led vs lcd panel quotation
Then there are the technical terms to deal with, such as LED TV, LCD TV, QLED TV, UHD TV, OLED TV, and more. You might feel like you need to be a tech pro just to watch your favourite TV show in the evening or enjoy a game with your friend.
First, an important thing to understand is that the LED (Light Emitting Diode) monitor is an improvised version of the LCD (Liquid Crystal Display). This is why all LED monitor is LCD in nature, but not all LCDs are LED monitors.
LCD technology revolutionized monitors by using cold cathode fluorescent lamps for backlighting to create the picture displayed on the screen. A cold cathode fluorescent lamp (CCFL) is a tiny fluorescent bulb. In the context of this article, LCDs refer to this traditional type of CCFL LCD TVs.
LED monitors took the old technology a step further by replacing the fluorescent bulbs with LED backlight technology. And OLED (organic light-emitting diode) technology improves it even further by eliminating the need for backlighting.
The quality of direct-view LED screens is measured by pixel pitch. The pixel pitch is the distance between two adjacent LEDs on the display. The smaller the pixel pitch, the better the quality of the image.
Since LEDs replace fluorescent bulbs with light-emitting diodes, LED TVs are more energy-efficient than LCDs. A 32-inch LED TV screen consumes 10 watts less power than the same size LCD screen. The difference in power consumption increases as the size of the display increases.
Light-emitting diodes are considerably smaller than fluorescent lamps used in LCD monitors. Fluorescent lamps have a considerable thickness, but the thickness of diodes is next to none. Moreover, countless diodes are assembled in the same plane, so the thickness of the array isn’t increased no matter how many diodes are present.
Edge-lit LEDs have a slight drawback in viewing angle compared to LCDs, because of the position of the light source. However, direct-view LEDs offer a better angle for viewing than LCDs as the light source is evenly spread on the screen.
Since LED displays use full-array LED backlighting rather than one big backlight, LED TVs offer significantly better contrast than LCDs. LCD backlighting technology only shows white and black, but LED backlighting can emit the entire RGB spectrum, thereby providing a deeper RGB contrast.
If you wonder which display will last longer, this debate is also won by LED displays. LED televisions have a longer lifespan of 100,000 hours on average, compared to 50,000 hours provided by LCD televisions.
An LED display provides the option to dim the backlight, along with other eye comfort features. Not only that, it provides a wider viewing angle without harming image quality. Therefore, an LED display is far better for your eyes than an LCD.
In an LED display, a lot of smaller diodes are used and if a diode is damaged, it can be replaced. In an LCD, you will need to replace the entire bulb in case of damage. Therefore, an LED display is easier and cheaper to maintain than an LCD.
Since LEDs are a better and newer technology, the price of an LED display is higher than an LCD. However, this is only when we are considering the purchase cost.
The picture quality of an LED display is far better than an LCD. Due to modular light-emitting diodes, an LED screen produces better control over the contrast, rendering a clear picture. Also, LED provides RGB contrast, which can show truer blacks and truer whites.
Not to forget, they provide a shorter response time as well. Both of these factors result inLED displays having a better picture quality compared to LCD displays.
Since LED displays are considerably thinner than LCDs, they weigh considerably less. On average, an LED screen weighs about half of an LCD screen of the same size.
As you might have noticed by now, LED wins the battle with LCD without any doubt. This is because LED displays have an advantage in all the factors that matter when considering a purchase, except price.
Even when you consider the price, you will find that while LED technology is costlier, it provides better value for money in the long run. This is because of the longer lifespan and easier maintenance of LED screens.
They are more attractive too. With the increasing shortage of space in new residential complexes, what better solution than an ultra-thin LED display giving a cinematic experience in the comfort of your home.
LED screens are the first choice among the public today, across generations. All are opting to switch to LED from LCD to make their lives more enjoyable and better.
There are tons of screens available in the market today. However, LED screens and LCD screens are by far the most popular. But what is the difference between LCD vs. LED screens?
LED screens feature light-emitting diodes lights installed in the screens. The screens can be volatile or static, with some of them only responding to touch. Other LED screens will display pictures even when turned off.
