va lcd panel quotation
Alibaba.com offers 2380 va lcd panels products. About 43% % of these are lcd modules, 1%% are digital signage and displays, and 1%% are led & lcd tvs.
A wide variety of va lcd panels options are available to you, such as original manufacturer, odm.You can also choose from tft, ips and standard va lcd panels,
Many TVs use LCD (Liquid Crystal Display) panels that are lit by LED backlights. There are two popular types of LCD panels: In-Plane Switching (IPS) and Vertical Alignment (VA), and there are two main differences between each type. A VA panel usually has a high contrast ratio and narrow viewing angles. However, an IPS panel has low contrast and wide viewing angles. These are the main differences between each, and for the most part, panel type doesn"t affect other aspects of picture quality, like peak brightness, color gamut, or color accuracy.
For the purposes of this article, we"re going to compare two LED-backlit LCD TVs: the Sony X800H, which has an IPS panel, and the Hisense H9G, which has a VA panel. Due to their different panel types, there are three noticeable differences in picture quality: viewing angles, contrast, and black uniformity, so we"re going to look at each one.
Viewing angle refers to the angle at which you can watch the TV without seeing a noticeable drop in picture quality. IPS TVs are the clear winner here, as the image remains accurate when viewing from the side - you can see the differences in the videos above. This is their main advantage over VA panels. Most VA panel TVs have a noticeable loss in image accuracy when viewing from the side. The narrow viewing angle of VA-type TVs is also problematic when the TV is used as a PC monitor from up close since the edges of the display look washed out.
VA panels are far superior to IPS panels when it comes to this, so if you tend to watch movies in the dark, you likely want to get a TV with a VA panel. Most TVs use VA panels due to this main advantage, and high-end models may have a local dimming feature that further enhances black levels. On the other hand, IPS panels normally have low contrast, so blacks look closer to gray, but you may not notice the difference in contrast in bright environments.
Our black uniformity tests determine how well a TV displays a dark scene with a bright image in the center. Ideally, you want to see a completely black screen with the center cross being the only part that"s lit up, and this is important for people watching movies. No LED TV has perfect uniformity, and unlike viewing angles and contrast, the panel type doesn"t completely determine its black uniformity. However, most VA panels that we"ve tested have good black uniformity, while most IPS panels have sub-par black uniformity. This doesn"t mean that every VA panel TV has good uniformity, as this can change between units, and you can also improve uniformity using the local dimming feature.
LCDs function by having liquid crystals in little groups to form the pixels. These crystals react and change position when charged with electricity and, depending on their position, they allow a certain color of light to pass through.
IPS displays have their crystals aligned horizontally at all times. When charged, they turn to allow light through. VA displays have their crystals aligned vertically. When charged, they move to a horizontal position, allowing light through. When current isn"t sent through them, however, their vertical alignment blocks light far more efficiently, creating better blacks and giving better contrast.
There"s also another type of IPS panel, called Plane-to-Line Switching (PLS), which can be seen with the Sony X800H. This panel type was designed by Samsung and technically performs the same as an IPS panel. When you compare the pixels visually, IPS panels look like chevrons, VA looks like very straight rectangles, and PLS looks like round-edged capsules. You can learn more about pixels here.
The way the pixels are laid out can also affect text clarity. Many IPS panels, like the ones on the Sony X800H or the LG SK9000, use RGB sub-pixel layouts, while many VA panels have a BGR layout, like on the Hisense H9G. The sub-pixel layout doesn"t directly affect picture quality unless you"re using it as a PC monitor. Some applications may expect an RGB layout, so if you have a BGR sub-pixel layout, text may not look clear. You may need to increase the text scaling to read it properly, but this issue isn"t common with an RGB layout. You can learn more about it here.
Unlike LED TVs, OLEDs don"t use a backlight and instead have self-emitting pixels. This allows the pixels to individually turn on and off, resulting in perfect blacks. This means that they also have perfect black uniformity as there"s no blooming around bright objects like on some LED TVs. They also have wide viewing angles, sometimes even wider than some IPS panels, so OLEDs are a good choice for wide seating arrangements.
However, the one major downside to OLEDs compared to LEDs is their risk of permanent burn-in. This could be problematic if you constantly watch content with static elements, like the news, or if you use it as a PC monitor. We don"t expect it to be an issue for people who watch varied content, but if you"re truly worried about it, LED TVs appear to be immune to burn-in.
Samsung released quantum dot TVs in 2015, which they later labeled as QLED in 2017. These TVs include a quantum dot layer between the LED backlights and the LCD panel to achieve a wider color gamut. Other companies like Vizio and TCL also use this quantum dot technology on their TVs. Adding this extra quantum dot layer doesn"t change the characteristics of the panel type; the VA panel on the TCL 6 Series/S635 2020 QLED still has a high contrast ratio and narrow viewing angles. Although most QLED TVs use VA panels, you can easily use an IPS panel as well.
Manufacturers have tried different techniques to improve the viewing angles on VA panels over the years, aiming to produce a perfect LCD panel with both wide viewing angles and high contrast. While they have yet to achieve that goal, a few TVs have hit the market that try to combine the best of both panel types. The first TVs with this viewing angle technology came out in 2018, and only a few high-end models like the Samsung Q90/Q90T QLED and the Sony X950H had this technology in 2020. These TVs are a bit unique, delivering noticeably better viewing angles than their pure VA counterparts, but still worse than true IPS panels. This comes at the expense of a lower contrast ratio, as these TVs have worse native contrast than most VA panels, but they"re still better than IPS panels. Combined with their local dimming features, they still produce deep blacks.
Between IPS and VA panels, neither technology is inherently superior to the other as they both serve different purposes. In general, IPS TVs have wide viewing angles suitable for when you want to watch the big game or your favorite show in a large seating arrangement. They"re also beneficial for use as a PC monitor since the edges remain accurate if you sit up close. However, VA panels are a better choice for watching content in dark rooms, as their improved contrast allows them to display deep blacks. Choosing between the two is a series of trade-offs and qualities, so choosing the best TV for your needs depends on your usage.
