tft lcd led unterschied manufacturer
In market, LCD means passive matrix LCDs which increase TN (Twisted Nematic), STN (Super Twisted Nematic), or FSTN (Film Compensated STN) LCD Displays. It is a kind of earliest and lowest cost display technology.
LCD screens are still found in the market of low cost watches, calculators, clocks, utility meters etc. because of its advantages of low cost, fast response time (speed), wide temperature range, low power consumption, sunlight readable with transflective or reflective polarizers etc. Most of them are monochrome LCD display and belong to passive-matrix LCDs.
TFT LCDs have capacitors and transistors. These are the two elements that play a key part in ensuring that the TFT display monitor functions by using a very small amount of energy without running out of operation.
Normally, we say TFT LCD panels or TFT screens, we mean they are TN (Twisted Nematic) Type TFT displays or TN panels, or TN screen technology. TFT is active-matrix LCDs, it is a kind of LCD technologies.
TFT has wider viewing angles, better contrast ratio than TN displays. TFT display technologies have been widely used for computer monitors, laptops, medical monitors, industrial monitors, ATM, point of sales etc.
Actually, IPS technology is a kind of TFT display with thin film transistors for individual pixels. But IPS displays have superior high contrast, wide viewing angle, color reproduction, image quality etc. IPS screens have been found in high-end applications, like Apple iPhones, iPads, Samsung mobile phones, more expensive LCD monitors etc.
Both TFT LCD displays and IPS LCD displays are active matrix displays, neither of them can produce color, there is a layer of RGB (red, green, blue) color filter in each LCD pixels to make LCD showing colors. If you use a magnifier to see your monitor, you will see RGB color. With switch on/off and different level of brightness RGB, we can get many colors.
Neither of them can’t release color themselves, they have relied on extra light source in order to display. LED backlights are usually be together with them in the display modules as the light sources. Besides, both TFT screens and IPS screens are transmissive, it will need more power or more expensive than passive matrix LCD screens to be seen under sunlight. IPS screens transmittance is lower than TFT screens, more power is needed for IPS LCD display.
TFT displays are also known as an “Active Matrix TFT LCD module” and have an array of thin film transistors fabricated on the glass that makes the LCD. There is one of these transistors for each pixel on the LCD.
LCDs use voltage applied to a field of microscopic liquid crystals to change the crystal’s orientation, which in turn changes the polarization of the liquid crystal which creates light or dark pixels on the display.
Beautiful, complex images: All of our TFT modules are full-color graphic displays. Unlike standard monochrome character displays, you can create complex images for an imaginative user experience.
Single Supply: Most of the TFTs use an integrated controller with built-in voltage generation so only a single 3.3v supply is needed for both the panel power and logic voltage.
Many of our character LCD modules use a standard HD44780 controller, so they can be quickly integrated into a new product or used as a replacement in your existing products.
Many of the LCD controllers on board our graphic LCD display modules also include a CGROM (character generator ROM) which allows for easy character information as well as full bit-mapped graphic information to be shown.
Some of the graphic LCD displays have the ability to render graphics in grayscale, enabling you to show images and elements of your UI (user interface) with more depth and definition.
Because OLEDs are emissive, these displays can always be used in dark environments. There is usually a software command or hardware setting that will allow OLEDs to be dimmed.
Some OLED displays are bright enough to be sunlight readable–these models will typically take more current and may have a shorter rated lifetime. Additionally, OLEDs have extremely wide viewing angles.
What makes OLEDs useful for display construction is that they can be fabricated in bulk. Using OLED fabrication techniques, all the diodes can be made at the same time, at a much lower cost. OLEDs also come in a wide variety of colors.
Have you ever wonder where TFT derive from? Why is TFT referred to as LCD? The phenomenon started in early days, when bulky CRT displays were thing of the past and LCD was its replacement, but as time progresses, there were still room for improvement, which leads to the birth of TFT’s.
TFT is a variant of an LCD which uses thin film transistor technology to improve an image quality, while an LCD is class of displays that uses modulating properties of liquid crystals to form what we call an LCD (liquid crystals display) which in fact does not emits light directly.
Even though LCDs were very energy efficient, light weight and thin in nature, LCD were falling behind to the CRT display, which then leads to a change in LCD manufacturing, where performance became a big problem.
For example, having a 2001 Mustang vs a 2014 Mustang, the dimensions and engine of the 2014 has been redesign for performance reasons, not mentioning user friendly, so does the LCD to TFT.
As the birth of TFT, the elements are deposited directly on the glass substrate which in fact the main reason for the switch was because TFTs are easier to produce, better performance in terms of adjusting the pixels within the display to get better quality.
LCDs became ineffective over a period of time, almost all aspect of watching a TV, playing video games or using a handheld device to surf the net became daunting, this phenomenon is known as high response time with low motion rate.
Another problem with LCD was crosstalking, in terms of pixelating, this happens when signals of adjacent pixels affects operations or gives an undesired effect to the other pixel.
As TFT’s become very popular throughout the century due to its elaborate low charge associate and outstanding response time, LCDs became a thing of the past, and TFT became the predominant technology with their wider viewing angles and better quality this technology will be around for a long time.
Touchscreens have changed the way people expect to interact with their devices. When it comes to smartphones and tablets, touch is the way to go. Even handheld game consoles, laptops, and car navigation systems are moving towards touch. Manufacturers of these devices need to give their respective consumers the responsiveness these consumers are looking for. Selecting the right TFT-LCD display to use for different devices is important.
As you can see, capacitive screens get general usage while resistive screens cater to more specific applications. With this, TFT-LCD module manufacturers, like Microtips Technology, focus on continuously improving capacitive screen technology.
A thin-film-transistor liquid-crystal display (TFT LCD) is a variant of a liquid-crystal display that uses thin-film-transistor technologyactive matrix LCD, in contrast to passive matrix LCDs or simple, direct-driven (i.e. with segments directly connected to electronics outside the LCD) LCDs with a few segments.
In February 1957, John Wallmark of RCA filed a patent for a thin film MOSFET. Paul K. Weimer, also of RCA implemented Wallmark"s ideas and developed the thin-film transistor (TFT) in 1962, a type of MOSFET distinct from the standard bulk MOSFET. It was made with thin films of cadmium selenide and cadmium sulfide. The idea of a TFT-based liquid-crystal display (LCD) was conceived by Bernard Lechner of RCA Laboratories in 1968. In 1971, Lechner, F. J. Marlowe, E. O. Nester and J. Tults demonstrated a 2-by-18 matrix display driven by a hybrid circuit using the dynamic scattering mode of LCDs.T. Peter Brody, J. A. Asars and G. D. Dixon at Westinghouse Research Laboratories developed a CdSe (cadmium selenide) TFT, which they used to demonstrate the first CdSe thin-film-transistor liquid-crystal display (TFT LCD).active-matrix liquid-crystal display (AM LCD) using CdSe TFTs in 1974, and then Brody coined the term "active matrix" in 1975.high-resolution and high-quality electronic visual display devices use TFT-based active matrix displays.
