160 x 128 tft display adafruit pricelist

In this guide we’re going to show you how you can use the 1.8 TFT display with the Arduino. You’ll learn how to wire the display, write text, draw shapes and display images on the screen.

The 1.8 TFT is a colorful display with 128 x 160 color pixels. The display can load images from an SD card – it has an SD card slot at the back. The following figure shows the screen front and back view.

This module uses SPI communication – see the wiring below . To control the display we’ll use the TFT library, which is already included with Arduino IDE 1.0.5 and later.

The TFT display communicates with the Arduino via SPI communication, so you need to include the SPI library on your code. We also use the TFT library to write and draw on the display.

In which “Hello, World!” is the text you want to display and the (x, y) coordinate is the location where you want to start display text on the screen.

The 1.8 TFT display can load images from the SD card. To read from the SD card you use the SD library, already included in the Arduino IDE software. Follow the next steps to display an image on the display:

Note: some people find issues with this display when trying to read from the SD card. We don’t know why that happens. In fact, we tested a couple of times and it worked well, and then, when we were about to record to show you the final result, the display didn’t recognized the SD card anymore – we’re not sure if it’s a problem with the SD card holder that doesn’t establish a proper connection with the SD card. However, we are sure these instructions work, because we’ve tested them.

In this guide we’ve shown you how to use the 1.8 TFT display with the Arduino: display text, draw shapes and display images. You can easily add a nice visual interface to your projects using this display.

160 x 128 tft display adafruit pricelist

In electronics world today, Arduino is an open-source hardware and software company, project and user community that designs and manufactures single-board microcontrollers and microcontroller kits for building digital devices. Arduino board designs use a variety of microprocessors and controllers. The boards are equipped with sets of digital and analog input/output (I/O) pins that may be interfaced to various expansion boards (‘shields’) or breadboards (for prototyping) and other circuits.

The boards feature serial communications interfaces, including Universal Serial Bus (USB) on some models, which are also used for loading programs. The microcontrollers can be programmed using the C and C++ programming languages, using a standard API which is also known as the “Arduino language”. In addition to using traditional compiler toolchains, the Arduino project provides an integrated development environment (IDE) and a command line tool developed in Go. It aims to provide a low-cost and easy way for hobbyist and professionals to create devices that interact with their environment using sensors and actuators. Common examples of such devices intended for beginner hobbyists include simple robots, thermostats and motion detectors.

In order to follow the market tread, Orient Display engineers have developed several Arduino TFT LCD displays and Arduino OLED displays which are favored by hobbyists and professionals.

The sizes are 0.96” (160×80), 1.13” (240×135), 1.3” ((240×240), 1.33” (128×128), 1.54” (240×240), 1.77” (128×160), 2.0” (240×320), 2.3” (320×240), 2.4” (240×320), 2.8” (240×320), 3.2” (240×320).

Although Orient Display provides many standard small size OLED, TN and IPS Arduino TFT displays, custom made solutions are provided with larger size displays or even with capacitive touch panel.

160 x 128 tft display adafruit pricelist

Hi guys, welcome to today’s tutorial. Today, we will look on how to use the 1.8″ ST7735  colored TFT display with Arduino. The past few tutorials have been focused on how to use the Nokia 5110 LCD display extensively but there will be a time when we will need to use a colored display or something bigger with additional features, that’s where the 1.8″ ST7735 TFT display comes in.

The ST7735 TFT display is a 1.8″ display with a resolution of 128×160 pixels and can display a wide range of colors ( full 18-bit color, 262,144 shades!). The display uses the SPI protocol for communication and has its own pixel-addressable frame buffer which means it can be used with all kinds of microcontroller and you only need 4 i/o pins. To complement the display, it also comes with an SD card slot on which colored bitmaps can be loaded and easily displayed on the screen.

The schematics for this project is fairly easy as the only thing we will be connecting to the Arduino is the display. Connect the display to the Arduino as shown in the schematics below.

Due to variation in display pin out from different manufacturers and for clarity, the pin connection between the Arduino and the TFT display is mapped out below:

We will use two libraries from Adafruit to help us easily communicate with the LCD. The libraries include the Adafruit GFX library which can be downloaded here and the Adafruit ST7735 Library which can be downloaded here.

