pls tft display vs ips price
If you want to buy a new monitor, you might wonder what kind of display technologies I should choose. In today’s market, there are two main types of computer monitors: TFT LCD monitors & IPS monitors.
The word TFT means Thin Film Transistor. It is the technology that is used in LCD displays. We have additional resources if you would like to learn more about what is a TFT Display. This type of LCDs is also categorically referred to as an active-matrix LCD.
These LCDs can hold back some pixels while using other pixels so the LCD screen will be using a very minimum amount of energy to function (to modify the liquid crystal molecules between two electrodes). TFT LCDs have capacitors and transistors. These two elements play a key part in ensuring that the TFT display monitor functions by using a very small amount of energy while still generating vibrant, consistent images.
Industry nomenclature: TFT LCD panels or TFT screens can also be referred to as TN (Twisted Nematic) Type TFT displays or TN panels, or TN screen technology.
IPS (in-plane-switching) technology is like an improvement on the traditional TFT LCD display module in the sense that it has the same basic structure, but has more enhanced features and more widespread usability.
Both TFT display and IPS display are active-matrix displays, neither can’t emit light on their own like OLED displays and have to be used with a back-light of white bright light to generate the picture. Newer panels utilize LED backlight (light-emitting diodes) to generate their light hence utilizing less power and requiring less depth by design. Neither TFT display nor IPS display can produce color, there is a layer of RGB (red, green, blue) color filter in each LCD pixels to produce the color consumers see. If you use a magnifier to inspect your monitor, you will see RGB color in each pixel. With an on/off switch and different level of brightness RGB, we can get many colors.
Winner. IPS TFT screens have around 0.3 milliseconds response time while TN TFT screens responds around 10 milliseconds which makes the latter unsuitable for gaming
Winner. the images that IPS displays create are much more pristine and original than that of the TFT screen. IPS displays do this by making the pixels function in a parallel way. Because of such placing, the pixels can reflect light in a better way, and because of that, you get a better image within the display.
As the display screen made with IPS technology is mostly wide-set, it ensures that the aspect ratio of the screen would be wider. This ensures better visibility and a more realistic viewing experience with a stable effect.
Winner. While the TFT LCD has around 15% more power consumption vs IPS LCD, IPS has a lower transmittance which forces IPS displays to consume more power via backlights. TFT LCD helps battery life.
Normally, high-end products, such as Apple Mac computer monitors and Samsung mobile phones, generally use IPS panels. Some high-end TV and mobile phones even use AMOLED (Active Matrix Organic Light Emitting Diodes) displays. This cutting edge technology provides even better color reproduction, clear image quality, better color gamut, less power consumption when compared to LCD technology.
This kind of touch technology was first introduced by Steve Jobs in the first-generation iPhone. Of course, a TFT LCD display can always meet the basic needs at the most efficient price. An IPS display can make your monitor standing out.
When it comes to choosing the right panel type of your LCD monitor, the options are seemingly endless. We’ve discussed the differences between AMOLED and LCD displays as well as the different types of touchscreen monitors that are commonly used for various devices and their benefits. Now it’s time to learn about the different features and specifications of PLS and IPS panels so you can decide which one is the most suitable choice for your specific personal or professional applications.
PLS stands for plane to line switching. Also referred to as Super PLS Panel, this technology boasts superior technological advancements such as a multitude of brightness setting options, crystal-clear image quality, and adjustable viewing angles without breaking the bank.
IPS stands for in-plane switching. It’s one of the most commonly used monitors for LCD displays and it consists of two glass panels that hold a layer of liquid crystals in between them. The liquid crystals become animated and perform predetermined actions such as moving in a specific direction or displaying certain colours when they’re charged with an electric current. These actions result in the high-quality images that appear on your television, laptop, or smartphone screen.
As mentioned, IPS LCD monitors contain hundreds of liquid crystals that are situated between two glass sheets in a parallel formation. As electric currents run through the liquid crystals when the screen is turned on, they become animated and move in different directions and backlighting passes through them. This is what produces the crystal-clear and instantaneous images you see on the screen. The excellent viewing angles are the result of the horizontal movements of the liquid crystals inside the panel.
PLS panels for LCD monitors have been on the market for over a decade and have proven to be a worthy adversary for their IPS predecessors. Although the technology is the same for the most part, IPS does offer some minor improvements. The main difference is that IPS panels offer more optimized liquid molecular alignment, which makes for a slightly better viewing experience. Hence, PLS screens offer 15% more brightness than IPS panel types.
From an aesthetic and logistical standpoint, PLS panel types are also thinner than IPS due to the fact that the glass sheets that hold the liquid crystals in place are positioned much lower in the screen configuration.
When it comes to comparing and contrasting the differences between IPS and PLS LCD monitor panel types, the competition is pretty stiff. Both monitors are fairly similar with the exception that PLS is meant to be an improvement on the previous technology. Here are the key factors that should be considered when deciding which one is the best monitor panel for LCD industrial displays.
PLS monitors offer superior viewing angles when compared to IPS displays. Unlike IPS displays, PLS monitors don’t have any noticeable colour distortions and they have significantly lower production costs.
Colour contrast and brightness is a central concern when purchasing a new commercial or industrial display. Whether you’re a gamer or graphic designer, your best option in this regard is to stick to IPS displays. They offer far more consistent image quality, colour contrast, and brightness that’s perfect for applications that rely heavily on high-quality image production.
Unfortunately, PLS and IPS monitors both have a fairly slow response time (the amount of time it takes for liquid crystals to shift from one colour or shade to another). For this reason, neither one is the ideal choice for gaming purposes, but they’re both suitable for graphic design projects that focus more on colour distribution and accuracy than response time.
PLS panel types have been proven to have superior colour distribution and accuracy compared to IPS panel types. PLS displays have a far more expansive colour gamut that’s ideal for users who require the most natural-looking images and colour options.
Backlight bleed occurs when the lights from the back of the screen leak through the edges, which results in uneven lighting or glow. This is a fairly common shortcoming of IPS screens when the brightness is adjusted to a particularly high level and can make for a poor viewing experience. PLS panel types don’t have this problem and offer even lighting regardless of the brightness settings.
The answer is inconclusive. Both IPS and PLS monitor types certainly have their advantages. Although PLS is slightly better in terms of backlighting and faster response times, the margins for improvement are fairly tight. It really just depends on what your preferences are as well as the applications that the monitors are being used for.