The circuit layout process of a TFT-LCD is very similar to that of semiconductor products. However, rather than fabricating the transistors from silicon, that is formed into a crystalline silicon wafer, they are made from a thin film of amorphous silicon that is deposited on a glass panel. The silicon layer for TFT-LCDs is typically deposited using the PECVD process.
Polycrystalline silicon is sometimes used in displays requiring higher TFT performance. Examples include small high-resolution displays such as those found in projectors or viewfinders. Amorphous silicon-based TFTs are by far the most common, due to their lower production cost, whereas polycrystalline silicon TFTs are more costly and much more difficult to produce.
The twisted nematic display is one of the oldest and frequently cheapest kind of LCD display technologies available. TN displays benefit from fast pixel response times and less smearing than other LCD display technology, but suffer from poor color reproduction and limited viewing angles, especially in the vertical direction. Colors will shift, potentially to the point of completely inverting, when viewed at an angle that is not perpendicular to the display. Modern, high end consumer products have developed methods to overcome the technology"s shortcomings, such as RTC (Response Time Compensation / Overdrive) technologies. Modern TN displays can look significantly better than older TN displays from decades earlier, but overall TN has inferior viewing angles and poor color in comparison to other technology.
Most TN panels can represent colors using only six bits per RGB channel, or 18 bit in total, and are unable to display the 16.7 million color shades (24-bit truecolor) that are available using 24-bit color. Instead, these panels display interpolated 24-bit color using a dithering method that combines adjacent pixels to simulate the desired shade. They can also use a form of temporal dithering called Frame Rate Control (FRC), which cycles between different shades with each new frame to simulate an intermediate shade. Such 18 bit panels with dithering are sometimes advertised as having "16.2 million colors". These color simulation methods are noticeable to many people and highly bothersome to some.gamut (often referred to as a percentage of the NTSC 1953 color gamut) are also due to backlighting technology. It is not uncommon for older displays to range from 10% to 26% of the NTSC color gamut, whereas other kind of displays, utilizing more complicated CCFL or LED phosphor formulations or RGB LED backlights, may extend past 100% of the NTSC color gamut, a difference quite perceivable by the human eye.
The transmittance of a pixel of an LCD panel typically does not change linearly with the applied voltage,sRGB standard for computer monitors requires a specific nonlinear dependence of the amount of emitted light as a function of the RGB value.
Less expensive PVA panels often use dithering and FRC, whereas super-PVA (S-PVA) panels all use at least 8 bits per color component and do not use color simulation methods.BRAVIA LCD TVs offer 10-bit and xvYCC color support, for example, the Bravia X4500 series. S-PVA also offers fast response times using modern RTC technologies.
When the field is on, the liquid crystal molecules start to tilt towards the center of the sub-pixels because of the electric field; as a result, a continuous pinwheel alignment (CPA) is formed; the azimuthal angle rotates 360 degrees continuously resulting in an excellent viewing angle. The ASV mode is also called CPA mode.
TFT dual-transistor pixel or cell technology is a reflective-display technology for use in very-low-power-consumption applications such as electronic shelf labels (ESL), digital watches, or metering. DTP involves adding a secondary transistor gate in the single TFT cell to maintain the display of a pixel during a period of 1s without loss of image or without degrading the TFT transistors over time. By slowing the refresh rate of the standard frequency from 60 Hz to 1 Hz, DTP claims to increase the power efficiency by multiple orders of magnitude.
Due to the very high cost of building TFT factories, there are few major OEM panel vendors for large display panels. The glass panel suppliers are as follows:
External consumer display devices like a TFT LCD feature one or more analog VGA, DVI, HDMI, or DisplayPort interface, with many featuring a selection of these interfaces. Inside external display devices there is a controller board that will convert the video signal using color mapping and image scaling usually employing the discrete cosine transform (DCT) in order to convert any video source like CVBS, VGA, DVI, HDMI, etc. into digital RGB at the native resolution of the display panel. In a laptop the graphics chip will directly produce a signal suitable for connection to the built-in TFT display. A control mechanism for the backlight is usually included on the same controller board.
The low level interface of STN, DSTN, or TFT display panels use either single ended TTL 5 V signal for older displays or TTL 3.3 V for slightly newer displays that transmits the pixel clock, horizontal sync, vertical sync, digital red, digital green, digital blue in parallel. Some models (for example the AT070TN92) also feature input/display enable, horizontal scan direction and vertical scan direction signals.
New and large (>15") TFT displays often use LVDS signaling that transmits the same contents as the parallel interface (Hsync, Vsync, RGB) but will put control and RGB bits into a number of serial transmission lines synchronized to a clock whose rate is equal to the pixel rate. LVDS transmits seven bits per clock per data line, with six bits being data and one bit used to signal if the other six bits need to be inverted in order to maintain DC balance. Low-cost TFT displays often have three data lines and therefore only directly support 18 bits per pixel. Upscale displays have four or five data lines to support 24 bits per pixel (truecolor) or 30 bits per pixel respectively. Panel manufacturers are slowly replacing LVDS with Internal DisplayPort and Embedded DisplayPort, which allow sixfold reduction of the number of differential pairs.
Backlight intensity is usually controlled by varying a few volts DC, or generating a PWM signal, or adjusting a potentiometer or simply fixed. This in turn controls a high-voltage (1.3 kV) DC-AC inverter or a matrix of LEDs. The method to control the intensity of LED is to pulse them with PWM which can be source of harmonic flicker.
Kawamoto, H. (2012). "The Inventors of TFT Active-Matrix LCD Receive the 2011 IEEE Nishizawa Medal". Journal of Display Technology. 8 (1): 3–4. Bibcode:2012JDisT...8....3K. doi:10.1109/JDT.2011.2177740. ISSN 1551-319X.
K. H. Lee; H. Y. Kim; K. H. Park; S. J. Jang; I. C. Park & J. Y. Lee (June 2006). "A Novel Outdoor Readability of Portable TFT-LCD with AFFS Technology". SID Symposium Digest of Technical Papers. AIP. 37 (1): 1079–82. doi:10.1889/1.2433159. S2CID 129569963.
As you might already be aware, there’s a large variety of versatile digital display types on the market, all of which are specifically designed to perform certain functions and are suitable for numerous commercial, industrial, and personal uses. The type of digital display you choose for your company or organization depends largely on the requirements of your industry, customer-base, employees, and business practices. Unfortunately, if you happen to be technologically challenged and don’t know much about digital displays and monitors, it can be difficult to determine which features and functions would work best within your professional environment. If you have trouble deciphering the pros and cons of using TFT vs. IPS displays, here’s a little guide to help make your decision easier.
TFT stands for thin-film-transistor, which is a variant of liquid crystal display (LCD). TFTs are categorized as active matrix LCDs, which means that they can simultaneously retain certain pixels on a screen while also addressing other pixels using minimal amounts of energy. This is because TFTs consist of transistors and capacitors that respectively work to conserve as much energy as possible while still remaining in operation and rendering optimal results. TFT display technologies offer the following features, some of which are engineered to enhance overall user experience.