We will use two example sketches to demonstrate the use of the ST7735 TFT display. The first example is the lightweight TFT Display text example sketch from the Adafruit TFT examples. It can be accessed by going to examples -> TFT -> Arduino -> TFTDisplaytext. This example displays the analog value of pin A0 on the display. It is one of the easiest examples that can be used to demonstrate the ability of this display.

The second example is the graphics test example from the more capable and heavier Adafruit ST7735 Arduino library. I will explain this particular example as it features the use of the display for diverse purposes including the display of text and “animated” graphics. With the Adafruit ST7735 library installed, this example can be accessed by going to examples -> Adafruit ST7735 library -> graphics test.

Next, we create an object of the library with the pins to which the LCD is connected on the Arduino as parameters. There are two options for this, feel free to choose the most preferred.

Next, we move to the void setup function where we initialize the screen and call different test functions to display certain texts or images.  These functions can be edited to display what you want based on your project needs.

testdrawtext("Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur adipiscing ante sed nibh tincidunt feugiat. Maecenas enim massa, fringilla sed malesuada et, malesuada sit amet turpis. Sed porttitor neque ut ante pretium vitae malesuada nunc bibendum. Nullam aliquet ultrices massa eu hendrerit. Ut sed nisi lorem. In vestibulum purus a tortor imperdiet posuere. ", ST7735_WHITE);

All the functions called under the void setup function, perform different functions, some draw lines, some, boxes and text with different font, color and size and they can all be edited to do what your project needs.

The complete code for this is available under the libraries example on the Arduino IDE. Don’t forget to change the DC and the RESET pin configuration in the code to match the schematics.

Uploading the code to the Arduino board brings a flash of different shapes and text with different colors on the display. I captured one and its shown in the image below.

That’s it for this tutorial guys, what interesting thing are you going to build with this display? Let’s get the conversation started. Feel free to reach me via the comment section if you have any questions as regards this project.

160 x 128 tft display adafruit pricelist

This Bare Basic deals with connecting an Arduino with a breakout, serial SPI interfaced, 160×128 pixel color TFT display with a screen diagonal of 1.8 inch. The controller chip is a ST7735S.

The Sitronics ST7735 is a versatile display controller chip used to drive affordable, Arduino compatible TFT screens with moderate dimensions (1.8 inch display diameter; 160×128 pixels; 16-bit color). Displays with this chip can be applied as output color graphics / text display in an Arduino environment. An interesting library written by Adafruit exits that provides sufficient tools to create colorful, attractive presentation of data.

Once an Arduino has collected and manipulated data, display of the output is obvious. Reporting can be arranged via the Arduino IDE and Serial Monitor, but in this situation the Arduino must be connected to a computer while there is no way to directly produce graphical output. A separate display can be very handy for graphical data display and is especially recommended in standalone applications.

Displays for the Arduino are available in all kinds and price classes. I distinguish three groups: LCD, OLED and TFT. Well known is the monochrome LCD display with a blue or green background, usually with two lines of 16 characters or 4 lines of 20 characters, with each ‘character’ created in its own 8×5 pixel matrix. These LCD displays are good for displaying short messages or numerical values while they lack graphical capabilities and colors. Special LCD displays are the 128×64 monochrome numerical/graphical LCD display whose library offers a few primitive graphics, and the Nokia 5110 84×48 LCD display with a PCD8544 controller. LCD displays do not offer colors other than background versus character.

Figure 1: 1.8 inch 160×128 color TFT display with SPI interface on a breakout board (ST7735 compatible). Left: simple sketch showing text mode; right: graphics test mode.

A special kind of LCD is the OLED display. This family includes small, programmable graphical displays (64×32 or 128×32 pixels) in monochrome or full color.

More versatile than the LCD displays, as well as larger, are TFT displays (fig 1). These are capable of graphics and a spectrum of colors (65,536 up to 256,000 colors) to the degree that they support realistic display of color pictures. TFT displays can be bought in a dazzling array of sizes, resolution, interfaces and prices.

TFT displays for the Arduino microcontroller boards can be accessed via an 8-bit parallel data interface – fast but consuming at least 8 pins of the Arduino. An alternative is the serial SPI interface which needs only five pins.