Again, IPS is the clear winner here. The vertical viewing angles are very similar to the horizontal ones on both IPS and VA panels. Unfortunately, this is one area where TN panels are usually much, much worse. TN monitors degrade rapidly from below, and colors actually inverse - resulting in a negative image that can be distracting. For this reason, if you decide to buy a TN monitor, look for one with an excellent height adjustment, or consider buying a VESA mounting arm, as you should mount TN monitors at eye level. Even when mounted properly, larger TN displays can appear non-uniform at the edges.
There"s usually not much difference between VA and IPS panels in terms of gray uniformity. It"s rare for monitors to have uniformity issues, and even on monitors that perform worse than average, it"s usually not noticeable with regular content. TN monitors tend to perform a bit worse than usual, though, and the top half of the screen is almost always darker than the rest, but that"s an artifact of the bad vertical viewing angles.
Black uniformity tends to vary significantly, even between individual units of the same model, and there"s no single panel type that performs the best. It"s rare for monitors to have good black uniformity, and almost every monitor we"ve tested has some noticeable cloudiness or backlight bleed. IPS and TN panels can look slightly worse due to their low contrast ratios, as the screen can take on more of a bluish tint when displaying dark scenes. Like with contrast, black uniformity issues usually aren"t very noticeable unless you"re looking at dark content and you"re in a dark room. If you only use your monitor in a bright environment, generally speaking, you don"t need to worry about black uniformity.
Historically, TN panels used to have the worst colors, as many of them were cheaper models that only supported 6-bit colors or used techniques like dithering (FRC) to approximate 8-bit colors. Most displays today, including TN models, are at least 8 bit, and many of them are even able to approximate 10-bit colors through dithering. New technologies, like LG"s Nano IPS and Samsung"s Quantum Dot, add an extra layer to the LCD stack and have significantly improved the color gamut of modern IPS and VA displays, leaving TN a bit behind. Between them, NANO IPS is slightly better, as it tends to offer better coverage of the Adobe RGB color space. Although the difference is minor, IPS panels still have a slight edge over VA and TN displays.
Although TN panels have caught up a bit in the SDR color space, they"re far behind when it comes to HDR, so if you"re looking for a good HDR color gamut, avoid TN panels. Between VA and IPS panels, the difference isn"t as significant; however, IPS panels still have a slight edge. The best VA panels top out at around 90% coverage of the DCI P3 color space used by most current HDR content. IPS panels go as high as 98% coverage of DCI P3, rivaling even some of the best TVs on the market. Due to the very high coverage of DCI P3 on both VA and IPS, the difference isn"t that noticeable, though, as most content won"t use the entire color space anyway.
Although not necessarily as noticeable to everyone as the differences in picture quality, there can also be a difference in motion handling between IPS, VA, and TN displays. TN panels historically offered the best gaming performance, as they had the highest refresh rates and extremely fast response times. Manufacturers have found ways to drastically improve the motion handling of VA and IPS panels, though, and the difference isn"t as pronounced.
LCD panel technology has changed drastically over the last few years, and the historical expectations for response time performance don"t necessarily hold anymore. For years, TN monitors had the fastest response times by far, but that"s started to change. New high refresh-rate IPS monitors can be just as fast.
VA panels are a bit of a strange situation. They typically have slightly slower response times overall compared to similar TN or IPS models. It"s especially noticeable in near-black scenes, where they tend to be significantly slower, resulting in dark trails behind fast-moving objects in dark scenes, commonly known as black smear. Some recent VA panels, such as the Samsung Odyssey G7 LC32G75T, get around it by overdriving the pixels. It results in much better dark scene performance but a more noticeable overshoot in brighter areas.
Within each of the three types of LCD we mentioned, other related panel types use the same basic idea but with slight differences. For example, two popular variants of IPS panels include ADS (technically known as ADSDS, or Advanced Super Dimension Switch) and PLS (Plane to Line Switching). It can be hard to tell these panels apart simply based on the subpixel structure, so we"ll usually group them all as IPS, and in the text, we"ll usually refer to them as IPS-like or IPS family. There are slight differences in colors, viewing angles, and contrast, but generally speaking, they"re all very similar.
There"s another display technology that"s growing in popularity: OLED. OLED, or organic light-emitting diode, is very different from the conventional LCD technology we"ve explored above. OLED panels are electro-emissive, which means each pixel emits its own light when it receives an electric signal, eliminating the need for a backlight. Since OLED panels can turn off individual pixels, they have deep, inky blacks with no blooming around bright objects. They also have excellent wide viewing angles, a near-instantaneous response time, and excellent gray uniformity.
OLED panels aren"t perfect, though. There"s a risk of permanent burn-in, especially when there are lots of static elements on screen, like the UI elements of a PC. There aren"t many OLED monitors available, either, but they"ve started to gain popularity as laptop screens and for high-end monitors, but they"re very expensive and hard to find. They"re also not very bright in some cases, especially when large bright areas are visible on screen. The technology is still maturing, and advances in OLED technology, like Samsung"s highly-anticipated QD-OLED technology, are promising.
As you can probably tell by now, no one panel type works best for everyone; it all depends on your exact usage. Although there used to be some significant differences between panel types, as technology has improved, these differences aren"t as noticeable. The two exceptions to this are viewing angles and contrast. If you"re in a dark room, a VA panel that can display deep blacks is probably the best choice. If you"re not in a dark room, you should focus on the other features of the monitor and choose based on the features that appeal to your exact usage. IPS panels are generally preferred for office use, and TN typically offers the best gaming experience, but recent advancements in VA and IPS technology are starting to change those generalizations. For the most part, the differences between each panel type are so minor now that it doesn"t need to be directly factored into your buying decision.
VA stands for vertical alignment and is a a type of LED (a form of LCD)panel display technology. VA panels are characterized as having the best contrast and image depth among the other main types of display panels, ), but also the longest response times. As such, you may want to think twice before choosing a VA panel as a gaming monitor. However, we regard contrast as the most important factor in a monitor"s image quality. So if you’re looking for the best possible picture, we highly recommend a VA display.
When buying a PC monitor or even a gaming laptop, you may see displays listed as “SVA” instead of “VA”. SVA stands for “super vertical alignment” and is a term created by Samsung. Long story short, SVA is a type of VA panel that claims to bring better viewing angles, which is why some people will say SVA stands for “super viewing angles.” Either way, SVA means better image quality when viewing the screen from the side, above, below or in very sunny or bright atmospheres.