Nauticomp Inc.is one of the leading manufacturers and distributors of sophisticated state-of-the-art LCD displays and monitors in North America. Contact us to learn about our various products or to place an order.
IPS (In-Plane Switching) lcd is still a type of TFT LCD, IPS TFT is also called SFT LCD (supper fine tft ),different to regular tft in TN (Twisted Nematic) mode, theIPS LCD liquid crystal elements inside the tft lcd cell, they are arrayed in plane inside the lcd cell when power off, so the light can not transmit it via theIPS lcdwhen power off, When power on, the liquid crystal elements inside the IPS tft would switch in a small angle, then the light would go through the IPS lcd display, then the display on since light go through the IPS display, the switching angle is related to the input power, the switch angle is related to the input power value of IPS LCD, the more switch angle, the more light would transmit the IPS LCD, we call it negative display mode.
The regular tft lcd, it is a-si TN (Twisted Nematic) tft lcd, its liquid crystal elements are arrayed in vertical type, the light could transmit the regularTFT LCDwhen power off. When power on, the liquid crystal twist in some angle, then it block the light transmit the tft lcd, then make the display elements display on by this way, the liquid crystal twist angle is also related to the input power, the more twist angle, the more light would be blocked by the tft lcd, it is tft lcd working mode.
A TFT lcd display is vivid and colorful than a common monochrome lcd display. TFT refreshes more quickly response than a monochrome LCD display and shows motion more smoothly. TFT displays use more electricity in driving than monochrome LCD screens, so they not only cost more in the first place, but they are also more expensive to drive tft lcd screen.The two most common types of TFT LCDs are IPS and TN displays.
PLS (Plane to Line Switching) panel in an IPS-type panel made by Samsung; All IPS-type panels, such as Innolux’s AAS, AUO’s AHVA and LG’s AH-IPS and Nano IPS offer excellent color accuracy and wide viewing angles.
PLS stands for Plane to Line Switching and is produced by Samsung, who claims that a PLS panel offers 10% more brightness, better viewing angles, lower production costs (about 15%), better image quality and the possibility of having flexible panels.
There are several variations of IPS panels, such as AU Optronics‘ AHVA (Advanced Hyper-Viewing Angle) panels. New AHVA panels are usually faster than other IPS panels but don’t have as wide color gamut. However, they can be paired with custom backlights and deliver an exceptional color gamut, such as the Acer XB323UGP with full Adobe RGB color space coverage.
In reality, most people don’t differentiate between IPS, AHVA and PLS since they are pretty much alike, which is why they are categorized under a single entity and simply called ‘IPS.’
Overall, whether a monitor has an IPS, PLS, or AHVA panel shouldn’t be the deciding factor when searching for a new display. You should check each monitor’s color gamut, brightness, response time and other specs to determine which monitor’s panel is better.
The PLS panel is a panel developed and manufactured by Samsung’s as proprietary display design technology. Its performance is very close to that of IPS. The production cost is reduced by about 15% compared with IPS, so it is quite competitive in the market. Its advantages and disadvantages are similar to IPS, the only advantage is that it is lower cost than IPS.
The full name of the PLS panel is called Plane to Line Switching. The driving method is that all the electrodes are located on the same plane, and the liquid crystal molecules are driven by vertical and horizontal electric fields. We can see the difference between the PLS panel in the drive mode and the VA class (including MVA and Samsung’s own PVA) and the IPS panel.
Although the PLS panel has been published in 11 years, it has not been widely publicized, so most people do not know the PLS panel. However, Samsung introduced the PLS panel display, which is mainly for mid-range and mid-end users. It can be seen that this time Samsung still wants to carry out large-scale publicity on the PLS panel. It is generally better than the IPS displays because of wide viewing angles, high brightness and colour accuracy.
According to the TFT technology classification, it can be classified into high-temperature polysilicon (HTPS), low-temperature polysilicon (LTPS), amorphous silicon (a-Si), and IGZO. The other part can be classified into TN, IPS, VA, PLS, etc. according to the liquid crystal arrangement or imaging technology. It looks a bit messy, but it’s actually easier to judge.
The IPS panel is also known as the hard screen. It has a high viewing angle, fast response, good colour reproduction and moderate price. The shortcoming is that there is light leakage. The PLS is Samsung’s panel based on IPS standards, which is at the same level as IPS with a slightly better approach.
Using the PLS panel that Samsung uses to combat IPS, the feature is a wide viewing angle. The figure below shows that the panel performs well in terms of viewing angle in the left and right directions, with viewing angles of up to 178 degrees. The colour gamut also reached 72% NTSC, remember that I have said that the quality of 72% NTSC in the notebook screen is good. The display colour reaches 16.7M (8-bit) which provides a better colour display than a normal 6-bit screen.
The tried and trusted TFT is the display of choice for most industrial designs, but it does have its limitations in viewability and colour vibrancy. But what about the relatively new technology, IPS (in plane switching) which has turned the TFT into a super-TFT? What are the benefits and drawbacks of each?
IPS derives its name from the fact that the liquid-crystal molecules are aligned in parallel with the glass plates, whereas the TN principle adopted in conventional TFT displays is based on perpendicular alignment of the molecules. In an IPS display, the crystals remain oriented in parallel whether the pixel is turned on or off.
A TFT display is a form of Liquid Crystal Displaywith thin film transistors for controlling the image formation. The TFT technology works by controlling brightness in red, green and blue sub-pixels through transistors for each pixel on the screen. The pixels themselves do not produce light; instead, the screen uses a backlight for illumination. Discover our TFT Products
Because the pixels block light when in the off state (the opposite situation to conventional TFT), IPS TFT exhibits high contrast and the background is true black when the display is powered down.
Display choice really does depend on your application, end user and environment. It may be a higher-grade IPS is needed to satisfy outdoor requirements, or a lower cost standard TFT display is sufficient. Before you make your choice, why speak with us and we will be happy to talk you through your options.
AMOLED (Active Matrix Organic Light Emitting Diode) and TFT (Thin Film Transistor) are the two types of displays that are used in mobile phones. TFT is actually a process of producing the displays and is used even by AMOLED but for most purposes, TFT is used to refer to LCD displays. The difference between them is the material as AMOLED uses organicmaterials, mainly carbon, while TFT does not.