Figure 2: Wiring of the 160×128 SPI 1.8 inch color TFT display. Note that more expensive displays have a voltage level shifter on board. This makes it possible to connect VCC with 5V instead of 3.3V as in this clone situation.

Here is a no-frills sketch that does what is needed; display some message on the display, with some color and two graphic element (one visible: the frame rectangles and one invisible: the rectangles filled with the same color as the background used to wipe out text).

ST7735 controller based TFT displays are very handy displays for use in Arduino applications. One typical application is a standalone weather station built around an Arduino platform and decorated with temperature, humidity and barometric pressure sensors. The ST7735 is less sophisticated as the bigger parallel TFT screens but displays based on this chip form a nice intermediate between the ‘big’ TFTs and the basic LCD displays.

160 x 128 tft display adafruit pricelist

This ST7735S 1.8" TFT Display features a resolution of 128×160 and SPI (4-wire) communication. Integrated with an SD card slot, it allows you to easily read full-color bitmaps from the SD card.

The module provides users with two wiring methods: pin header wiring and GDI (General Display interface). You can directly connect the display to a FireBeetle main controller using an FPC cable. Plug and play, easy to wire. Besides, the display supports a low refresh rate and offers a good display effect and strong versatility.

160 x 128 tft display adafruit pricelist

This is a small graphics library, specifically aimed at ATtiny microcontrollers, for the variety of small colour TFT displays available at low cost from suppliers like Adafruit, AliExpress, or Banggood:

It"s an updated version of my Tiny TFT Graphics Library. This latest version of the library supports both the classic ATtiny processors, such as the ATtiny85, and the new 0-series, 1-series, and 2-series ATtiny processors, such as the ATtiny402. Like the original library it allows you to plot points, draw lines, draw filled rectangles, and plot characters and text with an optional scale factor, in 16-bit colour.

This version adds the ability to plot outline rectanges, and outline and filled circles. I"ve included demo curve-plotting and histogram-plotting programs that adjust to fit any display.

This library supports TFT displays that use an SPI interface and require four pins to drive the display. This leaves one pin free on an 8-pin chip such as the ATtiny85 or ATtiny402. If you need more pins choose a larger chip, such as the ATtiny84 or ATtiny404.

Unlike my Compact TFT Graphics Library which uses standard Arduino SPI calls, this library uses direct I/O pin manipulations. This means that you can use any assignment of pins to the four I/O lines needed by the display, and makes it about twice as fast as one using SPI calls. I"ve also added support for some additional displays, so it now supports 16 different TFT displays.

On the classic ATtiny processors, such as the ATtiny85, the library uses the feature that you can toggle one or more bits in a port by writing to the PINB register; for example, to enable or disable the chip-select signal:

So provided you set all the pins to their disabled state at startup, the display routines can simply toggle the appropriate pins to enable or disable them.

The differences between each family of processors are handled by constants to define the pin assignments, and preprocessor macros to define the bit manipulations. If you use the circuits given below you won"t need to change anything, apart from specifying which display you"re using.

The ClearDisplay() routine has been optimised further by realising that we don"t need to keep setting the mosi bit, since to clear the display it is always zero, so the routine only needs to toggle the sck bit the appropriate number of times. I"m grateful to Thomas Scherer for suggesting this.

This library will work with displays based on the ST7735 which supports a maximum display size of 162x132, or the ST7789 and ILI9340/1 which support a maximum display size of 320x240. It includes parameters for the following colour TFT displays:

* These Adafruit displays conveniently all have the same edge-connector layout, so you can make a prototyping board or PCB that will take any of them, such as my Universal TFT Display Backpack.

Some of the AliExpress displays include a LDO 3.3V regulator, but not logic-level translation, so I recommend only interfacing them to a processor running from 3.3V.

The Adafruit displays all include an LDO 3.3V regulator and logic-level translation, so can be safely interfaced to processors powered from either 5V or 3.3V.

On the AliExpress red 160x128 display you need to connect the backlight pin to Vcc to turn it on. This doesn"t seem to be necessary with the other displays.

The library will probably support other TFT displays that use the same ST7735, ST7789, ILI9340/1 driver chips, but you may need to experiment with the parameters to get the image scaled and centered correctly.