According to Samsung, SVA panels achieve better viewing angles by laying its liquid crystals into varying directions, allowing viewers to see the same color no matter their viewing angle. “With shaping liquid crystal cell structure as a boomerang, further dividing each sub-pixel into two different sections that are oppositely aligned (also referred to as fish-bone structure), viewing angles are no longer an issue,” Samsung says. However, an IPS display will likely still offer better viewing angles than an SVA display.
PerformanceFastest: low response times, highest refresh rates, minimal motion blur; Low input lagLongest response times typically; Higher refresh rates possibleSlower response times than TN, faster response times than VA; Gaming-quality refresh rates are rare
Because OLED TVs are newer and generally more expensive, the average buyer is looking at LED/LCD TVs right now. And although there are several features and specifications to consider while shopping—the brand name, HDR compatibility, and refresh rate, just to name a few—there’s one important hardware spec that isn’t widely advertised: LCD panel type.
LED/LCD TVs are so called because of the two things that make up their displays: an LED (Light Emitting Diode) backlight and an LCD (Liquid Crystal Display) panel for that backlight to shine through. LED backlights vary between a variety of implementations, but modern LCDs generally come in one of two panel technologies: IPS (In-Plane Switching) and VA (Vertical Alignment).
Unlike other hardware specifications (which are usually listed on the side of a TV box or on the manufacturer’s website), information about a TV’s LCD panel type is a bit more inside baseball. But panel type has a far greater impact on a TV’s performance than you might expect—it affects contrast, color, and viewing angle as well.
Individual pixels in an LCD display are made up of liquid crystals activated by voltage. How the display arranges its crystals is part of what sets IPS panels apart from VA panels.
IPS (In-Plane Switching) panels are a common display type for both the best computer monitors and TVs. Without getting too far down the rabbit hole, let’s talk a little about how IPS panels distinguish themselves from other types.
Every non-OLED TV on the market today is an LCD TV powered by LED lighting. Individual pixels in an LCD display are made up of liquid crystals activated by voltage—this is what produces color. An IPS panel aligns its crystals horizontally, parallel to the glass substrate.
IPS technology was developed in part to improve the color and wide viewing angle performance of a display. There"s also a range of variations under the IPS umbrella, including ADS, S-IPS, H-IPS, e-IPS, P-IPS, and PLS (Plane-to-Line Switching). But, while they all differ marginally from one another in operation, their core functionality (as compared to VA panels) is the same.
VA (Vertical Alignment) panels represent another common display type, used for both computer monitors and TVs, but especially for the latter where they greatly outnumber their IPS counterparts. Most LED/LCD TVs you"ll find on the market use a VA panel. While IPS panels align their liquid crystals horizontally, VA panels align them—you guessed it—vertically. They run perpendicular to the glass substrate rather than parallel to it. When met with voltage, the crystals tilt, letting light through and producing color.
This positioning changes how the liquid crystals behave. Without any voltage, the liquid crystals in a VA panel do not tilt, which is a better outcome if your goal is to block light and create image depth. Like with IPS, VA panels also come in a few varieties: PVA, S-PVA, and MVA, though again, their core functionality (as compared to IPS panels) is the same.
TN (Twisted Nematic) is an older LCD display type. They"re still relatively common display types for computer monitors—thanks to their lightning fast response times and excellent handling of motion blur. TN panels aren"t typically used in TV production anymore, though.
The cornerstone of picture quality, contrast ratio refers to the range between a display’s darkest black levels and brightest highlights. Because VA-style panels excel at producing deep, dark black levels, this is arguably their biggest strength. VA panels almost always feature deeper black levels than their IPS counterparts, and this goes a long way in creating a detail-rich picture. An IPS panel can mitigate this by serving up an exceptionally bright image to offset relatively shallow black levels.
A TV’s total viewing angle describes how much a viewer can move away from an ideal, head-on viewing position before the contrast and color of the picture begins to deteriorate. Due to the positioning of their liquid crystals, IPS panels excel in this department; they typically offer significantly more viewing flexibility than TVs with VA-style panels. In other words, IPS panels are more reliable for group viewings (or any situation where a viewer might need to sit at an off-angle).
While impressive color production is possible on both display types, IPS panels tend to offer wider colors, given the nature of their hardware. While a wider range of colors tends to spell better color accuracy, the advent of additional TV technologies like quantum-dot color have evened the playing field considerably. In other words, you’re far more likely to notice the benefits of an IPS TV’s wider viewing angle than you are to notice its tendency for wider color.
Here’s the final takeaway: IPS panels are significantly better than VA panels when it comes to viewing angle and somewhat better than VA panels when it comes to color. VA panels, however, almost always offer deeper black levels and better overall contrast. And because they block light better, TVs and monitors using VA panels tend to have better backlight uniformity regardless of LED backlight type.
Unfortunately, not only is it rare to find a TV’s panel type listed on a manufacturer’s website, but it’s increasingly rare for a brand to reveal a TV’s panel type at all—even when we contact brands directly for information. The reason for this caginess has everything to do with marketing; it’s better to keep shoppers focused on the bells, whistles, and impressive performance specs of a TV rather than its potential shortcomings.
To add to the confusion, it’s common for different sizes of the same TV series to mix and match display types; you might find that the 55-inch version of a TV features a VA-style display while the 75-inch model uses IPS.
Fortunately, it’s relatively easy to determine panel type if you have the proper equipment and you know what to look for. Certain test results and viewing characteristics act as tell-tale signs. This is why my colleagues and I make a point of discussing panel type in just about every TV review we publish, and why you should make a point of reading reviews before making a purchase.
Panel type is not the end-all-be-all for LED/LCD TVs. Many other factors, most of them related to the style and intensity of the LED backlight, can have a major impact on factors like contrast, viewing angle, and color intensity. Ultimately, you need to see a TV in person (and ideally in the space it’s going to live in) to get the best idea of how well it creates an image. But by knowing the core differences of IPS vs VA LCD panels, you can at least make some good guesses before you buy.