The bright LED backlights that are featured in TFT displays are most often used for mobile screens. These backlights offer a great deal of adaptability and can be adjusted according to the visual preferences of the user. In some cases, certain mobile devices can be set up to automatically adjust the brightness level of the screen depending on the natural or artificial lighting in any given location. This is a very handy feature for people who have difficulty learning how to adjust the settings on a device or monitor and makes for easier sunlight readability.
One of the major drawbacks of using a TFT LCD instead of an IPS is that the former doesn’t offer the same level of visibility as the latter. To get the full effect of the graphics on a TFT screen, you have to be seated right in front of the screen at all times. If you’re just using the monitor for regular web browsing, for office work, to read and answer emails, or for other everyday uses, then a TFT display will suit your needs just fine. But, if you’re using it to conduct business that requires the highest level of colour and graphic accuracy, such as completing military or naval tasks, then your best bet is to opt for an IPS screen instead.
Nonetheless, most TFT displays are still fully capable of delivering reasonably sharp images that are ideal for everyday purposes and they also have relatively short response times from your keyboard or mouse to your screen. This is because the pixel aspect ration is much narrower than its IPS counterpart and therefore, the colours aren’t as widely spread out and are formatted to fit onto the screen. Primary colours—red, yellow, and blue—are used as the basis for creating brightness and different shades, which is why there’s such a strong contrast between different aspects of every image. Computer monitors, modern-day HD TV screens, laptop monitors, mobile devices, and even tablets all utilize this technology.
IPS (in-plane-switching) technology is almost like an improvement on the traditional TFT display module in the sense that it has the same basic structure, but with slightly more enhanced features and more widespread usability. IPS LCD monitors consist of the following high-end features.
IPS screens have the capability to recognize movements and commands much faster than the traditional TFT LCD displays and as a result, their response times are infinitely faster. Of course, the human eye doesn’t notice the difference on separate occasions, but when witnessing side-by-side demonstrations, the difference is clear.
Wide-set screen configurations allow for much wider and versatile viewing angles as well. This is probably one of the most notable and bankable differences between TFT and IPS displays. With IPS displays, you can view the same image from a large variety of different angles without causing grayscale, blurriness, halo effects, or obstructing your user experience in any way. This makes IPS the perfect display option for people who rely on true-to-form and sharp colour and image contrasts in their work or daily lives.
IPS displays are designed to have higher transmittance frequencies than their TFT counterparts within a shorter period of time (precisely 1 millisecond vs. 25 milliseconds). This speed increase might seem minute or indecipherable to the naked eye, but it actually makes a huge difference in side-by-side demonstrations and observations, especially if your work depends largely on high-speed information sharing with minimal or no lagging.
Just like TFT displays, IPS displays also use primary colours to produce different shades through their pixels. The main difference in this regard is the placement of the pixels and how they interact with electrodes. In TFT displays, the pixels run perpendicular to one another when they’re activated by electrodes, which creates a pretty sharp image, but not quite as pristine or crisp as what IPS displays can achieve. IPS display technologies employ a different configuration in the sense that pixels are placed parallel to one another to reflect more light and result in a sharper, clearer, brighter, and more vibrant image. The wide-set screen also establishes a wider aspect ratio, which strengthens visibility and creates a more realistic and lasting effect.
When it comes to deciphering the differences between TFT vs. IPS display technologies and deciding which option is best for you and your business, the experts at Nauticomp Inc. can help. Not only do we offer a wide variety of computer displays, monitors, and screen types, but we also have the many years of experience in the technology industry to back up our recommendations and our knowledge. Our top-of-the-line displays and monitors are customized to suit the professional and personal needs of our clients who work across a vast array of industries. For more information on our high-end displays and monitors, please contact us.
Shopping for a new TV is like wading through a never-ending pool of tech jargon, display terminology, and head-spinning acronyms. It was one thing when 4K resolution landed in the homes of consumers, with TV brands touting the new UHD viewing spec as a major marketing grab. But over the last several years, the plot has only continued to thicken when it comes to three- and four-letter acronyms with the introduction of state-of-the-art lighting and screen technology. But between OLEDs, QLEDs, mini-LEDs, and now QD-OLEDs, there’s one battle of words that rests at the core of TV vocabulary: LED versus LCD.
Despite having a different acronym, LED TV is just a specific type of LCD TV, which uses a liquid crystal display (LCD) panel to control where light is displayed on your screen. These panels are typically composed of two sheets of polarizing material with a liquid crystal solution between them. When an electric current passes through the liquid, it causes the crystals to align, so that light can (or can’t) pass through. Think of it as a shutter, either allowing light to pass through or blocking it out.
Since both LED and LCD TVs are based around LCD technology, the question remains: what is the difference? Actually, it’s about what the difference was. Older LCD TVs used cold cathode fluorescent lamps (CCFLs) to provide lighting, whereas LED LCD TVs used an array of smaller, more efficient light-emitting diodes (LEDs) to illuminate the screen.
Since the technology is better, all LCD TVs now use LED lights and are colloquially considered LED TVs. For those interested, we’ll go deeper into backlighting below, or you can move onto the Local Dimming section.
Three basic illumination forms have been used in LCD TVs: CCFL backlighting, full-array LED backlighting, and LED edge lighting. Each of these illumination technologies is different from one another in important ways. Let’s dig into each.
CCFL backlighting is an older, now-abandoned form of display technology in which a series of cold cathode lamps sit across the inside of the TV behind the LCD. The lights illuminate the crystals fairly evenly, which means all regions of the picture will have similar brightness levels. This affects some aspects of picture quality, which we discuss in more detail below. Since CCFLs are larger than LED arrays, CCFL-based LCD TVs are thicker than LED-backlit LCD TVs.
Full-array backlighting swaps the outdated CCFLs for an array of LEDs spanning the back of the screen, comprising zones of LEDs that can be lit or dimmed in a process called local dimming. TVs using full-array LED backlighting to make up a healthy chunk of the high-end LED TV market, and with good reason — with more precise and even illumination, they can create better picture quality than CCFL LCD TVs were ever able to achieve, with better energy efficiency to boot.
Another form of LCD screen illumination is LED edge lighting. As the name implies, edge-lit TVs have LEDs along the edges of a screen. There are a few different configurations, including LEDs along just the bottom, LEDs on the top and bottom, LEDs left and right, and LEDs along all four edges. These different configurations result in picture quality differences, but the overall brightness capabilities still exceed what CCFL LCD TVs could achieve. While there are some drawbacks to edge lighting compared to full-array or direct backlight displays, the upshot is edge lighting that allows manufacturers to make thinner TVs that cost less to manufacture.
To better close the local-dimming quality gap between edge-lit TVs and full-array back-lit TVs, manufacturers like Sony and Samsung developed their own advanced edge lighting forms. Sony’s technology is known as “Slim Backlight Master Drive,” while Samsung has “Infinite Array” employed in its line of QLED TVs. These keep the slim form factor achievable through edge-lit design and local dimming quality more on par with full-array backlighting.