There are differences between the two that are quite tangible. For starters, AMOLED generates its own light rather than relying on a backlight like a TFT-LCD does. This consequently means that AMOLED displays are much thinner than LCD displays; due to the absence of a backlight. It also results in much better colors than a TFT is capable of producing. As each pixel’s color and light intensity can be regulated independently and no light seeps from adjacent pixels. A side by side comparison of the two displays with the same picture should confirm this. Another effect of the lack of a backlight is the much lower power consumption of the device. This is very desirable when it comes to mobile phones where every single feature competes for the limited capacity of the battery. As the screen is on 90% of the time that the device is being used, it is very good that AMOLED displays consume less. Just how much of a difference is not very fixed though as it really depends on the color and intensity of the image. Having a black background with white text consumes much less energy than having black text on a white background.
The biggest disadvantage that AMOLED has is the shorter lifespan of the screen compared to TFT. Each pixel in the display degrades with each second that it is lit and even more so the brighter it is. Â Despite improvements on the lifetime of AMOLED displays, AMOLED still only lasts a fraction of the lifetime of a TFT display. With that said, an AMOLED display is able to outlast the usable lifetime of the device before parts of it start to degrade.
The main hindrance to the massive adaptation of AMOLED is the low production numbers. TFT has been in production for much longer and the infrastructure is already there to meet the demands.
First, to be clear, there is no “best” panel type out of these, as all have their respective advantages and disadvantages over the others. The information here pertains to general characteristics, as even panels of the same panel type will have some variance in characteristics (power consumption, backlight bleed, etc.) depending on the luck of the draw. Manufacturer tuning can also impact display output, affording some differentiating leverage to manufacturers sourcing from panel suppliers (which is effectively all of them).
CRT displays are sometimes still used in medical, simulation, military, and government fields that have embedded the displays into control panels and machinery.
That being said, TN panels weren"t and still aren’t perfect, and compared to the previously popular CRT monitors, they’ve suffered from limited viewing angles, uneven backlighting, worse motion blur, higher input lag, dead/stuck pixels, and poor display in sunlight.
To be clear, many of these issues have been improved upon, but due to the underlying science of LCD TN panels, cannot be completely resolved. In fact, many of these issues -- like uneven backlighting, motion blur, input lag, and dead/stuck pixels -- are inherent issues across all LCD panel types. Poor viewing angles become a more pressing issue with larger displays, since the viewing angle when viewed straight on increases towards the outside of the monitor, thus causing more color distortion. TN panels do have the advantages of lower response times and higher refresh rates than other panel types/CRTs. TN panels are generally from 60Hz to 144Hz, offering substantially greater fluidity of gameplay with higher frequencies.
IPS (In-Plane Switching) was created to address the shortcomings of TN panels. IPS panels seek to solve TN panels’ issues of poor color reproduction and viewing angles. In this regard, IPS panels have largely succeed. Not only do they offer a higher contrast ratio (superior blacks), high color accuracy (which leads to IPS panels also generally looking less “washed out”), but IPS panels also have very little color shift when changing the viewing angles.
The tradeoff to this is that IPS panels have slower response times, higher production costs, higher power consumption, and lower possible refresh rates. IPS panels have traditionally been 60Hz, although, as with all monitors, they can be overclocked (results will vary). There have been improvements to IPS panels over the years, and slightly different revisions in the form of E-IPS and H-IPS, but ultimately the differences between these versions are inconsequential to gamers and those not involved in graphic design as a job.
Due to their worse response rates and lower possible refresh rates, IPS panels are generally considered to be worse for competitive gameplay and used more often when color is important, such as graphic design. For gamers who don’t play competitively and prefer breathtaking strolls in Skyrim instead of sweeping scrubs in CS:GO, an IPS panel should be a consideration for the next monitor.
PLS (Plane to Line Switching) are quite similar to IPS panels, so much so that they have the same advantages and disadvantages, with a couple extra minor advantages. PLS is produced by Samsung, who claims that compared to IPS panels, PLS panels have better viewing angles, a 10% increase in brightness, 15% decrease in production costs, increased image quality, and allow for flexible panels. Samsung’s PLS panels have been known to overclock well in monitors such as the QNIX 2710 in particular. Overall, PLS is basically Samsung’s version of IPS, as it is very similar in functionality (and even name). AHVA is also very similar to IPS and PLS, and differentiation between them is rare, although it should not be confused with the next panel type.
VA (Vertical Alignment) panels offer a solid medium between TN and IPS panels. VA was created to combine the advantages of IPS and TN panels, and largely did, although they did so with some compromise. That seems to be a theme in the world of monitors.
Compared to IPS panels, VA panels have the advantage of higher possible refresh rates. Although most are currently 60Hz, there are a few that are above 60Hz. VA has more advantages over TN panels than IPS, with better color reproduction, higher maximum brightness, and better viewing angles. VA panels do have the best contrast ratios of all panel types mentioned, but they also have the worst response times of the monitor technologies covered here. This causes blurring in fast-moving pictures and is disadvantageous to gaming.
IPS panels solve the issues of TN panels, with better color reproduction and viewing angles, but do so at the cost of refresh rate and response time. IPS panels are especially useful for those not wanting to play too competitively, but want a beautiful/immersive visual experience. PLS and AHVA are similar enough to IPS to usually not be differentiated.
VA panels provide a good middle ground with better-than-IPS refresh rates and contrast levels, but have worse viewing angles and color production, although generally still better than TN. Response times are VA’s largest downfall, though, being slower than IPS and its variants and TN.
What’s best for you will depend on all of these items. For those wanting to play at a competitive level and who favor FPS or racing games, TN panels are best. Those wanting a more impressive and immersive experience may want an IPS (or similar variant, such as PLS), especially if working on artistic endeavors. Finally, those wanting a general monitor for work might consider a VA panel, although due to their higher response times, they won’t be good for gaming.
While monitors may sometimes seem simple in that they just display pretty pictures -- as with everything else -- they are more complicated than they appear at first glance.
In recent years, smartphone displays have developed far more acronyms than ever before with each different one featuring a different kind of technology. AMOLED, LCD, LED, IPS, TFT, PLS, LTPS, LTPO...the list continues to grow.
There are many display types used in smartphones: LCD, OLED, AMOLED, Super AMOLED, TFT, IPS and a few others that are less frequently found on smartphones nowadays, like TFT-LCD. One of the most frequently found on mid-to-high range phones now is IPS-LCD. But what do these all mean?