Unlike the best gaming monitors, IPS and VA TV panels are on an even playing field. TVs with both technologies are capable of high refresh rates of 120Hz, or occasionally 240Hz (although it usually comes at a premium).
If you focus on single-player gaming, or your multiplayer gaming happens online, the excellent contrast of VA is the way to go. The most gaming benefits you’ll see will come from extra features like Variable Refresh Rate (VRR), Auto Low Latency Mode (ALLM), or cloud game capabilities.
If you’re buying a large screen and intend to host movie nights with friends and family, a TV with an IPS-style panel is far more accommodating thanks to its superior viewing angle. Just be aware that certain content—particularly dark content—won’t pop as much on account of the panel’s shallower black levels.
On the other hand, if you want the best possible picture overall, we recommend investing in a TV with a VA-style panel. They’re not always ideal candidates for group viewings, but the vast majority of the best non-OLED TVs you can buy feature this display type.
Even after the introduction of newer display technologies, LCDs still remain relevant even today.LCD displays are used for multiple purposes (TV, Monitor, Mobile Phones, Laptops, Automobiles, etc.) and one single configuration cannot satisfy all the purposes. So, LCD displays come with two different panels – VA (Vertical Alignment) and IPS (In-Plane Switching) to satisfy the different viewing needs of consumers.
A VA panel offers a superior contrast ratio but a narrow viewing angle. Contrarily, an IPS panel offers a wide viewing angle but a low contrast ratio.
As mentioned earlier, displays with VA Panels provide a great contrast ratio. You can find VA panels that typically come with contrast ratios of 3000:1 or 6000:1. A comparable IPS panel will only have a contrast ratio of 1000:1.
VA panels have narrow viewing angles. You will only be able to have an immersive experience when you sit straight opposite the display. The wider angles will not provide you the same experience.
In this, the liquid crystals are arranged parallel to the glass substrate instead of the perpendicular alignment. Furthermore, the structure of crystals and the placement of electrodes differ from the one used in VA panels. The electrodes occupy more space that results in lower contrast and brightness of the screen.
With the IPS panels, you can view the TV / monitor from a wide-angle and still get an impressive picture quality. Unlike VA panels, you will notice very little difference in color reproduction when you sit at a wide-angle from the display.
But when it comes to black uniformity, the IPS panels are sub-par. These panels do a poor job in displaying a bright image in the center of a completely black screen.
One more major drawback with the IPS panels is that they exhibit a distinct phenomenon called ‘IPS Glow’. You will notice some light patches on the corners of the screen. This happens when excessive light is passed through the screen.
Initially, IPS panels are mainly used in TVs due to their wide viewing angles, as we can watch TV in our living room from anywhere. But due to their better quality, color accuracy and response time, LCD panels gradually occupied the high-end computer monitor and laptop screens
IPS:These panels have the highest color range. You will be able to enjoy a realistic gaming experience. Besides, they have better viewing angles. So, you won’t notice any drop in picture quality even when you are not sitting in front of your TV / monitor.
VA:Even though the color range is not as great as the IPS panel, it does a pretty good job in showing the color variations. But the viewing angle is narrow. So, you have to sit straight opposite the TV / monitor.
VA panel compensates for its decent color range with an impressive contrast ratio. You will be able to see great detailing in the difference between light and dark colors.
IPS:IPS panels have one of the highest refresh rates. While you easily find an IPS panel with a refresh rate of 144Hz, some of the latest ones come with a refresh rate of 360Hz. If you are a serious online-gamer, digital artist, or video editor, then you have to go with the highest refresh rate within your budget.
VA:VA panels have lower refresh rates than IPS panels. Most VA panels come with a refresh rate of 120Hz. If you want to have a higher refresh rate, then you have to be willing to spend extra. VA panels have a maximum refresh rate of 240Hz.
IPS:IPS panels generally come with a response time of 4 milliseconds. This would suffice for watching TV or playing most games. But, if you are playing racing games or first-person shooting games, you need to have a response time of less than 2 milliseconds.
VA:VA panels generally have a slower response time than IPS panels with 5 milliseconds. So, there is a higher chance for you to experience motion blur. But, some of the VA panels that come with an expensive price tag have faster response times.
IPS:When it comes to the viewing angle, IPS panels far outweigh the VA panels. They have wider viewing angles. You will experience no drop in picture quality even if you sit and watch the TV from an extreme angle.
VA:The VA panels have a very narrow viewing angle. You have to sit as close to the straight axis of the TV to enjoy the picture quality. If you sit wider, there will be a significant loss in the picture quality.
IPS:IPS panels do a decent job in the contrast ratio segment but they are nowhere close to that of VA panels. An IPS panel offers a contrast ratio of 1000:1. When you watch a black color environment in an IPS panel, the black color will be slightly greyed out.
VA:VA panels offer a superior contrast ratio of 6000:1 that is very impressive. It has the capacity to show dark environments as darker. So, you will enjoy the picture detailing shown by the VA panels.
IPS:IPS panels are not really great at displaying the uniform black color throughout the screen. Due to the low contrast ratio, the black color will appear slightly greyed out.
VA:VA panels have a good black uniformity. But it also depends on the TV model you go with. Not all TV models with a VA panel have good black uniformity. But it is safe to say that in general, VA panels have better black uniformity than an IPS panel.
To put it short, the main difference between the panels lies in the alignment of the liquid crystals. The alignment results in the differences in the performance and picture quality of the panels.
The VA panels are ideal for office/study use, high-end PC games, and online games. If you are looking for a panel for mixed usage, the VA panel should still suffice your needs.
I have been writing posts about the comparison of all kinds of LCD screens and their structure for a while. Only one kind of LCD screen we are doing I haven’t mentioned yet: VA LCD.
There are 7 main technical parameters for LCD screen. If I have to choose the two most important parameters to indicate the quality of LCD screen, it would be view direction (visual angle) and contrast rate. VA LCD has the best contrast rate.
It is a gray background and white letters negative display TN screen with white LED backlight. It isn’t looking so good, is it? Could background color be black instead of gray? It will look much better. Of course, it can, but then it will become VA LCD. People want to improve the view direction (visual angle) and contrast rate of LCD screen, so they invented VA LCD. In other words, VA LCD is the updated version of TN LCD. It does look good, doesn’t it? It is usually used in high-class electronic products. For example: Vehicle electronic products.