Local dimming is a feature of LED LCD TVs wherein the LED light source behind the LCD is dimmed and illuminated to match what the picture demands. LCDs can’t completely prevent light from passing through, even during dark scenes, so dimming the light source itself aids in creating deeper blacks and more impressive contrast in the picture. This is accomplished by selectively dimming the LEDs when that particular part of the picture — or region — is intended to be dark.
Local dimming helps LED/LCD TVs more closely match the quality of modern OLED displays, which feature better contrast levels by their nature — something CCFL LCD TVs couldn’t do. The quality of local dimming varies depending on which type of backlighting your LCD uses, how many individual zones of backlighting are employed, and the quality of the processing. Here’s an overview of how effective local dimming is on each type of LCD TV.
TVs with full-array backlighting have the most accurate local dimming and therefore tend to offer the best contrast. Since an array of LEDs spans the entire back of the LCD screen, regions can generally be dimmed with more finesse than on edge-lit TVs, and brightness tends to be uniform across the entire screen. Hisense’s impressive U7G TVs are great examples of relatively affordable models that use multiple-zone, full-array backlighting with local dimming.
“Direct local dimming” is essentially the same thing as full-array dimming, just with fewer LEDs spread further apart in the array. However, it’s worth noting that many manufacturers do not differentiate “direct local dimming” from full-array dimming as two separate forms of local dimming. We still feel it’s important to note the difference, as fewer, further-spaced LEDs will not have the same accuracy and consistency as full-array displays.
Because edge lighting employs LEDs positioned on the edge or edges of the screen to project light across the back of the LCD screen, as opposed to coming from directly behind it, it can result in very subtle blocks or bands of lighter pixels within or around areas that should be dark. The local dimming of edge-lit TVs can sometimes result in some murkiness in dark areas compared with full-array LED TVs. It should also be noted that not all LED edge-lit TVs offer local dimming, which is why it is not uncommon to see glowing strips of light at the edges of a TV and less brightness toward the center of the screen.
Since CCFL backlit TVs do not use LEDs, models with this lighting style do not have dimming abilities. Instead, the LCD panel of CCFL LCDs is constantly and evenly illuminated, making a noticeable difference in picture quality compared to LED LCDs. This is especially noticeable in scenes with high contrast, as the dark portions of the picture may appear too bright or washed out. When watching in a well-lit room, it’s easier to ignore or miss the difference, but in a dark room, it will be, well, glaring.
As if it wasn’t already confusing enough, once you begin exploring the world of modern display technology, new acronyms crop up. The two you’ll most commonly find are OLED and QLED.
An OLED display uses a panel of pixel-sized organic compounds that respond to electricity. Since each tiny pixel (millions of which are present in modern displays) can be turned on or off individually, OLED displays are called “emissive” displays (meaning they require no backlight). They offer incredibly deep contrast ratios and better per-pixel accuracy than any other display type on the market.
Because they don’t require a separate light source, OLED displays are also amazingly thin — often just a few millimeters. OLED panels are often found on high-end TVs in place of LED/LCD technology, but that doesn’t mean that LED/LCDs aren’t without their own premium technology.
QLED is a premium tier of LED/LCD TVs from Samsung. Unlike OLED displays, QLED is not a so-called emissive display technology (lights still illuminate QLED pixels from behind). However, QLED TVs feature an updated illumination technology over regular LED LCDs in the form of Quantum Dot material (hence the “Q” in QLED), which raises overall efficiency and brightness. This translates to better, brighter grayscale and color and enhances HDR (High Dynamic Range) abilities.
And now to make things extra confusing, part of Samsung’s 2022 TV lineup is being billed as traditional OLEDs, although a deeper dive will reveal this is actually the company’s first foray into a new panel technology altogether called QD-OLED.
For a further description of QLED and its features, read our list of the best TVs you can buy. The article further compares the qualities of both QLED and OLED TV; however, we also recommend checking outfor a side-by-side look at these two top-notch technologies.
There are more even displays to become familiar with, too, including microLED and Mini-LED, which are lining up to be the latest head-to-head TV technologies. Consider checking out how the two features compare to current tech leaders in
In the world of TV technology, there’s never a dull moment. However, with this detailed research, we hope you feel empowered to make an informed shopping decision and keep your Best Buy salesperson on his or her toes.
LCD is the abbreviation for liquid crystal display. An LCD basically consists of two glass plates with a special liquid between them. The special attribute of this liquid is that it rotates or “twists” the plane of polarized light. This effect is influenced by the creation of an electrical field. The glass plates are thus each coated with a very thin metallic film. To obtain polarized light, you apply a polarization foil, the polarizer, to the bottom glass plate. Another foil must be applied to the bottom glass plate, but this time with a plane of polarization twisted by 90°. This is referred to as the analyzer.
In the idle state, the liquid twists the plane of polarization of the incoming light by 90° so that it can pass the analyzer unhindered. The LCD is thus transparent. If a specific voltage is applied to the metallic film coating, the crystals rotate in the liquid. This twists the plane of polarization of the light by another 90°, for example: The analyzer prevents the light getting through, and the LCD thus becomes opaque.TN, STN, FSTN, blue mode, yellow-green mode
However, the different colors occur only in displays that are either not lit or that are lit with white light. If there is any color in the lighting (e.g. yellow-green LED lighting), it overrides the color of the display. A blue-mode LCD with yellow-green LED lighting will always appear yellow-green.Static or multiplex driving method
Every LCD has a preferred angle of view at which the contrast of the display is at its optimum. Most displays are produced for the 6°° angle of view, which is also known as the bottom view (BV). This angle corresponds to that of a pocket calculator that is lying flat on a desktop.
LCDs without lighting are hard to imagine these days. However, since there are basically four different types of lighting, the type selected depends very much on the application. Here is a brief overview to clarify the situation:LED
Standard LCDs have a temperature range of 0 to +50°C. High-temperature displays are designed for operation in the range from -20 to +70°C. In this case, however, additional supply voltage is generally required. Since the contrast of any LCD is dependent on the temperature, a special temperature-compensation circuit is needed in order to use the entire temperature range, and this is particularly true for high-temperature displays (-20 to +70°C). Manual adjustment is possible but rather impractical for the user.
However, the storage temperature of a display should never be exceeded under any circumstances. An excessively high temperature can destroy the display very quickly. Direct exposure to the sun, for example, can destroy an LCD: This is because an LCD becomes darker (in positive mode) as it gets hotter. As it gets darker, it absorbs more light and converts it to heat. As a result, the display becomes even hotter and darker... In this way, temperatures of over 100°C can quickly be reached.Dot-matrix, graphics and 7-segment displays
The first LCDs were 7-segment displays, and they are still found today in simple pocket calculators and digital watches. 7 segments allow all of the digits from 0 to 9 to be displayed.
The semiconductor industry now offers a very large range of LCD drivers. We generally distinguish between pure display drivers without intelligence of their own, controllers with a display memory and possibly a character set, and micro-controllers with integrated LC drivers.
Many ask themselves, "What is the difference between an LCD display and a TFT-display?" or "What is the difference between a TFT and an OLED display?". Here are these 3 sometimes extremely different display technologies briefly explained. LCD vs. TFT vs. OLED (comparison).