Some of the benefits of LED monitors nclude enhanced picture quality and local dimming. Local dimming helps to dim down certain areas of your TV"s backlight. This helps to make the screen appear darker and better in displaying blacks.
LED backlighting is an essential feature in offering realistic pictures. The features enhance the popularity of the LED screens (check out the Viewsonic TD2230 Review).
The main difference between LCD and LED displays is that the LCD screens come with a layer of liquid crystals. The liquid crystal layer is put between two plates. Images are made when light passes through parts of the liquid crystal.
The liquid crystal part either block or enhance an area which helps to create the image. Most LCD panel types have LED lights that help bring out the image.
Older LCD screens and use Cold Cathode Fluorescent Lamps (CCFLs) to light the screen. The CCFLs use electron discharge and fluorescence to light the screen.
LEDs like the one from our "Dell Computer Ultrasharp 24.0-Inch Screen LED Monitor Review" are taking over the market while LCD screens with CCFLs are fading away. LCD screens are used in watches, some notebook computers, and calculators.
OLED stands for organic light-emitting diodes, and it uses an organic compound to create outstanding high-contrast images - OLED screens are more environmentally friendly. They are also thinner than a standard LED screen as they don"t require a thick LED backlighting behind the screen to illuminate it.
On the other hand, you have QLED screens that are created and patented by Samsung. The QLED screens offer more crisp images as they create light with a shorter wavelength.
The Q in QLED stands for Quantum Dot (see Quantum Dot and IPS). The screens have an additional layer between the LCD screen and the backlight of the monitor. The layer allows light to pass through easily and produce better colors than an ordinary LED screen.
Slimmer design:LED screens to come in a slimmer design than their LCD counterparts. This gives them a sleek and elegant look, and it also takes less space.
Cheaper to run:If you are trying to cut down on energy cost, an LED screen will be a better option between the two as it is more energy-efficient. However, LED screens are more expensive than their LCD counterparts. As such, you can expect to pay more initially.
Better color:If you want to enjoy more realistic images, LED will be the better option. The screen offers you better color than other screens in the market. Additionally, it offers a better contrast, which is the range between the darkest blacks and brightest whites on the screen. The enhanced contrast ensures you end up with the most realistic images.
However, if you are working on a tight budget, you may consider an LCD screen. Besides the cost, LED performs better than the LCD screen in all the other aspects.
If you want to find out the type of screen you already have, you can check out the screen"s model number. The model number can tell you if the screen is an LED or LCD.
When it comes to picture quality, LED TVs look better than older LCD TVs. Manufacturers also make a big deal out of LED backlighting because sets that use the technology are usually more energy-efficient than CCFL LCD TVs. Therefore, the money you save on your power bill could eventually offset the extra cost of an LED TV.
You"ll be happy with the picture regardless of what kind of display you buy. Still, LED TV have a few practical advantages that make them a better purchase than the older LCD TVs.
With an LED light, the pixels are either edge-lit or backlit. As such, the lights behind the screen are designed to light up all the pixels in your monitor at once.
LED monitors feature better dimming options without sacrificing picture clarity. They also come with features that reduce eye strain, making them the ideal option if you are spending long hours in front of the screen.
Alternatively, you can go for LCD screens that offer arefresh rate of 120Hz or more. The LCD screens also offer a wider variety of viewing angles, which can offer better comfort.
You can trust an LED monitor to offer you the best resolution for the most precise and crisp images. This enables you to enjoy clear and lifelike images.
When choosing between LED and LCD monitors, there are several factors to consider. Besides the backlighting technology, you should also consider the panel type - see also what types of monitors are there. Various panels have their benefits compared to others.
LED monitors tend to be more expensive than LCD screens, thanks to LED technology being newer and featuring pricier components. Additionally, there is a newer form of LED called the OLED, which stands for Organic Light-Emitting Diodes. These OLED displays are extremely expensive, especially at high resolutions. LED technology, on the other hand, is extremely cheap and readily available.
Are you lost on the best choice between LCD and LED monitors? If you spend a lot of time in front of your monitor, you should ensure you end up with the best quality screen. This will ensure that you get high-quality images and also minimize eye strain.