LCD means Liquid Crystal Display, and its name refers to the array of liquid crystals illuminated by a backlight, and their ubiquity and relatively low cost make them a popular choice for smartphones and many other devices.
LCDs also tend to perform quite well in direct sunlight, as the entire display is illuminated from behind, but does suffer from potentially less accurate colour representation than displays that don"t require a backlight.
Within smartphones, you have both TFT and IPS displays. TFT stands for Thin Film Transistor, an advanced version of LCD that uses an active matrix (like the AM in AMOLED). Active matrix means that each pixel is attached to a transistor and capacitor individually.
The main advantage of TFT is its relatively low production cost and increased contrast when compared to traditional LCDs. The disadvantage of TFT LCDs is higher energy demands than some other LCDs, less impressive viewing angles and colour reproduction. It"s for these reasons, and falling costs of alternative options, that TFTs are not commonly used in smartphones anymore.Affiliate offer
IPS technology (In-Plane Switching) solves the problem that the first generation of LCD displays experience, which adopts the TN (Twisted Nematic) technique: where colour distortion occurs when you view the display from the side - an effect that continues to crop up on cheaper smartphones and tablets.
The PLS (Plane to Line Switching) standard uses an acronym that is very similar to that of IPS, and is it any wonder that its basic operation is also similar in nature? The technology, developed by Samsung Display, has the same characteristics as IPS displays - good colour reproduction and viewing angles, but a lower contrast level compared to OLED and LCD/VA displays.
According to Samsung Display, PLS panels have a lower production cost, higher brightness rates, and even superior viewing angles when compared to their rival, LG Display"s IPS panels. Ultimately, whether a PLS or IPS panel is used, it boils down to the choice of the component supplier.
This is a very common question after "LED" TVs were launched, with the short answer simply being LCD. The technology used in a LED display is liquid crystal, the difference being LEDs generating the backlight.
Despite the improvement in terms of contrast (and potentially brightness) over traditional LCD/LED displays, LCD/mini-LEDs still divide the screen into brightness zones — over 2,500 in the case of the iPad and 2021 "QNED" TVs from LG — compared to dozens or hundreds of zones in previous-generation FALD (full-array local dimming) displays, on which the LEDs are behind the LCD panel instead of the edges.
AMOLED stands for Active Matrix Organic Light-Emitting Diode. While this may sound complicated it actually isn"t. We already encountered the active matrix in TFT LCD technology, and OLED is simply a term for another thin-film display technology.
OLED is an organic material that, as the name implies, emits light when a current is passed through it. As opposed to LCD panels, which are back-lit, OLED displays are "always off" unless the individual pixels are electrified.
This means that OLED displays have much purer blacks and consume less energy when black or darker colours are displayed on-screen. However, lighter-coloured themes on AMOLED screens use considerably more power than an LCD using the same theme. OLED screens are also more expensive to produce than LCDs.
Because the black pixels are "off" in an OLED display, the contrast ratios are also higher compared to LCD screens. AMOLED displays have a very fast refresh rate too, but on the downside are not quite as visible in direct sunlight as backlit LCDs. Screen burn-in and diode degradation (because they are organic) are other factors to consider.Affiliate offer
OLED stands for Organic Light Emitting Diode. An OLED display is comprised of thin sheets of electroluminescent material, the main benefit of which is they produce their own light, and so don"t require a backlight, cutting down on energy requirements. OLED displays are more commonly referred to as AMOLED displays when used on smartphones or TVs.
Super AMOLED is the name given by Samsung to its displays that used to only be found in high-end models but have now trickled down to more modestly specced devices. Like IPS LCDs, Super AMOLED improves upon the basic AMOLED premise by integrating the touch response layer into the display itself, rather than as an extra layer on top.
As a result, Super AMOLED displays handle sunlight better than AMOLED displays and also require less power. As the name implies, Super AMOLED is simply a better version of AMOLED. It"s not all just marketing bluster either: Samsung"s displays are regularly reviewed as some of the best around.
The technology debuted with the obscure Royole FlexPai, equipped with an OLED panel supplied by China"s BOE, and was then used in the Huawei Mate X (pictured above) and the Motorola Razr (2019), where both also sport BOE"s panel - and the Galaxy Flip and Fold lines, using the component supplied by Samsung Display.Affiliate offer
Resolution describes the number of individual pixels (or points) displayed on the screen and is usually presented for phones by the number of horizontal pixels — vertical when referring to TVs and monitors. More pixels on the same display allow for more detailed images and clearer text.
To make it easier to compare different models, brands usually adopt the same naming scheme made popular by the TV market with terms like HD, FullHD and UltraHD. But with phones adopting a wide range of different screen proportions, just knowing that is not enough to know the total pixels displayed on the screen.Common phone resolutions
But resolution in itself is not a good measure for image clarity, for that we need to consider the display size, resulting in the pixel density by area measured by DPI/PPI (dots/points per inch).Affiliate offer
Speaking of pixel density, this was one of Apple"s highlights back in 2010 during the launch of the iPhone 4. The company christened the LCD screen (LED, TFT, and IPS) used in the smartphone as "Retina Display", thanks to the high resolution of the panel used (960 by 640 pixels back then) in its 3.5-inch display.
The name coined by Apple"s marketing department is applied to screens which, according to the company, the human eye is unable to discern the individual pixels from a normal viewing distance. In the case of iPhones, the term was applied to displays with a pixel density that is greater than 300 ppi (dots per inch).
With the iPhone 11 Pro, another term was introduced to the equation: "Super Retina XDR". Still using an OLED panel (that is supplied by Samsung Display or LG Display), the smartphone brings even higher specs in terms of contrast - with a 2,000,000:1 ratio and brightness level of 1,200 nits, which have been specially optimized for displaying content in HDR format.
As a kind of consolation prize for iPhone XR and iPhone 11 buyers, who continued relying on LCD panels, Apple classified the display used in the smartphones with a new term, "Liquid Retina". This was later applied also to the iPad Pro and iPad Air models, with the name defining screens that boast a high range and colour accuracy, at least based on the company"s standards.
Nit, or candela per square meter in the international system (cd/m²), is a unit of measurement of luminance, i.e. the intensity of light emitted. In the case of smartphone screens and monitors in general, such a value defines just how bright the display is - the higher the value, the more intense the light emitted by the screen.