- The LCD (Liquid Crystal Display) is a passive display technology. The operation and the structure are described above. Passive means that an LCD can only darken or let out light. So it always depends on ambient light or a backlight. This can be an advantage because the power consumption of a LCD display is very, very low. Sometimes even less than the accumulated power consumption of an E-paper display, which in static operation requires absolutely no energy to maintain the content. To change the contents, however, a relatively large amount of power is required for an E-paper display.
LCDs can also be reflective, so they reflect incident light and are therefore legible even at maximum brightness (sunlight, surgical lighting). Compared to TFT and also OLED, they have an unbeatable advantage in terms of readability and power consumption :; the "formula" is: Sunlight = LCD.
- A TFT-display (of Thin-Film Transistor) is usually a color display (RGB). From the construction and the technology it corresponds to the LCD. It is also passive, so it needs a backlight. This is in any case necessary except for a few, very expensive constructions. However, a TFT needs much more light than the monochrome relatives, because the additional structures on the glass as well as the additional color filters "swallow" light. So TFTs are not particularly energy-efficient, but can display in color and at the same time the resolution is much higher.
- OLED displays (by Organic-Light-Emitting-Diode) are as the name implies active displays - every pixel or sign generates light. This achieves an extremely wide viewing angle and high contrast values. The power consumption is dependent on the display content. Here OLEDs to TFTs and LCDs differ significantly, which have a nearly constant power consumption even with different display contents. Unfortunately, the efficiency of converting the electric current into light energy is still very poor. This means that the power consumption of OLEDs with normal content is sometimes higher than that of a TFT with the same size. Colored OLEDs are increasingly used in consumer devices, but for the industry, due to their availability and lifetime, currently only monochrome displays are suitable (usually in yellow color).
In the reaction time, the OLEDs beat each TFT and LCD by worlds. Trise and Tfall are about 10μs, which would correspond to a theoretical refresh rate of 50,000 Hz. Possibly an advantage in very special applications.
Finally the question "What is better, LCD, OLED or TFT?" Due to the physical differences you can not answer that blanket. Depending on the application, there are pros and cons to each individual technology. In addition to the above differences, there are many more details in the design and construction that need to be individually illuminated for each device. Write us an e-mail or call us: we have specialists with some 20- and 30-year experience. We are happy to compare different displays together with you.AACS and IPS technology
There are plenty of new and confusing terms facing TV shoppers today, but when it comes down to the screen technology itself, there are only two: Nearly every TV sold today is either LCD or OLED.
The biggest between the two is in how they work. With OLED, each pixel provides its own illumination so there"s no separate backlight. With an LCD TV, all of the pixels are illuminated by an LED backlight. That difference leads to all kinds of picture quality effects, some of which favor LCD, but most of which benefit OLED.
LCDs are made by a number of companies across Asia. All current OLED TVs are built by LG Display, though companies like Sony and Vizio buy OLED panels from LG and then use their own electronics and aesthetic design.
So which one is better? Read on for their strengths and weaknesses. In general we"ll be comparing OLED to the best (read: most expensive) LCD has to offer, mainly because there"s no such thing as a cheap OLED TV (yet).
At the other side of light output is black level, or how dark the TV can get. OLED wins here because of its ability to turn off individual pixels completely. It can produce truly perfect black.
The better LCDs have local dimming, where parts of the screen can dim independently of others. This isn"t quite as good as per-pixel control because the black areas still aren"t absolutely black, but it"s better than nothing. The best LCDs have full-array local dimming, which provides even finer control over the contrast of what"s onscreen -- but even they can suffer from "blooming," where a bright area spoils the black of an adjacent dark area.
Here"s where it comes together. Contrast ratio is the difference between the brightest and the darkest a TV can be. OLED is the winner here because it can get extremely bright, plus it can produce absolute black with no blooming. It has the best contrast ratio of any modern display.
One of the main downsides of LCD TVs is a change in picture quality if you sit away from dead center (as in, off to the sides). How much this matters to you certainly depends on your seating arrangement, but also on how much you love your loved ones.
A few LCDs use in-plane switching (IPS) panels, which have better off-axis picture quality than other kinds of LCDs, but don"t look as good as other LCDs straight on (primarily due to a lower contrast ratio).
OLED doesn"t have the off-axis issue LCDs have; its image looks basically the same, even from extreme angles. So if you have a wide seating area, OLED is the better option.
Nearly all current TVs are HDR compatible, but that"s not the entire story. Just because a TV claims HDR compatibility doesn"t mean it can accurately display HDR content. All OLED TVs have the dynamic range to take advantage of HDR, but lower-priced LCDs, especially those without local-dimming backlights, do not. So if you want to see HDR content it all its dynamic, vibrant beauty, go for OLED or an LCD with local dimming.
In our tests comparing the best new OLED and LCD TVs with HDR games and movies, OLED usually looks better. Its superior contrast and lack of blooming win the day despite LCD"s brightness advantage. In other words LCD TVs can get brighter, especially in full-screen bright scenes and HDR highlights, but none of them can control that illumination as precisely as an OLED TV.
OLED"s energy consumption is directly related to screen brightness. The brighter the screen, the more power it draws. It even varies with content. A dark movie will require less power than a hockey game or ski competition.
The energy consumption of LCD varies depending on the backlight setting. The lower the backlight, the lower the power consumption. A basic LED LCD with its backlight set low will draw less power than OLED.
LG has said their OLED TVs have a lifespan of 100,000 hours to half brightness, a figure that"s similar to LED LCDs. Generally speaking, all modern TVs are quite reliable.
Does that mean your new LCD or OLED will last for several decades like your parent"s last CRT (like the one pictured). Probably not, but then, why would you want it to? A 42-inch flat panel cost $14,000 in the late 90"s, and now a 65-inch TV with more than 16x the resolution and a million times better contrast ratio costs $1,400. Which is to say, by the time you"ll want/need to replace it, there will be something even better than what"s available now, for less money.
OLED TVs are available in sizes from 48 to 88 inches, but LCD TVs come in smaller and larger sizes than that -- with many more choices in between -- so LCD wins. At the high end of the size scale, however, the biggest "TVs" don"t use either technology.
If you want something even brighter, and don"t mind spending a literal fortune to get it, Samsung, Sony, and LG all sell direct-view LED displays. In most cases these are
You can get 4K resolution, 50-inch LCDs for around $400 -- or half that on sale. It"s going to be a long time before OLEDs are that price, but they have come down considerably.
LCD dominates the market because it"s cheap to manufacture and delivers good enough picture quality for just about everybody. But according to reviews at CNET and elsewhere, OLED wins for overall picture quality, largely due to the incredible contrast ratio. The price difference isn"t as severe as it used to be, and in the mid- to high-end of the market, there are lots of options.
For 10 years, OLED TVs have been regarded by videophiles (and by us) as blue-ribbon investments that are worth their steep prices if you value the highest-quality movie or gaming experience. Yet we’d suspect that many casual TV shoppers might not know about OLED TVs or why they’re so highly regarded. The conditions are ripe for that to finally change in 2022. With more OLED TVs coming from more manufacturers in more screen sizes, this could be the year OLEDs begin to move away from videophile territory and become a viable option for more people.