It is no doubt that the black background and white letters VA LCD is the best one. As I know, as long as it is black background and monochrome, it must be VA LCD. That is simple. Only the background color of VA LCD screen is black. In other words, black background LCD screen can’t be made into any other kinds, except VA LCD panel.
Because of its black background, it is certain that VA LCD is a negative display. And is it possible that VA LCD does not use LED backlight? Yes, it is, but it is unreasonable and illogical because VA LCD screen is so expensive, which is only applied in high-class electronic products, and LED backlight is so cheap. In my opinion, it is stupid that it doesn’t use LED backlight.
FSTN LCD does have the best view angle. It is a 12 o’clock view direction VA LCD. You can see it very clearly at 12 o’clock, 3 o’clock and 9 o’clock directions. But it is very blurred in 6 o’clock direction. On the other hand, FSTN VCD can be seen very clearly in all the directions.
It will still be good as long as it adopts transflective polarizer film even though outdoor is not the best-using condition for VA LCD panel. Please see the table below. Polarizer filmUsing conditionLED backlightstylishdisplay effect
We would only recommend using COG LCD module when it is a very small dot-matrix screen. It is a technical challenge to make VA COG dot matrix LCD module, so it is expensive.
Whether to pick a VA (Vertical Alignment) panel or IPS (In-Plane Switching) panel depends on your intent. These two panels have two primary differences. VA offers a high contrast ratio with limited viewing angles, while IPS comes with a lower contrast but wider viewing angles.
Both these panels have their highs and letdowns. The most straightforward way to determine your pick is by deciding which attributes are the most important for you.
If you need a monitor for competitive gaming, office work, programming, etc., it might be a bit challenging to decide. Fortunately, I will take you through what to expect from them, having tested various VA and IPS panels myself.
Key TakeawaysYour purpose will determine whether you choose an IPS (In-Plane Switching) panel or a VA (Vertical Alignment) panel. There are two main distinctions between these two panels
Image quality is a broad topic that encompasses multiple details. I will focus on the colors that IPS and VA panels have, how the two panels contrast light and dark areas, and the viewing angle of the two panels.
I love IPS panels because they have one of the highest color gamut performances, much higher than VA panels. For this reason, IPS panels display a game"s graphics better than VA panels. These screens represent the graphics of your games more realistically and 40 inch 4K monitors are now top of the range.
What I enjoy more when using VA gaming monitors is the intensity of their contrast ratio. I love how defined the difference between dark and light areas is and how this may aid in the quick identification of situations that may jeopardize your winning chances.
VA monitors may not offer you a TN panel"s performance as well. And while I may not like the average refresh rates of IPS monitors, VA panels are a bit more restrictive when it comes to supported games.
While low response times are common in IPS panels, most IPS gaming monitors have about four milliseconds. This level is not much of a problem for most games. However, I"m not too fond of it when playing racing and fast shooter games because of ghosting.
A VA panel is slightly slower than an IPS panel. Therefore, you will notice slightly more motion blur when playing your games. Like IPS panels, some options offer you a one-millisecond response time for image sharpness.
If you need a monitor with an amazing contrast ratio, look into VA panels. And with the provision of VA monitors with a slower response time, you can find screens that offer a good gaming experience in most games.
Different Liquid Crystal Display (LCD) panel types have their advantages and disadvantages, and selecting an IPS vs VA TV depends on what use you have in mind. So, which of these panels should you use for movies?
IPS TVs have a better viewing angle than their VA counterpart. Their image accuracy remains fairly high even when I"m watching my movies from the side.
VA panels have better contrast ratios between the two panels. I like their deep blacks when watching movies in the dark. If you geek over late-night shows, go for VA as it provides more definition.
Unlike contrast and the viewing angle, the panel type doesn"t exclusively dictate a screen"s black uniformity. Regardless, most of the VA panels I use have better black uniformity between the two panels.
This doesn"t immediately paint VA panel TVs as the winner, and you may find a better-displaying IPS. Besides, you can enhance the screen"s uniformity using the dimming function.
Displays with great color accuracy and extensive coverage of wide color gamuts like DCI-P3 or Adobe sRGB are typically made using IPS panels. You don"t necessarily need to gaze directly at an IPS monitor in order to see realistic colors because IPS displays typically appear beautiful from wider angles as well.
Although color accuracy and coverage on VA displays (even at broad angles) can be outstanding, colors aren"t always consistent. The center of VA monitors frequently has greater gamma than the screen"s edges, reducing the accuracy of colors depending on the viewer"s perspective and the distance from the display.
VA panels have completely adequate color accuracy and coverage for the great majority of users, despite the fact that IPS is typically superior to VA in these areas. A VA monitor that only covers 90% of the DCI-P3 color space is actually a very good amount of coverage for games and content consumers, with the exception of professional picture and video editors.
LCD panels function using liquid crystals which, when charged with electricity, react and change location. Based on the position, the crystals display a particular color.
PLS (Plane-to-Line Switching) is a type of IPS used on Samsung monitors (check out also Benq monitors) which perform similarly but with round-edged pixels. On the other hand, VA pixels appear like straight rectangles.
IPS panels have an RGB sub-pixel arrangement, whereas numerous VA panels feature a BGR layout. The sub-pixel layout doesn"t outrightly affect image quality, provided it"s not a PC monitor.
Some applications require an RGB arrangement. When I use a BRG VA panel in such cases, I see some slight blurriness on the text. However, adjusting my text scaling eases readability. Overall, RGB layouts don"t have this issue as much as BRG.
The majority of IPS panels offer viewing angles up to 178 degrees horizontally and vertically. Accordingly, if you"re viewing content off-center, you won"t notice much color shifting or a noticeable decrease in picture quality until you get to the very edges of the viewing angles.
Even though VA panels have improved significantly over the years in terms of viewing angles, they still fall short of IPS panels in some respects. When viewing content off-center, VA panels are often a little weaker in terms of color/contrast shifts. This is probably less of an issue for gamers, who are more likely to be seated directly in front of the monitor and not move around the monitor"s ideal viewing angle.