The result is smoother animations on the phone, both during regular use and in games, compared to screens that have a 60 Hz refresh rate which remains the standard rate in the market when it comes to displays.
Originally touted to be a "gimmick" in 2017, with the launch of the Razer Phone, the feature gained more and more momentum in due time, even with a corresponding decrease in battery life. In order to make the most of this feature, manufacturers began to adopt screens with variable refresh rates, which can be adjusted according to the content displayed - which is 24 fps in most movies, 30 or 60 fps in home video recordings, and so forth.
TFT(Thin Film Transistor) - a type of LCD display that adopts a thin semiconductor layer deposited on the panel, which allows for active control of the colour intensity in each pixel, featuring a similar concept as that of active-matrix (AM) used in AMOLED displays. It is used in TN, IPS/PLS, VA/PVA/MVA panels, etc.
LTPS(Low Temperature PolySilicon) - a variation of the TFT that offers higher resolutions and lower power consumption compared to traditional TFT screens, based on a-Si (amorphous silicon) technology.
IGZO(Indium Gallium Zinc Oxide) - a semiconductor material used in TFT films, which also allows higher resolutions and lower power consumption, and sees action in different types of LCD screens (TN, IPS, VA) and OLED displays
LTPO(Low Temperature Polycrystaline Oxide) - a technology developed by Apple that can be used in both OLED and LCD displays, as it combines LTPS and IGZO techniques. The result? Lower power consumption. It has been used in the Apple Watch 4 and the Galaxy S21 Ultra.
LTPO allows the display to adjust its refresh rate, adapting dynamically to the content shown. Scrolling pages can trigger the fastest mode for a fluid viewing, while displaying a static image allows the phone to use a lower refresh rate, saving the battery.
Among televisions, the long-standing featured technology has always been miniLED - which consists of increasing the number of lighting zones in the backlight while still using an LCD panel. There are whispers going around that smartphones and smartwatches will be looking at incorporating microLED technology in their devices soon, with it being radically different from LCD/LED displays as it sports similar image characteristics to that of OLEDs.
A microLED display has one light-emitting diode for each subpixel of the screen - usually a set of red, green, and blue diodes for each dot. Chances are it will use a kind of inorganic material such as gallium nitride (GaN).
By adopting a self-emitting light technology, microLED displays do not require the use of a backlight, with each pixel being "turned off" individually. The result is impressive: your eyes see the same level of contrast as OLED displays, without suffering from the risk of image retention or burn-in of organic diodes.
Another thing to be wary of is the price - at 170 million Korean won (about US$150,330 after conversion), that is certainly a lot of money to cough up for a 110-inch display.
In addition, the organic diodes that give OLED screens their name can lose their ability to change their properties over time, and this happens when the same image is displayed for a long period of time. This problem is known as "burn-in", tends to manifest itself when higher brightness settings are applied for long periods of time.
In the case of LCD displays, the main advantage lies in the low manufacturing cost, with dozens of players in the market offering competitive pricing and a high production volume. Some brands have taken advantage of this feature to prioritize certain features - such as a higher refresh rate - instead of adopting an OLED panel, such as the Xiaomi Mi 10T.
Both screens are made up of Pixels. A pixel is made up of 3 sections called sub-pixels. The three sections are red, green and blue (primary colors for display tech).
The light is generated from a “backlight”. A series of thin films, transparent mirrors and an array of white LED Lights that shine and distribute light across the back of the display.
Each pixel is its own light source, meaning that no backlight is necessary. This allows the screen assembly to be thinner, and have more consistent lighting across the whole display.
IPS (in-plane switching) is a screen technology for liquid-crystal displays (LCDs). In IPS, a layer of liquid crystals is sandwiched between two glass surfaces. The liquid crystal molecules are aligned parallel to those surfaces in predetermined directions (in-plane). The molecules are reoriented by an applied electric field, whilst remaining essentially parallel to the surfaces to produce an image. It was designed to solve the strong viewing angle dependence and low-quality color reproduction of the twisted nematic field effect (TN) matrix LCDs prevalent in the late 1980s.
The TN method was the only viable technology for active matrix TFT LCDs in the late 1980s and early 1990s. Early panels showed grayscale inversion from up to down,Vertical Alignment (VA)—that could resolve these weaknesses and were applied to large computer monitor panels.
Shortly thereafter, Hitachi of Japan filed patents to improve this technology. A leader in this field was Katsumi Kondo, who worked at the Hitachi Research Center.thin-film transistor array as a matrix and to avoid undesirable stray fields in between pixels.Super IPS). NEC and Hitachi became early manufacturers of active-matrix addressed LCDs based on the IPS technology. This is a milestone for implementing large-screen LCDs having acceptable visual performance for flat-panel computer monitors and television screens. In 1996, Samsung developed the optical patterning technique that enables multi-domain LCD. Multi-domain and in-plane switching subsequently remain the dominant LCD designs through 2006.
IPS technology is widely used in panels for TVs, tablet computers, and smartphones. In particular, most IBM products was marketed as CCFL backlighting, and all Apple Inc. products marketed with the label backlighting since 2010.
Most panels also support true 8-bit-per-channel colour. These improvements came at the cost of a lower response time, initially about 50 ms. IPS panels were also extremely expensive.
IPS has since been superseded by S-IPS (Super-IPS, Hitachi Ltd. in 1998), which has all the benefits of IPS technology with the addition of improved pixel refresh timing.
Unlike TN LCDs, IPS panels do not lighten or show tailing when touched. This is important for touch-screen devices, such as smartphones and tablet computers.
Toward the end of 2010 Samsung Electronics introduced Super PLS (Plane-to-Line Switching) with the intent of providing an alternative to the popular IPS technology which is primarily manufactured by LG Display. It is an "IPS-type" panel technology, and is very similar in performance features, specs and characteristics to LG Display"s offering. Samsung adopted PLS panels instead of AMOLED panels, because in the past AMOLED panels had difficulties in realizing full HD resolution on mobile devices. PLS technology was Samsung"s wide-viewing angle LCD technology, similar to LG Display"s IPS technology.