Transmissive displays operate by shining a backlight array through a liquid crystal element. You might know them by their more common names: LCD TVs or LED TVs. Crucially, the light- and color-producing parts of LCD/LED TVs are functionally and physically separate layers. I like to think of the liquid crystal and backlight as the meat and cheese on a sandwich, respectively.
In emissive displays, those functions aren’t separated. Each pixel (or picture element) produces its own light and color, so there’s no need for a backlight array. As you might have guessed, OLED TVs are emissive displays. For those who remember the brief reign of plasma as the must-have TV tech, plasma TVs were also emissive displays.
This independent pixel operation (independent from a backlight array and independent from every other pixel) allows emissive displays to greatly maximize contrast and produce richer colors. For example, when an OLED TV needs to display true black in a scene, it just turns those pixels off, whereas an LCD TV needs to find a way to block or turn off the backlight in that area of the screen. This is, in a nutshell, why OLED TVs are special. The ability to produce a true black on such a fine level increases the TV’s contrast (or the difference between the darkest and brightest parts of the image). The high level of contrast in an OLED TV can help your favorite movies and shows look downright jaw-dropping, which makes it an especially good choice to pair with high dynamic range (HDR) content.
As a bonus, because there’s no backlight array, OLED TVs tend to have excellent viewing angles, especially compared to LCD/LED TVs. This means you can watch them pretty comfortably from way off to either side.
Price has been the biggest barrier keeping most folks from having an OLED TV in their living rooms. OLED TVs have consistently carried higher price tags than high-performance LCD TVs—especially at screen sizes larger than 65 inches, where you could expect to pay at least 20% more. And “budget OLED” has never even been a category.
It wasn’t too long ago that manufacturing difficulties and relative scarcity painted a picture of exclusivity for OLED TVs, which kept the price high. While Sony and Samsung were the first to introduce OLED TVs, they quickly exited the market, leaving LG as the only brand selling OLEDs in the US for a time—and in a rather limited array of sizes and configurations. The earliest models had a range of issues, including an odd behavior colloquially called “vignetting” (where the edges of the screen look much darker than the middle), a tendency for darker gray elements to look yellowish-green, and concerns about uneven lifespan expectations among different colors. Those kinks were hammered out years ago, and manufacturers like Sony and Vizio have since joined LG in the US market, though LG Display has been the only company manufacturing the actual OLED TV panels. Yet the prices are still high compared with that of most LCD TVs.
Price isn’t the only consideration, either. OLED TVs are comparably much dimmer than similarly priced LCD/LED TVs. This boils down to operational mechanics: Individually operating pixels, the root of an OLED TV’s strength, can also be a weakness. In emissive displays, turning all the pixels to maximum brightness at the same time can damage the TV. So like plasma TVs before them, OLED TVs use a process called auto-brightness limiting, or ABL. Essentially, as more of the screen becomes bright, the total brightness is automatically limited to ensure safe operation.
In other words, a 2021 OLED TV could only get roughly half as bright as a similarly priced 2021 LCD/LED TV, especially those that use mini-LED backlights. However, it’s important to understand that those brightness numbers are discussed in terms of what’s called “reference brightness,” which describes the general/average light output that you’d notice when watching an OLED TV and an LCD TV side by side. For instance, very bright content that lights up the whole screen, such as a daytime sporting event, will look brighter on a high-performance LCD TV than an OLED TV.
But when considering overall screen contrast—the measure of a TV’s average or peak brightness against its black level, or minimum luminance level—OLED TVs tend to have the best contrast around. Because ABL usually kicks in only when large portions of the screen are bright, an OLED TV’s perceptual contrast (how bright the TV will seem given its black level) is usually much better than that of LCD TVs, especially with HDR content where small, specular areas of the screen are very bright.
However, all that functionality is why it’s important to have control over your room’s ambient lighting if you plan to buy an OLED TV. For example, as much as I love OLED TVs, I don’t have one in my living room—I have a Samsung Neo QLED LCD, which is bright enough to combat the San Diego sunshine that often bathes my home. There’s no point having a beautiful TV if you can’t see it! If you can sufficiently darken your viewing room when you need to, however, there aren’t many TVs that will look better than an OLED.
One other concern that some people have with OLED TVs is the potential for “burn-in” damage, ghostly after-image of content that has been on the screen for an extended period of time. Usually this image retention is temporary, but sometimes it’s permanent. The party line for OLED burn-in is that it shouldn’t occur during “normal” use, and we agree, especially because most modern OLED TVs have pixel-shifting and cell-repair processes built in to ensure that damage doesn’t occur. You can also mitigate burn-in further by lowering your OLED TV’s brightness when it’s convenient. However, if you do watch content with a stationary image (like a news ticker or the heads-up display in a video game) for many hours every single day, you may want to consider getting an LCD TV instead. Ultimately, we think burn-in is only a notable concern for a minor subset of OLED owners.
This year, we’re seeing a few key developments in the OLED market that could help it become a better option for more people. For one, LG and Sony have continued to refine their panels to improve overall brightness, and both are adding more screen sizes to their lineups, including smaller 42- and 48-inch models—which is great for not only gamers but also anyone who just wants a more affordable OLED TV that fits in a modest-sized room. Also, companies like Vizio and Skyworth are selling more affordably priced OLED TVs in the US. (You can read more specifics about the 2022 OLED lines in our guide to the best OLED TV.)
But the OLED news generating the most buzz is that Samsung is returning to the OLED game after almost a decade on hiatus. (Samsung introduced one of the very first OLED TVs back in 2012 but abandoned them shortly thereafter.) The company has a single OLED TV line this year, the S95B Series, but there’s an important caveat: Samsung manufactures its own OLED panels, and S95B TVs have QD-OLED displays, a new variant of OLED. QD-OLED displays combine OLED panels with quantum dots—microscopic nanocrystals more commonly used to pump up the color saturation in the best LCD/LED TVs. Sony also announced a QD-OLED model this year.
Because QD-OLED is brand new, we don’t yet know what benefits or improvements it may offer over LG’s WRGB OLED panels (video) beyond what can be assumed based on the underlying technologies: It should look really good. (We plan to test these new TVs to find out, of course.) The other good news? Samsung has announced pricing for its QD-OLED TVs, and while they’re not the most affordable ones you can buy this year, they also won’t break the bank compared with some of the premium OLED TVs being sold.
As the old saying goes, it’s never a good time to buy a new TV. There’s always newer technology or a better deal coming. Based on trends over the last decade, OLED isn’t going anywhere. In fact, the tech seems to be further cementing itself at the top of best TV lists everywhere. This year, there are more OLED TVs—in more screen sizes and from more manufacturers—than ever before, which makes it a generally good time to buy one. While the prices are still nothing to sneeze at, you have many more options than you used to.
On the other hand, it’s too soon to predict how Samsung’s return to the market will affect prices going forward. The relatively approachable price of Samsung’s new QD-OLED model could mean that buying an OLED TV in 2022 is a bit risky. If QD-OLED has better production yields than LG’s WRGB OLED, we could see an entire range of even more competitively priced models in 2023.