In the battle between LCD and LED displays, LED comes out as the better option. It offers more crisp and clear images, and it also comes with a sleek and elegant design. However, it can be a little expensive. If you are working on a budget, LCD monitors can make a perfect choice.
LED technology has improved drastically in recent years improving picture quality while driving costs down. LED is a bigger investment up front but generally has a lifespan of about 100,000 hours. LCD is cheaper and generally more familiar. A LCD screen typically has a lifespan of about 50,000 hours.
Sort of. Older technologies like LCD technology and Plasma displays are becoming obsolete due to the intrinsic properties of LEDs like brightness, efficiency, maintainability, and sustainability.
LCD screens emit blue light and thus negatively affects not only vision but also overall health. Continual extended screen time mainly can impact your eyes in two major ways. When we look at a screen, our blink rate drops significantly, thus causing digital eye strain.
The modern era has shown a tremendous switch from LCD to LEDdisplay. The innovative introduction of LED screensin the television market, at best quality and decent pricing, has taken the market by storm. Every individual is switching rapidly from LCD to LEDscreens. The reason for the switch lies in the innumerable benefits Led has to offer to its clients. Here at Dynamo LED, we offer both LED and LCD, and we appreciate the benefits of both technologies.
An liquid crystal display) uses CCFL’s, which is more power-consuming than LED. The CCFL dissipates more light than the LED, and hence they even tend to make the television warmer to touch with prolonged use. This even makes the LCD more prone top catching fire than the LED televisions.
The LED is lighter weighted and easily portable compared to LCD television. The LED is also more affordable and economical than the LCD now. The long-lasting superior quality makes it more worth to invest in an LED than an LCD.
Eye safety is a major concern in today’s modern era, where people are always working in front of a laptop or computer screen. It is recommended by experts to invest in LED displayscreens to work on desktop, laptops, or even watch television. The LED have far better display panel in the prospective of eye safety, picture quality, and power consumption. Both LC and LED make use of Liquid crystal display, but the difference lies in the backlight, which is majorly responsible for the effect on the eyes. The regular LCDs use a cold fluorescent cathode display backlight, and the LED uses Light Emitting diodes. The LED backlighting is smaller and much safer for the eyes.
The picture quality of the LED display is far better than the LCD. The LED uses an RGB contrast, which makes the pictures almost come alive on the television screen giving its viewers an enjoyable experience.
Though these benefits make LEDs the first choice, it is important to state very clearly that LEDs are not at all cheap. Though the long durability, high-quality picture, the energy-saving feature, and eye safety technology makes it worth the investment compared to less durable and little lower quality LCD display. Why settle for less when the bigger and better product is available at a little higher price,, giving innumerable benefits to its consumers. The LED may be bulkier in price but definitely worth it.
Besides better picture quality, LED Televisions are also energy efficient. They consume very little energy compared to LCD televisions. There is an almost 50% reduction in the power consumption for LED televisions.
It is often claimed that LCD TVs’ lifespan is around 75,000 hours, whereas with LED TVs, you can expect up to 100,000 hours. This is clearly 25% more on average, so LEDs are the clear winner here.
The LED is often regarded as a third-generationdisplay. It meets the demands and preferences of the new generation very much. They are more attractive in designs too. With the increasing shortage of space in the new residential complex, what better than the ultra-thin LED display giving a cinematic experience in the comfort of your homes. LEDs are the first choice among the public today, be it the old generation or the new young youth. All are opting for a switch to LED from the LCD to make lives more enjoyable and better.
But how do you know which technology is right for your project? As we look at digital signage solutions, there’s one question that always seems to pop up. What’s the difference between Direct View LED and LCD displays?
LED and LCD displays are both good technologies, and which is better depends on your application. LCD is a liquid crystal display. Commercial LED displays are a grid or group of Light-Emitting Diodes or LEDs that make up the image itself. To make things even more confusing commercial, or Direct-View LEDs, are actually very different than their consumer LED cousins. Here are the basics to help you understand what’s the difference between LED and LCD displays and which is better for your project.