In 2012 AU Optronics began investment in their own IPS-type technology, dubbed AHVA. This should not be confused with their long standing AMVA technology (which is a VA-type technology). Performance and specs remained very similar to LG Display"s IPS and Samsung"s PLS offerings. The first 144 Hz compatible IPS-type panels were produced in late 2014 (used first in early 2015) by AUO, beating Samsung and LG Display to providing high refresh rate IPS-type panels.
Cross, Jason (18 March 2012). "Digital Displays Explained". TechHive. PC World. p. 4. Archived from the original on 2 April 2015. Retrieved 19 March 2015.
"TFT Technology: Enhancing the viewing angle". Riverdi (TFT Module Manufacturer). Archived from the original on 23 April 2016. Retrieved 5 November 2016. However, [twisted nematic] suffers from the phenomenon called gray scale inversion. This means that the display has one viewing side in which the image colors suddenly change after exceeding the specified viewing angle. (see image Inversion Effect) External link in |quote= (help)
tech2 News Staff (19 May 2011). "LG Announces Super High Resolution AH-IPS Displays". Firstpost.com. Archived from the original on 11 December 2015. Retrieved 10 December 2015.
Baker, Simon (30 April 2011). "Panel Technologies: TN Film, MVA, PVA and IPS Explained". Tftcentral.co.uk. Archived from the original on 29 June 2017. Retrieved 13 January 2012.
Ivankov, Alex (1 September 2016). "Advantages and disadvantages of IPS screen technology". Version Daily. Archived from the original on 26 September 2017. Retrieved 25 September 2017.
"Samsung PLS improves on IPS displays like iPad"s, costs less". electronista.com. Archived from the original on 27 October 2012. Retrieved 30 October 2012.
Rgb(Red,Green,Blue) - the number of color gradations and varieties visible to the human eye, which can be composed of basic colors (red, green, blue). Also, these are all the basic colors that a person can see. Monitor pixels consist of red, green, and blue pixels, which at a certain intensity intensity can make more complex colors. Therefore - the more advanced the monitor"s matrix is, the more it can display color gradations, and the more possible gradations it has for each of the red, green, and blue pixels. The quality of the color and the level of static contrast depend on the quality and type of the matrix.
The main goal was to get rid of shortcomings. TN matrices. Later, this technology was replaced by S —IPS(Super —IPS). Monitors with this technology produce Dell, LG, Philips, Nec, ViewSonic, ASUS and Samsung(Pls). The main purpose of these monitors is to work with graphics, photo processing and other tasks that require accurate color reproduction, contrast and standards compliance. sRGB and Adobe RGB. They are mainly used in professional work with 2D / 3D graphics, photo editors, and pre-print masters, but are also popular with those who simply want to please their eyes with a high-quality picture.
Matrix data (most), can reproduce chromaticity in 24 bita (by 8 bit for each Rgb channel) without ASCR. Of course not 32 bits like u CRT monitors, but pretty close to the ideal. In addition, many IPS matrices ( P-IPSsome S-ips), already able to transmit color 30 bitsHowever, they are much more expensive and are not intended for computer games.
- even more significantly improved the contrast and removed the violet light when looking at the monitor from the side. With her release in 2006 year, now almost replaced monitors with S —IPS by the matrix. May have like 6 bit so 8 and 10 bits per channel. From 16.7 million to 1 billion flowers.
- variety H-IPSbut cheaper in the production matrix, which provides a standard for IPS color gamut in 24 bits (by 8 on the RGB channel). The matrix is specially highlighted, which makes it possible to use LED backlights and less powerful CCFL. Aims at the middle and budget sector of the market. Suitable for almost any purpose.
- the most advanced IPS matrix to 2011 years, continued development H-IPS (but in essence, a marketing name from ASUS). It has a color gamut 30 bits(10 bit per channel Rgb and is most likely achieved through 8 bits + FRC), better response speed compared to S-ips, an enhanced level of contrast and the best viewing angles in its class. Not recommended for use in low frame rate games. Slowdowns become more pronounced by superimposing on the speed of response, which causes blinking and blurring.
- variation IPS from Samsung. Unlike IPSIt is possible to place the pixels more densely, but the contrast suffers (not very successful design of pixels). Contrast no higher 600:1 - the lowest among LCD matrices. Even u TN matrices this figure is higher. Matrices Pls can use any kind of backlight. According to characteristics, more preferable than MVAPVA matrices.
(since 2011) — most preferred IPS technology. The maximum color coverage of AH-IPS for 2014 does not exceed 8 bit + FRCThat in total gives 1.07 billion colors in the most advanced matrices. Apply technology that allows the production of matrices with high resolutions. The best color reproduction in the class (strongly depends on the manufacturer and purpose of the matrix). A small breakthrough was also achieved in the viewing angles, due to which, the AH-IPS matrices were almost on a par with the plasma panels. Improved light-transmittance IPS matrix, and hence the maximum brightness, coupled with the reduced need for powerful backlighting, which has a beneficial effect on the power consumption of the screen as a whole. Contrast is improved compared to S-IPS. For gamers, and in the general piggy bank, you can add a significantly improved response time, which is now almost comparable to.
Or you can look away e-IPS matrix, which is very similar in characteristics to MVA/PVA. Although e-IPS still preferable because it has the best time response and has no problems with loss of contrast with a direct look.
This is convenient, because movies can be viewed almost full screen. The strips still remain, as modern films have a standard 21.5/9. Also, on such a monitor it is very convenient to work with documents in several windows or programs with complex interfaces.
High contrast needed to better display the black color, shades and halftones. This is important when working with the monitor during daylight hours, since low contrast has a detrimental effect on the image when there is any light source besides the monitor (although brightness is more influential here). A good indicator is static contrast - 1000:1 and higher. Calculated by the ratio of maximum brightness (white color) to minimum (black color).
LCD Monitor Screens (Liquid Crystal Display, liquid crystal monitors) are made of a substance (cyanophenyl), which is in a liquid state, but at the same time has some properties inherent in crystalline bodies. In fact, these are liquids that have anisotropic properties (in particular, optical) that are associated with orderliness in the orientation of molecules.