Unfortunately, the uncertainty of whether it’s the right time to buy a new TV is difficult to avoid, no matter how much you spend. But we are certain of one thing: Even if some radical shift in TV technology means your 2022 OLED isn’t the absolute best screen on the market a couple years from now, it will still look better than any TV you owned before it.
SELECT `id` FROM `cmf_portal_post` WHERE ( `type` = 3 ) AND `alisa` = "What-Is-The-Difference-Between-LCD-Display-and-LED-Screen--LCD-manufacturers---TFT-color-display--segment-display" LIMIT 1 [ RunTime:0.002223s ]
UPDATE `cmf_theme_file` SET `theme` = "hzj" , `action` = "portal/index/aboutUs" , `file` = "portal/index/about_us" , `name` = "关于我们页" , `more` = "{\"vars\":[],\"widgets\":{\"banner\":{\"title\":\"banner\\u6a21\\u5757\",\"display\":1,\"vars\":{\"image\":{\"title\":\"\\u56fe\\u7247\",\"type\":\"image\",\"display\":1,\"value\":\"https:\\/\\/sinocrystal.net\\/wp-content\\/uploads\\/2020\\/12\\/Sinocrystal-factory-2.jpg\",\"rule\":{\"require\":true},\"message\":{\"require\":\"\\u4e0d\\u80fd\\u4e3a\\u7a7a\"}},\"title\":{\"title\":\"\\u6807\\u9898\",\"type\":\"text\",\"value\":\"ABOUT US\",\"display\":1,\"rule\":{\"require\":true},\"message\":{\"require\":\"\\u4e0d\\u80fd\\u4e3a\\u7a7a\"}}}},\"video\":{\"title\":\"\\u89c6\\u9891\\u6a21\\u5757\",\"display\":1,\"vars\":{\"title\":{\"title\":\"\\u6807\\u9898\",\"type\":\"text\",\"value\":\"ABOUT US\",\"display\":1,\"rule\":{\"require\":true},\"message\":{\"require\":\"\\u4e0d\\u80fd\\u4e3a\\u7a7a\"}},\"video\":{\"title\":\"\\u89c6\\u9891\\u6587\\u4ef6\",\"value\":\"\",\"type\":\"file\"},\"iframe\":{\"title\":\"\\u5916\\u7f51\\u5d4c\\u5165\\u5f0f\",\"type\":\"textarea\",\"value\":\"\",\"rule\":{\"require\":false}},\"introduce\":{\"title\":\"\\u4ecb\\u7ecd\",\"value\":\"<h1 style="font-size: 32px; font-weight: bold; border-bottom: 2px solid rgb(204, 204, 204); padding: 0px 4px 0px 0px; text-align: left; margin: 0px 0px 10px;"><span style="font-size: 24px; color: rgb(255, 255, 255);"><\\/span><span style="font-size: 16px; font-style: italic; font-weight: bold; line-height: 18px;"><span style="font-style: italic; font-weight: bold; line-height: 18px; font-size: 24px; color: rgb(255, 255, 255);">LCD\\/OLED Display Manufacturer<\\/span><br\\/><\\/span><\\/h1><p>Sinocrystal Technology Co., Ltd. is a High-tech professional manufacturer of LCD Displays and OLED Displays with Capacitive Touch Panel or Resistive Touch Panel. Our products cover TFT LCD display, Mono TN\\/HTN\\/STN\\/FSTN\\/TN(VA) LCDs, COB\\/COG LCDs and OLED Display. We can also provide some value added service like: Development Kits(Driving Board), Adapt Board, Connector, Cover Lens etc.<\\/p><p><br\\/><\\/p><p>We have a stronger RD engineer team, which are all with over 15 years of experience. We provide the customization service, R&D, sale and after-sales service of LCD and OLED display products in different application areas like inMedical & Beauty, Industrial, Automotive, White Goods, Consumer, Smart Wearable and Test\\/Measurement applications. Our stringent quality assurance and investment in sophisticated in-house manufacturing methods and facilities enable us to deliver high-grade quality products. Our technical knowledge and dedication to R&D make us a trusted and preferred supplier of customizable solutions. We brought our customers quality products, timely delivery and great service in the past. Today, we are proud to keep doing better. We are continually striving to create value for customers and improve our capabilities.<\\/p>\",\"type\":\"content\",\"rule\":{\"require\":true},\"message\":{\"require\":\"\\u4e0d\\u80fd\\u4e3a\\u7a7a\"}},\"thumbnail\":{\"title\":\"\\u89c6\\u9891\\u5c01\\u9762\",\"type\":\"image\",\"value\":\"default\\/20210514\\/8ddeccbe0b85422982c707b5b43ce652.png\",\"display\":1,\"rule\":{\"require\":true},\"message\":{\"require\":\"\\u4e0d\\u80fd\\u4e3a\\u7a7a\"}},\"left_title\":{\"title\":\"\\u5de6\\u4fa7\\u6807\\u9898\",\"type\":\"image\",\"value\":\"default\\/20210514\\/b185e1602fac154ca132375c93d47d6e.png\",\"display\":1,\"rule\":{\"require\":true},\"message\":{\"require\":\"\\u4e0d\\u80fd\\u4e3a\\u7a7a\"}},\"left_image\":{\"title\":\"\\u5de6\\u4fa7\\u56fe\\u7247\",\"type\":\"image\",\"display\":1,\"value\":\"default\\/20210514\\/250f2a4fdff97bb824d768536ffe451f.png\",\"rule\":{\"require\":true},\"message\":{\"require\":\"\\u4e0d\\u80fd\\u4e3a\\u7a7a\"}},\"left_introduce\":{\"title\":\"\\u5de6\\u4fa7\\u4ecb\\u7ecd\",\"value\":\"By providing value added service and innovated products, to make liquid crystal display be the critical components in all kinds of applications.