You"ll notice that manufacturers are trying out multiple techniques to enhance VA viewing angles while achieving a high contrast. Although this goal is a work in progress, several TVs are now available that try to encompass both these crucial attributes.
While I love their recognizable improvement in viewing angles over pure VA TVs, they are still yet to achieve the level of performance you get with a pure IPS panel.
As they solve one problem, the upgraded VA panels present you with another issue. Options like the Sony X950H have noticeably lower contrast ratios than typical VA panels.
Nevertheless, I appreciate their native contrast still being higher than regular IPS panels. With their dimming feature, I still can get a deep black convenient for night movies.
Neither panel technology is inherently better because they have different functions. IPS displays are suitable for watching big games or a show across a wide sitting arrangement.
Selecting between the two panels means you"ll give up particular features. Depending on your movie needs, I believe you can decide which panel suits you.
You probably now know the most suitable panel to get, given the different specifications. As in most instances, the higher your budget (see the best budget picks), the better the panel. Here is a simple guide on the ideal panel depending on your usage:
Editing footage and pictures:IPS monitors are more favorable given their better color reproduction. Some VA panels offer wide color ranges, though they typically have motion blur
Contrary to what you may think, not all LCD TVs are built around the same core panel technology. They can actually have at their hearts one of two really quite different technologies: VA or IPS.
Each, as we’ll see, has its own distinct advantages and disadvantages – so much so that we personally think the type of panel a particular TV uses should be presented right at the top of its specifications list, rather than typically left off altogether. Especially as some brands have been known to actually mix and match VA and IPS panels at different screen sizes within the same TV series.
The VA initialism stands for Vertical Alignment. This name is derived from the way VA panels apply voltage to vertically aligned liquid crystals that have been mounted perpendicularly to the panel’s glass substrate, making them tilt as required to let the necessary amount of light through for each image frame.
The main advantage of VA panels is contrast. Their perpendicular crystal alignment provides greater control over the light passing through each pixel, meaning dark scenes and dark areas look less grey / enjoy better black levels.
The extent to which this strength is exploited can vary greatly between different manufacturers, and depends on any number of secondary factors. The type and position of LED lighting a particular VA screen might be using can have an impact, for instance. There are multiple variations on the VA theme available from different manufacturers, too. As a basic principle, though, black levels and contrast are consistently and often considerably better on LCD TVs that use VA panels.
Because of their ability to control light better, high-end VA panels generally deliver more brightness in real world conditions than IPS ones do. This further enhances their contrast capabilities, and arguably makes them more consistently able to do fuller justice to the wider light range associated with high dynamic range technology.
Being able to deliver dark scenes with relatively little overlying low-contrast greyness additionally means that VA panels tend to achieve more consistent colour vibrancy and toning.
VA panels for use in LCD TVs come from a number of panel manufacturers, including Samsung Display (which makes a so-called SVA variant) and AU Optronics (which makes an AMVA variant). TV brands are able to buy in panels from these and other VA panel manufacturers as they see fit.
Samsung Electronics is the most consistent user of VA panels in its LCD TVs. In fact, until recently pretty much every Samsung TV at every price level used a VA panel. For the past couple of years, though, IPS panels have unexpectedly cropped up in one or two parts of Samsung’s TV range, including 2021’s high-end QN85 series.
Sony predominantly uses VA panels on its most premium TVs, but it also habitually mixes IPS and VA panels across its wider mid-range and entry level LCD ranges. The same goes for most of the other big brands, too, including Panasonic and Philips.
IPS stands for In-Plane Switching. Like VA panels, IPS panels work by manipulating voltage to adjust how liquid crystals are aligned. Unlike VA, though, IPS panels orient their crystals in parallel with (rather than perpendicular too) the glass substrates present in every LCD panel, and rotate their crystals around to let the desired amount of light through rather than tilting them.
By far the biggest and most talked about advantage of IPS technology is its support for wider viewing angles. In fact, one way of identifying IPS panels has traditionally been to look for quoted viewing angles of 178 degrees.
When we talk about wide viewing angle support in relation to LCD TVs, we’re talking about how much of an angle from directly opposite the screen you can go before the picture starts to lose contrast, colour saturation and, sometimes, brightness.
With VA panels the angle you can watch them before the picture starts to deteriorate sharply can be really quite limited – as little as 20 degrees off axis. While we’d say the 178-degree claims for regular IPS panels are rather exaggerated, you can typically sit at a significantly wider angle than you can with VA and still enjoy a watchable picture.
We’ve even seen occasional evidence of the edges of really big (75-inch plus) VA screens suffering from the technology’s viewing angle limitations when viewed straight on, whereas this never happens with IPS technology.
The VA/IPS viewing angle situation is muddied a little by the introduction into a few high-end VA TVs of wide angle technologies based around filters or sub pixel manipulation. These technologies can be associated with other problems, though, such as reduced resolution, and can still struggle to suppress backlight blooming around stand-out bright objects with LCD TVs that use local dimming backlight systems.
Traditionally IPS panels have been associated with – on high-end screens, at least – wider colour gamuts than VA panels can readily manage. They retain this colour gamut better, too, when viewing the screen from an angle. This is why many professional designers, for instance, have tended to prefer IPS technology to VA. There can be some pretty extreme variance in the range of colour supported across different IPS price points, though, and improvements in premium VA solutions – especially the widespread use of Quantum Dot technologies – have largely evened things up, at least at the premium end of the VA market. In fact, with dark scenes, at least, IPS’s issues with black levels and ‘grey wash’ effect can give good VA panels a colour advantage.
There was a time when IPS technology was considered to have an edge over VA when it comes to response time, leading to less motion blur and improved gaming reaction times. These days, though, we’re seeing pretty much identically low input lag measurements (between 9.4 and 10.4ms) from both VA and IPS TVs.
As with VA, there are different variations on the basic IPS theme made by different panel manufacturers. LG Display is by far the biggest manufacturer of IPS LCD panels for TVs, but AU Optronics also makes them, as well as, more surprisingly, Samsung – though some of the non-LG Display IPS products seem to be more focused on PC monitors than TVs.