LCD displays are an option for either indoor or outdoor signage. The LCD screen is a series of layers, like an onion. LCD displays have lighting on the base layer. Then comes the LCD sheet, which is a liquid housed between two plates. On top is a protective glass layer. If the display is meant for the outdoors, a final coating is added to protect against the elements- whether they’re natural, like weather, or human-caused, like vandalism.
Here’s where the difference starts to get muddy. LCD screens can be back-lit by LEDs. Meaning the lighting layer consists of many little LEDs that light the LCD sheet from behind. In the consumer world, these are marketed as LED screens. While accurate, it’s not the same as a commercial LED screen. When we talk about commercial LED’s we’re talking about Direct View LEDs, but we’ll get into that more later.
LCD displays come in Full-HD (1080p) or Ultra-HD (4K) resolution. 4K resolution has four times the pixels as 1080p. What does this mean in the real world? At about thirteen feet away from a 98 inch 1080p display, you can begin to see pixels. With 4K resolution, this decreases to seven feet before seeing pixels.
Direct View LED use LEDs as the individual pixels that make up the image itself. Pixel pitch is an important concept with Direct View LED displays. Pixel pitch is the distance from the center of one pixel cluster to the center of the next pixel cluster in a LED screen. This can range from .7 mm- 18 mm plus depending on the viewing distance.
A Direct View LED display is made up of different panels. These panels can be grouped into various shapes providing flexibility and scalability. Unlike LCD displays, Direct View LED video walls don’t have bezel lines between each panel. Various Direct View LEDs feature bezel-less panels which are placed together like building blocks. This LED technology creates a seamless viewing experience even for large-scale video walls.
Direct View LEDs can be curved, convex or concave. They can even wrap entirely around a pillar, the full 360 degrees. Since they’re panels, they can be configured in almost limit-less sizes and aren’t confined to the 16x9 aspect ratio.
Sizes:LCD Displays come in sizes provided by the manufacturer and aren’t that easy to customize. Some manufacturers have stretch sizes, but most of the options are at a 16x9 aspect ratio.
Resolution: LCD Displays typically have a higher resolution than LED screens. So, a customer can view the screen at a closer distance without seeing the pixels.
Bezels:If you’re looking for a video wall option, LCD displays do have bezels around each display. Conversely, some Direct View LEDs don’t have any visible bezels, so there will be no line breaks in your content.
Brightness:Direct View LEDs can range from 800–8,500 nits, which exceeds the brightness of most LCDs. Brightness may or may not be an issue, depending on if the display will be indoors or outdoors.
These basic features outline the difference between commercial LED vs. LCD displays. Which is better? It’s a question that can’t be answered without context. The specifics around your project and what you’re trying to achieve will define which technology should be used. Work with an integrator that understands both technologies and can make a recommendation based upon your project. There’s no one-size-fits all solution, but developing a better understanding of commercial LED vs. LCD displays will help you formulate the right questions to ask an integration partner.
LED stands for Light Emitting Diode. SMD refers to Surface Mounted Diode, a technology that utilizes a process of mounting each LED chip (pixel) directly to a printed circuit board (PCB). Mounting the diodes in this fashion allows displays to be thinner and sleeker than older LED technology. SMD also allows for finer pixel pitch. Simply put, pixel pitch refers to the distance between the diodes and is responsible for resolution. Fine pixel pitch translates into high resolution. Fine pixel pitch is what makes HD and UHD LED possible.
LCD panels are made of a layer of liquid crystal between two pieces of polarized glass. Liquid crystal can not emit light. Backlights are therefore used to illuminate the display. LCD panels are sleek in design, but typically limited to specific sets of dimensions.
LEDs are their own light source. This means that LED video walls are glare free and not subject to many of the problems ambient lighting creates for other video display types.
LED technology is modular in nature. This means that LED panels fit together seamlessly and can be used to make displays to fit any space. Custom cabinets can even be built to accommodate unusual shapes or dimensions.
LCD video walls on the other hand take on a tiled approach. This means that screens are jutted against one another. This approach creates bezels or seams and the final dimensions of the wall is directly dependent on the dimensions of the individual screens.