\",\"type\":\"textarea\",\"rule\":{\"require\":true},\"message\":{\"require\":\"\\u4e0d\\u80fd\\u4e3a\\u7a7a\"}},\"right_title\":{\"title\":\"\\u53f3\\u4fa7\\u6807\\u9898\",\"type\":\"image\",\"value\":\"default\\/20210514\\/a7f25963d089c24d3151984e15781b12.png\",\"display\":1,\"rule\":{\"require\":true},\"message\":{\"require\":\"\\u4e0d\\u80fd\\u4e3a\\u7a7a\"}},\"right_image\":{\"title\":\"\\u53f3\\u4fa7\\u56fe\\u7247\",\"type\":\"image\",\"display\":1,\"value\":\"default\\/20210514\\/fdf9788646333e25ca3348788f1e418e.png\",\"rule\":{\"require\":true},\"message\":{\"require\":\"\\u4e0d\\u80fd\\u4e3a\\u7a7a\"}},\"right_introduce\":{\"title\":\"\\u53f3\\u4fa7\\u4ecb\\u7ecd\",\"value\":\"By providing value added service and innovated products, to make liquid crystal display be the critical components in all kinds of applications.\",\"type\":\"textarea\",\"rule\":{\"require\":true},\"message\":{\"require\":\"\\u4e0d\\u80fd\\u4e3a\\u7a7a\"}}}},\"album\":{\"title\":\"\\u516c\\u53f8\\u76f8\\u518c\\u6a21\\u677f\",\"display\":1,\"vars\":{\"albums\":{\"title\":\"\\u516c\\u53f8\\u76f8\\u518c\\u8bc1\\u4e66\\u76f8\\u518c\",\"value\":[{\"title\":\"default\\/20210519\\/625d4ec56ae7911aba062c1622d7bc76.jpg\"},{\"title\":\"default\\/20210519\\/be1c88e4819a576c5f7b201a237b1626.jpg\"},{\"title\":\"default\\/20210519\\/d1cee06b2201b50d4223b0eb8bbd4d5a.jpg\"},{\"title\":\"default\\/20210519\\/b988320a5be984a1c657ebaf7df61ab3.jpg\"},{\"title\":\"default\\/20210519\\/16ad49f519b0393b4b5b98e85c5ebdfc.jpg\"},{\"title\":\"default\\/20210519\\/7df96bf3d8dc4968bb85ec300e63a20b.jpg\"},{\"title\":\"default\\/20210519\\/6302cc746285099eccef5a81b7349506.jpg\"},{\"title\":\"default\\/20210519\\/174d2449ab7a39c4ec2f8694f0230330.jpg\"},{\"title\":\"default\\/20210519\\/3395fc644e995b52170699bc923fc0b9.jpg\"},{\"title\":\"default\\/20210519\\/f4d4bae43e51f267bf9d3bf466bfb48f.jpg\"}],\"type\":\"array\",\"item\":{\"title\":{\"title\":\"\\u56fe\\u7247\",\"value\":\"\",\"type\":\"image\",\"rule\":{\"require\":true}}},\"tip\":\"\\u76f8\\u518c\",\"rule\":{\"require\":true}}}},\"seo\":{\"title\":\"SEO\\u6a21\\u5757\",\"vars\":{\"seo_title\":{\"title\":\"SEO\\u6807\\u9898\",\"type\":\"text\",\"value\":\"LCD Display Supplier, LCD Display & Module Manufacturer\",\"rule\":{\"require\":false}},\"seo_keywords\":{\"title\":\"SEO\\u5173\\u952e\\u5b57\",\"type\":\"text\",\"value\":\"LCD Display, LCD Supplier, LCD Display & Module Manufacturer\",\"rule\":{\"require\":false}},\"seo_description\":{\"title\":\"SEO\\u7f51\\u7ad9\\u63cf\\u8ff0\",\"type\":\"textarea\",\"value\":\"Sinocrystal is a professional manufacturer of LCD & OLED displays and modules with 13 years experience. We can support LCD Display, TFT and OLED.\",\"rule\":{\"require\":false}}},\"display\":0}}}" , `config_more` = "{\"vars\":[],\"widgets\":{\"banner\":{\"title\":\"banner\\u6a21\\u5757\",\"display\":1,\"vars\":{\"image\":{\"title\":\"\\u56fe\\u7247\",\"type\":\"image\",\"display\":1,\"value\":\"\",\"rule\":{\"require\":true},\"message\":{\"require\":\"\\u4e0d\\u80fd\\u4e3a\\u7a7a\"}},\"title\":{\"title\":\"\\u6807\\u9898\",\"type\":\"text\",\"value\":\"ABOUT US\",\"display\":1,\"rule\":{\"require\":true},\"message\":{\"require\":\"\\u4e0d\\u80fd\\u4e3a\\u7a7a\"}}}},\"video\":{\"title\":\"\\u89c6\\u9891\\u6a21\\u5757\",\"display\":1,\"vars\":{\"title\":{\"title\":\"\\u6807\\u9898\",\"type\":\"text\",\"value\":\"ABOUT US\",\"display\":1,\"rule\":{\"require\":true},\"message\":{\"require\":\"\\u4e0d\\u80fd\\u4e3a\\u7a7a\"}},\"video\":{\"title\":\"\\u89c6\\u9891\\u6587\\u4ef6\",\"value\":\"\",\"type\":\"file\"},\"iframe\":{\"title\":\"\\u5916\\u7f51\\u5d4c\\u5165\\u5f0f\",\"type\":\"textarea\",\"value\":\"\",\"rule\":{\"require\":false}},\"introduce\":{\"title\":\"\\u4ecb\\u7ecd\",\"value\":\"\",\"type\":\"content\",\"rule\":{\"require\":true},\"message\":{\"require\":\"\\u4e0d\\u80fd\\u4e3a\\u7a7a\"}},\"thumbnail\":{\"title\":\"\\u89c6\\u9891\\u5c01\\u9762\",\"type\":\"image\",\"value\":\"\",\"display\":1,\"rule\":{\"require\":true},\"message\":{\"require\":\"\\u4e0d\\u80fd\\u4e3a\\u7a7a\"}},\"left_title\":{\"title\":\"\\u5de6\\u4fa7\\u6807\\u9898\",\"type\":\"image\",\"value\":\"\",\"display\":1,\"rule\":{\"require\":true},\"message\":{\"require\":\"\\u4e0d\\u80fd\\u4e3a\\u7a7a\"}},\"left_image\":{\"title\":\"\\u5de6\\u4fa7\\u56fe\\u7247\",\"type\":\"image\",\"display\":1,\"value\":\"\",\"rule\":{\"require\":true},\"message\":{\"require\":\"\\u4e0d\\u80fd\\u4e3a\\u7a7a\"}},\"left_introduce\":{\"title\":\"\\u5de6\\u4fa7\\u4ecb\\u7ecd\",\"value\":\"\",\"type\":\"textarea\",\"rule\":{\"require\":true},\"message\":{\"require\":\"\\u4e0d\\u80fd\\u4e3a\\u7a7a\"}},\"right_title\":{\"title\":\"\\u53f3\\u4fa7\\u6807\\u9898\",\"type\":\"image\",\"value\":\"\",\"display\":1,\"rule\":{\"require\":true},\"message\":{\"require\":\"\\u4e0d\\u80fd\\u4e3a\\u7a7a\"}},\"right_image\":{\"title\":\"\\u53f3\\u4fa7\\u56fe\\u7247\",\"type\":\"image\",\"display\":1,\"value\":\"\",\"rule\":{\"require\":true},\"message\":{\"require\":\"\\u4e0d\\u80fd\\u4e3a\\u7a7a\"}},\"right_introduce\":{\"title\":\"\\u53f3\\u4fa7\\u4ecb\\u7ecd\",\"value\":\"\",\"type\":\"textarea\",\"rule\":{\"require\":true},\"message\":{\"require\":\"\\u4e0d\\u80fd\\u4e3a\\u7a7a\"}}}},\"album\":{\"title\":\"\\u516c\\u53f8\\u76f8\\u518c\\u6a21\\u677f\",\"display\":1,\"vars\":{\"albums\":{\"title\":\"\\u516c\\u53f8\\u76f8\\u518c\\u8bc1\\u4e66\\u7