The display needs to be connected to the microcontroller via four I/O lines: MOSI, SCK, CS, and DC. You can use any pins for these, but they should all be in the same port. You need to specify the port pin numbers of the pins you are using at the start of the Tiny TFT Graphics Library listing.

The 33kΩ pullup resistor from the display"s CS pin is optional; it is only needed on the AliExpress displays, and holds the chip select high to prevent the display from flickering while programming the ATtiny85.

The different displays are catered for by seven constants which specify the size of the display, the offsets relative to the area supported by the display driver, whether the display is inverted, the rotation value, and the order of the colours; for example:

By default the parameters give the correct orientation assuming you"re using the display with the header pins along the top, except in the case of the larger displays which have the header pins along the shorter edge, in which case the header pins are assumed to be on the left.

To check or adjust the values for each display you can run the TestChart() program, which draws a one-pixel border around the display area, and plots a red "F" to show the orientation:

The library will probably support other TFT displays that use the same driver chips, but you may need to experiment with the parameters to get the image scaled and centered correctly.

The foreground and background colours are defined by the two global variables fore and back. Initially these are set to White (0xFFFF) and Black (0) respectively:

The library includes basic graphics routines for plotting points and drawing lines. These work on a conventional coordinate system with the origin at lower left. For example, on the 80x160 display:

You can plot larger characters by setting the global variable scale, default value 1. After plotting a character PlotChar() moves the drawing position to the start of the next character to make it easy to plot several characters in a row without needing to call MoveTo().

160 x 128 tft display adafruit pricelist

I have worked around my issue with the display in a fashion that I didn"t think possible with my lack of knowledge. So, the following is for people who experience the same problem or are just interested in the matter (conclusion at the bottom):

After searching for many, many different ways of describing my problem on Google, I came across this page on the Arduino forums of someone who had a completely different issue. However, Google found some text embedded in some code posted on that particular page (1.8" 128x160 SPI TFT LCD Display white screen - Displays - Arduino Forum), which had nothing to do with that problem, but was helpful for me:

Now I don"t have this particular display, but the description of the problem showed similarities to mine. And there was some sort of solution there as well. However, being the n00b I am, I understood next to nothing. I did give me the insight though, that I should try to make a workaround within the libraries that I will use in my programs. This way, I don"t have to add extra code within the programs to shift the dimensions, and I can also download other programs and run them just fine with my altered libraries.

To make sure my display wasn"t actually defect, I first looked for the option to broaden the resolution specifications, so I could see the pixels work. Instead of the usual 160x128 resolution, I compensated for the deviation with a resolution of 161x130: now all the pixels lit up as they should: no defect.

However, this solution would mean constantly accounting for a weird resolution which would make developing programs much more difficult than needed, since I would have to constantly remind myself of that odd resolution. Plus, there would always be extra columns and rows that recieved some computing, which would limit the speed of the Arduino. So I looked further in the libraries to find the place where the (0,0)-coordinates were defined.

The problem wasn"t actually a problem within the files, so I suspect that there is indeed an alignment issue with my display. But I found the code within it, which I changed so that the starting point of the drawing shifted. After looking through all the libraries within the TFT folder (meaning: the TFT library, AdafruitGFX library and Adafruit ST7735 library) and trying to understand as much as I could, I found the location: within the Adafruit_ST7735.cpp file, there is code of the "Adafruit_ST7735::commonInit(...)" function. This function defines the value of "colstart" and "rowstart" as 0. I changed it to correspond with my deviation.

A TFT display resolution can be configured within Adafruit_ST7735.cpp within the Gcmd[] array within the Adafruit_ST7735::writecommand(...) function. The other arrays in that function can also be configured, but TFT.cpp specifically states that a TFT display is configured according to the Gcmd[] array. I don"t remember if it is necessary, or if I just added the following because I changed, tried and errored so much, but I also added the corresponding values to the "_width" and "_height" within the TFT.cpp file.

The origin of a TFT display can be configured within Adafruit_ST7735.cpp within the "Adafruit_ST7735::commonInit(...)" function. Changing the values of "colstart" and "rowstart" will change the row and column of the origin. By standard, they are both defined as 0 (-> colstart = rowstart = 0;), but writing them as two different definitions makes it possible to set a virtual origin, relative to the misaligned origin of the display.