Given how dominant LG Display is in manufacturing IPS LCD panels, it’s not surprising to find that pretty much every LCD TV LG Electronics makes features an IPS panel at its heart. Other TV brands that use IPS panels on at least a few of their TVs each year include Panasonic, Philips, Sony and Hisense. In fact, the only big brand that has tended to shun IPS is Samsung (perhaps because of arch rival LG Display’s dominance of the IPS market).
As noted earlier, it can be frustratingly difficult to determine whether a TV is using VA or IPS technology. Sometimes it is mentioned in the specifications list on a manufacturer’s website – but more often it is not.
If you’re able to actually get your hands on an LCD TV, try knocking gently on its screen. If it’s an IPS panel it will feel solid and the picture will only be slightly affected – or completely unaffected – by the impact of your knocks. If it’s a VA panel, the picture will distort quite noticeably around points of impact.
It’s tempting to assume that any TVs with obviously low contrast are IPS while any screen with a narrow viewing angle is VA. As well as depending on having a wide experience of lots of panels, though, there’s just too much variation in the high and low-end fringes of each technology for this approach to be reliable.
Arguably your best bet is to check out a TV model you’re interested in on an industry website called Displayspecifications.com(opens in new tab), which includes usually reliable information on the core panel of pretty much every TV released.
You might want to consider IPS TV if your room layout means one or more viewers regularly find themselves having to watch the screen from a wide angle (though don’t forget that a small number of high-end VA TVs feature wide viewing angle technology). IPS’s black level limitations tend to be less obvious in bright rooms too, if that fits with the sort of environment your TV is likely to be used in for the majority of the time.
Our long experience of testing VA and IPS TVs, though, has led us to conclude that in general, the sort of person most likely to be turning to us for buying advice will be happier with an LCD TV based on VA technology.
VA’s ability to deliver typically much deeper, more convincing black levels and more HDR-friendly contrast helps them deliver a much more consistent and immersive modern AV experience. Especially if you’re the sort of person who likes to dim the lights for serious movie or TV viewing nights.
Consider you’re buying a new gaming monitor. Now, before you head out (or online), there are many things to consider. The resolution and refresh rates are just the tips of the ice-berg. When it comes to PC monitor display panels, you’ve got three options: IPS, TN and VA. If you are a gamer which panel is right for you? Do you need an IPS display, a TN panel, or a VA panel?
All three of these are different flavors of LCD monitors. They’re built using fundamentally similar technology–this isn’t the difference between LCD and OLED. All three have advantages and substantial weakness. This means that they are ideal for different use cases. You’ll want to know these as a gamer to identify what’s right for you.
TN is short for twisted nematic, referring to the LCD substrate that’s used in this type of display. TN panels are a very mature technology and are the cheapest kind of LCD display to produce. This means that you’ll get TN panels for a given screen size/resolution at a lower price than other options.
TN panels aren’t just cheap. They tend to have lower response times than other monitor panels. This makes them exceptionally well-suited for low-latency use cases like eSports gaming. As a result, many eSports-oriented high-refresh rate monitors utilize TN technology.
There are notable downsides, though. For starters, viewing angles are terrible. Even if you look at a TN panel from its exact center, you’ll experience picture quality degradation at the edges. Poor viewing angles mean that color is only accurately reproduced at the very center of the panel, from your perspective. Some TN panels have better viewing angles than others, but almost all are beaten by even budget VA and IPS sets in this respect.
Another thing? Color reproduction is poor on TN panels. Colors, in general, appear washed-out. But what’s most noticeable is the poor contrast levels. In poorly-illuminated scenes, black appears grey. All in all, we find TN panels hard to recommend anymore. If you want an eSports panel, but can’t afford a high-performance IPS, a TN panel might be right for you. Otherwise, look elsewhere.
IPS is short for in-plane switching. IPS displays were actually developed to address the shortcomings of TN panels. In IPS panels, the orientation of liquid crystal molecules is arranged and switched parallel to the substrate. This allows for accurate color reproduction across a much wider range of viewing angles.
IPS panels have clear advantages over TN panels. For starters, color reproduction is excellent. High-end IPS monitors that cover a significant amount of the sRGB gamut not only look great–they’re an excellent choice for professional photographers and graphic designers. Contrast is much-improved on IPS: while you don’t get the inky blacks of OLED, dark areas look reliably dark, while retaining detail. IPS panels tend to have a slower refresh rate than TN panels.
However, gaming-oriented IPS models are available with low response time and higher refresh rates. They just cost a lot more than comparable TN parts. IPS panels are our go-to recommendation. They offer great image quality, while also allowing for low-latency, high refresh rate gaming.
VA is short for vertical alignment. In these displays, LCD cells align vertically when no electricity is passing through. They align horizontally when it is, allowing light through. VA panels offer excellent image quality. Even budget VA monitors deliver contrast ratios in excess of 3000:1. This translates into rich colors, and detail preservation in dark scenes.
VA is ideal if media consumption is your primary use case: you get excellent image quality. The trade-off here is that VA panels tend to have the worst response times. Response times higher than 4ms are typical. On the worst offenders, input lag is actually somewhat notable. And while viewing angles are better than TN panels, VA panels often exhibit color shifting–with colors going off-hue at wide angles. Some VA panels also have a “ghosting” issue, especially when handling rapidly moving images.
This makes VA panels a questionable choice for eSports gaming. If you mainly play single-player titles, though, VA panels are a great choice. Price-wise, they tend to be cheaper than their IPS counterparts while offering great image quality.
If you’re an eSports gamer, you need a monitor with the lowest-possible response rate and a high refresh rate. Both IPS and TN panels enable this. At a premium budget, you should look at IPS panels, as they offer the best combination of picture quality and low latency. If you’re on a tighter budget, a TN panel can get the job done, although you’ll be compromising somewhat on the image.
Other than the display panel, you also need to look at some of the other specifications such as the color gamut, HDR support, contrast ratio, etc. You can read more about how to pick the right config here.
Liquid Crystal Display (LCD) screens are a staple in the digital display marketplace and are used in display applications across every industry. With every display application presenting a unique set of requirements, the selection of specialized LCDs has grown to meet these demands.