The first working LCD display was created by Fergason in 1970. Prior to this, liquid crystal devices consumed too much energy, their lifespan was limited, and the image contrast was depressing. The new LCD was presented to the public in 1971, and then it received hot approval. Liquid crystals (Liquid Crystal) are organic substances that are capable of changing the amount of transmitted light under voltage. The liquid crystal monitor consists of two glass or plastic plates, between which there is a suspension. The crystals in this suspension are arranged in parallel with respect to each other, thereby allowing light to penetrate through the panel. When an electric current is applied, the arrangement of the crystals changes, and they begin to prevent the passage of light. LCD technology is widely used in computers and projection equipment. The first liquid crystals were notable for their instability and were hardly suitable for mass production. The real development of LCD technology began with the invention of British scientists a stable liquid crystal - biphenyl (Biphenyl). The first-generation liquid crystal displays can be observed in calculators, electronic games and watches. Modern LCD monitors are also called flat panels, active dual-scan arrays, thin-film transistors. The idea of LCD monitors has been in the air for more than 30 years, but the studies that were carried out did not lead to an acceptable result, so LCD monitors have not won the reputation of devices that provide good image quality. Now they are becoming popular - everyone likes their elegant look, thin camp, compactness, economy (15-30 watts), moreover, it is believed that only wealthy and serious people can afford such luxury
There are two types of LCD monitors: DSTN (dual-scan twisted nematic - dual-scan crystal screens) and TFT (thin film transistor - on thin-film transistors), also called passive and active matrices, respectively. Such monitors consist of the following layers: a polarizing filter, a glass layer, an electrode, a control layer, liquid crystals, another control layer, an electrode, a glass layer and a polarizing filter. The first computers used eight-inch (diagonal) passive black and white matrix. With the transition to active matrix technology, the screen size has grown. Almost all modern LCD monitors use panels on thin-film transistors, providing a bright, clear image of a much larger size.
The size of the monitor depends on the working space occupied by it, and, importantly, its price. Despite the well-established classification of LCD monitors depending on the screen size diagonally (15, 17, 19-inch), the classification according to the working resolution is more correct. The fact is that, unlike CRT-based monitors, whose resolution can be changed quite flexibly, LCD displays have a fixed set of physical pixels. That is why they are designed to work with only one resolution, called a worker. Indirectly, this resolution determines the size of the matrix diagonal, however, monitors with the same working resolution may have a different matrix size. For example, monitors with a diagonal of 15 to 16 inches basically have a working resolution of 1024Ѕ768, which means that this monitor actually has a physical 1024 pixels horizontally and 768 pixels vertically. The working resolution of the monitor determines the size of the icons and fonts that will be displayed on the screen. For example, a 15-inch monitor can have a working resolution of 1024Ѕ768 and 1400Ѕ1050 pixels. In the latter case, the physical dimensions of the pixels themselves will be smaller, and since the same number of pixels are used in both cases when forming the standard icon, then at a resolution of 1400Ѕ1050 pixels the icon will be smaller in physical dimensions. For some users, too small icons at high resolution of the monitor may be unacceptable, so when you buy a monitor, you should immediately pay attention to the working resolution. Of course, the monitor is able to display the image in another, different from the working resolution. This mode of operation of the monitor is called interpolation. In the case of interpolation, the image quality is poor. Interpolation mode significantly affects the display quality of screen fonts.
The main technologies in the manufacture of LCD displays: TN + film, IPS (SFT) and MVA. These technologies differ in the geometry of surfaces, polymer, control plate and front electrode. Of great importance are the purity and type of polymer with the properties of liquid crystals, applied in specific developments.
IPS-matrix monitors are also called Super TFT-monitors. A distinctive feature of IPS-matrices is that the control electrodes are located in them in the same plane on the lower side of the LCD cell. In the absence of voltage between the electrodes, the LC molecules are parallel to each other, the electrodes and the polarization direction of the lower polarizing filter. In this state, they do not affect the polarization angle of the transmitted light, and the light is completely absorbed by the output polarizing filter, since the polarization directions of the filters are perpendicular to each other. When voltage is applied to the control electrodes, the generated electric field rotates the LC molecules by 90 ° so that they are oriented along the field lines. If a light is passed through such a cell, then due to the rotation of the polarization plane, the upper polarizing filter will let the light through without interference, that is, the cell will be in the open state (Fig. 4). By varying the voltage between the electrodes, it is possible to force the LC molecules to rotate at any angle, thereby changing the transparency of the cell. In all other respects, IPS cells are similar to TN matrices: a color image is also formed by using three color filters. IPS-matrices have both advantages and disadvantages compared with TN-matrices. The advantage is the fact that in this case it turns out perfectly black, and not gray, as in TN-matrices. Another indisputable advantage of this technology is large viewing angles. The disadvantages of IPS-matrices should be attributed to a pixel response time longer than for TN-matrices. However, we will return to the question of the pixel response time. In conclusion, we note that there are various modifications of IPS-matrices (Super IPS, Dual Domain IPS), allowing to improve their characteristics.
MVA is a development of VA technology, that is, technology with vertical alignment of molecules. In contrast to the TN and IPS matrices, in this case, liquid crystals with negative dielectric anisotropy are used, which are oriented perpendicular to the direction of the electric field lines. In the absence of voltage between the plates of the LCD cell, all liquid crystal molecules are oriented vertically and have no effect on the polarization plane of the transmitted light. Since the light passes through two crossed polarizers, it is completely absorbed by the second polarizer and the cell is in the closed state, while, in contrast to the TN matrix, it is possible to obtain an ideally black color. If a voltage is applied to the electrodes located above and below, the molecules rotate 90 °, orienting themselves perpendicularly to the lines of the electric field. With the passage of plane-polarized light through such a structure, the polarization plane rotates by 90 ° and the light freely moves through the output polarizer, that is, the LCD cell is in the open state. The advantages of the systems with the vertical ordering of molecules are the possibility of obtaining ideally black color (which, in turn, affects the possibility of obtaining high-contrast images) and the short response time of the pixel. In order to increase the viewing angles in systems with vertical molecular ordering, a multi-domain structure is used, which leads to the creation of matrices of the MVA type. The meaning of this technology is that each subpixel is divided into several zones (domains) using special protrusions, which somewhat change the orientation of the molecules, causing them to align with the surface of the protrusion. This leads to the fact that each such domain shines in its direction (within a certain solid angle), and the combination of all directions expands the viewing angle of the monitor. The advantages of MVA-matrices include high contrast (due to the possibility of obtaining perfectly black color) and large viewing angles (up to 170 °). Currently, there are several varieties of MVA technology, such as Samsung"s PVA (Patterned Vertical Alignment), MVA-Premium, and others, which further enhance the performance of MVA matrices.
