3, Galaxy S5, and Galaxy Alpha.
Self capacitance is far more sensitive than mutual capacitance and is mainly used for single touch, simple gesturing and proximity sensing where the finger does not even have to touch the glass surface.
Capacitive touchscreens do not necessarily need to be operated by a finger, but until recently the special styli required could be quite expensive to purchase. The cost of this technology has fallen greatly in recent years and capacitive styli are now widely available for a nominal charge, and often given away free with mobile accessories. These consist of an electrically conductive shaft with a soft conductive rubber tip, thereby resistively connecting the fingers to the tip of the stylus.
Infrared sensors mounted around the display watch for a user"s touchscreen input on this PLATO V terminal in 1981. The monochromatic plasma display"s characteristic orange glow is illustrated.
An infrared touchscreen uses an array of X-Y infrared LED and photodetector pairs around the edges of the screen to detect a disruption in the pattern of LED beams. These LED beams cross each other in vertical and horizontal patterns. This helps the sensors pick up the exact location of the touch. A major benefit of such a system is that it can detect essentially any opaque object including a finger, gloved finger, stylus or pen. It is generally used in outdoor applications and POS systems that cannot rely on a conductor (such as a bare finger) to activate the touchscreen. Unlike capacitive touchscreens, infrared touchscreens do not require any patterning on the glass which increases durability and optical clarity of the overall system. Infrared touchscreens are sensitive to dirt and dust that can interfere with the infrared beams, and suffer from parallax in curved surfaces and accidental press when the user hovers a finger over the screen while searching for the item to be selected.
A translucent acrylic sheet is used as a rear-projection screen to display information. The edges of the acrylic sheet are illuminated by infrared LEDs, and infrared cameras are focused on the back of the sheet. Objects placed on the sheet are detectable by the cameras. When the sheet is touched by the user, frustrated total internal reflection results in leakage of infrared light which peaks at the points of maximum pressure, indicating the user"s touch location. Microsoft"s PixelSense tablets use this technology.
Optical touchscreens are a relatively modern development in touchscreen technology, in which two or more image sensors (such as CMOS sensors) are placed around the edges (mostly the corners) of the screen. Infrared backlights are placed in the sensor"s field of view on the opposite side of the screen. A touch blocks some lights from the sensors, and the location and size of the touching object can be calculated (see visual hull). This technology is growing in popularity due to its scalability, versatility, and affordability for larger touchscreens.
Introduced in 2002 by 3M, this system detects a touch by using sensors to measure the piezoelectricity in the glass. Complex algorithms interpret this information and provide the actual location of the touch.
The key to this technology is that a touch at any one position on the surface generates a sound wave in the substrate which then produces a unique combined signal as measured by three or more tiny transducers attached to the edges of the touchscreen. The digitized signal is compared to a list corresponding to every position on the surface, determining the touch location. A moving touch is tracked by rapid repetition of this process. Extraneous and ambient sounds are ignored since they do not match any stored sound profile. The technology differs from other sound-based technologies by using a simple look-up method rather than expensive signal-processing hardware. As with the dispersive signal technology system, a motionless finger cannot be detected after t