LCD screens can be grouped into three categories: TN (twisted nematic), IPS (in-plane switching), and VA (Vertical Alignment). Each of these screen types has its own unique qualities, almost all of them having to do with how images appear across the various screen types.
This technology consists of nematic liquid crystal sandwiched between two plates of glass. When power is applied to the electrodes, the liquid crystals twist 90°. TN (Twisted Nematic) LCDs are the most common LCD screen type. They offer full-color images, and moderate viewing angles.
TN LCDs maintain a dedicated user base despite other screen types growing in popularity due to some unique key features that TN display offer. For one,
Refresh rates and response times refer to the time it takes pixels to activate and deactivate in response to user inputs; this is crucial for fast-moving images or graphics that must update as fast as possible with extreme precision.
VA, also known as Multi-Domain Vertical Alignment (MVA) dislays offer features found in both TN and IPS screens. The Pixels in VA displays align vertically to the glass substrate when voltage is applied, allowing light to pass through.
Displays with VA screens deliver wide viewing angles, high contrast, and good color reproduction. They maintain high response rates similar to TN TFTs but may not reach the same sunlight readable brightness levels as comparable TN or IPS LCDs. VA displays are generally best for applications that need to be viewed from multiple angles, like digital signage in a commercial setting.
Based on current trends, IPS and TN screen types will be expected to remain the dominant formats for some time. As human interface display technology advances and new product designs are developed, customers will likely choose IPS LCDs to replace the similarly priced TN LCDs for their new projects.
These cookies help to improve the performance of BenQ. If you want to opt-out of advertising cookies, you have to turn-off performance cookies. We also use Google Analytics, SessionCam and Hotjar to track activity and performance on the BenQ website. You can control the information provided to Google, SessionCam and Hotjar. To opt out of certain ads provided by Google you can use any of the methods set forth here or using the Google Analytics opt out browser add-on here. To opt-out of SessionCam collecting data, you can disable tracking completely by following link:https://www.hotjar.com/privacy/do-not-track/.
These cookies are used to track your activity on the BenQ website and other websites across the Internet, help measure the effectiveness of our advertising campaign and deliver advertisements that are more relevant to you and your interests. We use various advertising partners, including Amazon, Facebook, and Google. These cookies and other technologies capture data like your IP address, when you viewed the page or email, what device you were using and where you were. You can find out how to avoid them below.
You may be surprised to know that not all LCD panels are created equal. That’s because there’s more than one type of LCD screen. While their differences are subtle, the type of panel technology significantly impacts its image quality and display performance.
In this post, we’ll compare the three types of LCD panel technologies – IPS vs. TN vs. VA – and the pros and cons of each. Knowing the differences is critical to help you find the best type that fits your needs.
The main difference between them is how they arrange and move the liquid crystal display (LCD) molecules in their panels. This, in turn, has a profound effect on image quality, refresh rate, and other performance factors.
A twisted nematic or TN monitor is the oldest and most common type of LCD still used today. It uses a nematic liquid crystal, meaning it has its molecules arranged in parallel, but not on a level plane. These can twist or untwist themselves when a voltage runs through them, hence the name. This twisting effect either allows or blocks light from passing through, turning screen pixels “on” or “off.”
In-panel switching (IPS) panels work similarly to TN monitors, except that the liquid crystal molecules are parallel to the glass panel of the screen. Instead of twisting like in TN monitors, these molecules rotate when a voltage is applied.
Vertical alignment (VA) displays arrange their LCD molecules vertically, perpendicular to the glass panel. When voltage is present, they tilt themselves instead of twisting or rotating.
Being the oldest LCD technology still in use today, TN monitors undoubtedly have their share of benefits, otherwise they wouldn’t have this much longevity! Comparing TN vs. IPS and VA, TN panels are the cheapest and fastest to manufacture. As a result, they are better for the more budget-conscious user. They’re also the most versatile LCD type and have no real-world limits on size, shape, resolution, and refresh rate.
Comparing IPS vs. TN, the former is a drastic improvement over the latter. IPS panels resolve some of the limitations and problems of TN monitors, specifically color accuracy and issues with viewing angles. However, IPS panels suffer from a phenomenon called “IPS glow,” where you can see the display’s backlight clearly if you view it from the side.
Another significant limitation of IPS panels, particularly for gamers, is that they have the lowest refresh rates of any LCD type. And while the color fidelity is fantastic with IPS vs. VA, the latter has superior contrast ratios over the IPS panels.
The biggest strength of VA panels lies in their excellent contrast ratio. Keep in mind that irrespective of the LCD technology used, a backlight is required; this is typically LED. The LCD’s ability to block this light will determine how well it can reproduce blacks, and it’s in this detail where VA excels. That is, blacks are dark and rich in a VA panel vs. IPS. They also lie somewhere in the middle regarding overall image quality, color reproduction, viewing angle, and refresh rate. Overall, VA is a good compromise between TN and IPS.
A drawback of VA vs. IPS and TN is it exhibits an relatively high response time. As such, VA displays are more prone to motion blur and ghosting if you’re viewing fast-moving visuals on a screen, such as when you’re playing a racing game.
It’s worth noting that there is no universal “right” choice for choosing a type of LCD panel. Which one you pick depends on your budget, your intended use, and your expected outcome.
A TN monitor is best if you’re looking for a low-cost, readily available display for tasks that don’t rely on contrast and color accuracy, such as sending emails or typing a document or spreadsheet. They are also the best choice for competitive gamers who want the best refresh rates and response times to give them an edge in online multiplayer games, despite a technically lower image quality.
With their superior color reproduction, IPS panels are best for graphic designers, film editors, photographers, and other visual design professionals. For them, image quality including contrast and color accuracy are more important than refresh rates. IPS panels are also fantastic for casual gamers who want the best visuals and don’t mind the compromise in refresh rate or response time.
If you’re looking for a solid middle-ground for both graphic and non-graphic work, VA works as a general-purpose monitor. While its high response times are unsuitable for gamers, it’s a technology that’s more than suitable for watching movies or TV shows.
Whichever LCD type you choose, make sure you get the right cable, a Premium High Speed HDMI® Cable, or an Ultra High Speed HDMI® Cable to ensure delivery of all the HDMI 2.1 features. Doing this ensures that you’ll get the best experience on your screen.