Color display accuracy(~) True Color is supported and the desired color temperature is simulated.(+) True Color is supported and at the same time there is a mass of color calibration devices on the market, which is an undoubted advantage
Technology does not stand still, and the production of LCD screens is no exception. However, due to the constant development and release of new technologies in the manufacture of screens, as well as due to the special marketing approaches to advertising, many customers may be asked to choose a monitor or TV. better ips or TFT screen?
To answer the question you need to understand what IPS technology is and what a TFT screen is. Only by knowing this, you can understand what the difference between these technologies. This in turn will help you make right choice screen that will fully meet your requirements.
As you may have guessed, TFT is the abbreviated name of the technology. Fully it looks like this - Thin Film Transistor, which in Russian means thin film transistor. In essence, a TFT display is a type of liquid crystal screen that is based on an active matrix. In other words, this is a normal liquid crystal screen with an active matrix. That is, the management of liquid crystal molecules occurs with the help of special thin-film transistors.
IPS - this is also short for In-Plane Switching. This is a kind of active matrix LCD display. This means that the question which is better than TFT or IPS is erroneous, since it is essentially the same thing. More specifically, IPS is a type of FTF display matrix.
IPS technology has received its name due to the unique arrangement of electrodes, which are on the same plane with liquid crystal molecules. In turn, the liquid crystals are arranged parallel to the screen plane. This solution allowed to significantly increase the viewing angles, as well as to increase the brightness and contrast of the image.
Thus, it becomes obvious that tFT difference from IPS is only that TFT is a type of LCD screen with an active matrix, and IPS is the same active matrix in a TFT display, or rather one of the types of matrices. It is worth noting that this matrix is the most common among users worldwide.
The general misconception is that there is some difference between TFT and IPS, it is due to the marketing tricks of sales managers. In an attempt to attract new customers, marketers do not disseminate complete information about technologies, which allows creating the illusion that a completely new development is entering the world. Of course, IPS is a newer development than TN, but choose which better display TFT or IPS is not possible for the above reasons.
The fact that there is no difference between TFT and IPS, you already know, however, there is quite a logical question, TN + Film and TFT IPS, what"s the difference? To answer this question, it is worth considering the advantages of IPS matrices, which are as follows:
These are the three main advantages of IPS-displays, which allow them to create a worthy competition to plasma panels. No wonder more and more manufacturers prefer IPS matrices. In addition, such displays have great promise.
Modern electronic devices are almost universal. For example, a smartphone perfectly copes not only with calls (their reception and performance), but also with the ability to surf the Internet, listen to music, watch videos or read books. For the same tasks fit tablet. The screen is one of the most important parts of electronics, especially if it is a touchscreen and serves not only to display files, but also to control. Let"s get acquainted with the characteristics of displays and technologies for which they are created. We pay special attention to what kind of technology, what are its advantages.
First of all, let"s look at how the liquid crystal display, which is equipped with modern technology, is arranged. First, it is the active matrix. It consists of microfilm transistors. Thanks to them, the image is formed. Secondly, it is a layer. They are equipped with light filters and create R-, G-, B-subpixels. Thirdly, it is a screen backlight system that allows you to make an image visible. It can be fluorescent or LED.
Strictly speaking, the IPS matrix is a type of TFT technology, which is used to create LCD screens. TFT is often understood to mean monitors produced by the TN-TFT method. Based on this, you can make a comparison. To get acquainted with the subtleties of the choice of electronics, let us examine the IPS screen, what this concept means. The main thing that distinguishes these displays from the TN-TFT, is the location of the liquid crystal pixels. In the second case, they are arranged in a spiral, are at an angle of ninety degrees horizontally between the two plates. In the first (which interests us most of all) the matrix consists of thin-film transistors. Moreover, the crystals are arranged along the screen plane parallel to each other. Without voltage on them, they do not rotate. In TFTs, each transistor controls one point of the screen.
Let"s take a closer look at the type of screen. The monitors created by this technology have a lot of advantages. First of all, this is a great color rendering. The whole range of shades is bright, realistic. Due to the wide viewing angle, the image does not fade, no matter where you look at it. The monitors have a higher, clear contrast due to the fact that the black color is transmitted just perfectly. It may be noted the following disadvantages possessed by the type of IPS screen. What is, above all, a large energy consumption, a significant drawback. In addition, devices equipped with such screens are expensive, since their production is very expensive. Accordingly, TN-TFTs have diametrically opposed characteristics. They have a smaller viewing angle, the image is distorted when you change the viewpoint It is not very convenient to use them in the sun. The picture darkens, the glare interferes. However, such displays have a fast response, consume less energy and are affordable. Therefore, these monitors are installed in budget models of electronics. Thus, we can conclude in what cases the IPS-screen is suitable, that this is a great thing for fans of movies, photos and videos. However, due to their lower responsiveness, they are not recommended to fans of dynamic computer games.
The IPS technology itself was created by the Japanese company Hitachi in conjunction with NEC. New in it was the arrangement of liquid crystal crystals: not in a spiral (as in TN-TFT), but parallel to each other and along the screen. As a result, such a monitor conveys brighter and more saturated colors. The image is visible even in the open sun. The viewing angle of the IPS-matrix is one hundred and seventy-eight degrees. You can watch the screen from any point: bottom, top, right, left. The picture remains clear. Popular tablets with an IPS screen are released by Apple, they are created on iPS matrix Retina. One inch uses increased pixel density. As a result, the image on the display comes out without grain, the colors are transferred smoothly. According to the developers, the human eye does not notice microparticles, if the pixels are more than 300 ppi. Now devices with IPS-displays are becoming more affordable, they are beginning to supply budget models electronics. Create new types of matrices. For example, MVA / PVA. They have a fast response, wide viewing angle and excellent color reproduction.
Recently, electronic devices with a touch control have become very popular. And it is not only smartphones. Release laptops, tablets, which have a touch iPS screen, serving to manage files, images. Such devices are indispensable for working with video, photos. Depending on the diagonal of the display, there are compact and full-size devices. multitouch is able to simultaneously recognize ten touches, that is, on such a monitor you can work with both hands at once. Small mobile devicesFor example, smartphones or tablets with a diagonal of seven inches, recognize five touches. This is quite enough if your smartphone has a small IPS-screen. That it is very convenient, m