LED is a versatile display option. Thanks to various IP options, LED video walls can be displayed indoors or outdoors. LED video walls can be built with a variety of internal mechanisms as well. Quick refresh rates and dual power backup can ensure that LED video walls look great on camera. Various pixel pitches can ensure the proper resolution for the right context.
LCD is a more straightforward product and consumers are generally more familiar with LCD. LCD is used for cell phones, computer screens, and most TVs, but is it the best choice for video walls? Ultimately that choice is up to the consumer. LCD is cheaper, but generally less customizable. LCD does not work well for outdoor uses and is generally very limited in terms of size and shape.
LED technology has improved drastically in recent years improving quality while driving costs down. LED is a bigger investment up front but generally has a lifespan of about 100,000 hours.
Just like anything else, the best video wall product is largely dependant on context. If you like LED technology but are unsure of the process associated in obtaining a LED video wall read: How to Purchase a LED Video Wall Display.
While a standard LCD screen uses fluorescent backlights, an LED screen uses light-emitting diodes for backlights. LCD screens usually have superior picture quality, but they less brightness than the LED screens. And some backlight configurations create better images than the LED screens. So, LCD display is good for Indoor of Commercial Display and LED display is good for outdoor of Commercial Display.
In the traditional sense, Digital Signage Media Solution products in a broad sense refer to display terminals that publish information or product advertisements in public places. At present, these products are mainly used for "indoor" commercial advertising applications. The indoor display mainly uses LCD display technology, because of its high resolution, fine colors, stable product performance, and easy installation and maintenance. Due to the "outdoor" special use environment, commercial advertising display products are required to have high brightness, protection, and durability.
The COVID-19 has made 2020 a turning point for the entire industry. Due to the further development of LCD panel display technology, the cost of high-brightness products continues to drop, and many digital signage product suppliers are also turning their attention to the outdoor advertising market. During the period of low demand for traditional applications, we saw new opportunities for digital signage products in the outdoor advertising application market.
According to research by relevant institutions, due to the impact of the epidemic in the first half of the year, the shipments of outdoor digital signage machines dropped sharply. In order to improve corporate profitability, most digital signage product manufacturers are turning their attention to the rising demand for outdoor markets, mainly in the transportation sector (Bus stations and other land transportation platforms), and the fast-growing self-service ordering display in the fast-food (QSR) retail application scenario. Secondly, during the epidemic, many stores added Digital Signage with Hand Sanitizer that can display posters, videos, and highly interactive in order to attract traffic. The creation of digital stores also promoted the growth of digital signage demand to a certain extent. Furthermore, due to the need for prevention, control, and isolation, manufacturers have taken longer to develop products. Therefore, during the epidemic period, the maturity of display terminal technology is catalyzed. The LCD & LED display technological competition during the epidemic has promoted the maturity of the technology and the decline in market prices, thereby stimulating the overall market.
In recent years, LED direct light-emitting display products with high brightness, high contrast, high response speed, customization, and strong protection have been in large scenes, and the outdoor application market for long-distance viewing can be said to be booming. It has grown into the preferred display product for outdoor sports, transportation, and building advertising markets. In 2019, LCD and LED direct light-emitting display technologies have joined hands in the "semi-outdoor" market, especially in retail and public places. In recent years, small-pitch GOB LED Display Technology has matured and costs have fallen. , The price of this product has also recently begun to show a downward trend.
Digital Signage is generally a small-size display terminal device that needs to be viewed from a close distance. The advantage of LCD is its small size and delicate display. Therefore, before the birth of small-pitch LED displays, LCD was the mainstream display terminal product for digital signage. At the same time, the entire industry has been committed to reducing chip size and pixel pitch. With the improvement of product resolution, small-pitch LED display products have begun to enter the indoor market and begin to compete on the same stage with LCD splicing walls, industrial projections, and other products.
Although LCD occupies part of the digital signage market, its low-brightness characteristics limit its application in outdoor advertising scenes. Therefore, in order to seize the opportunity of outdoor digital signage, digital signage manufacturers have come in to introduce brightness higher than 4000nit and IP protection level Products higher than 56, but their price is close to or even higher than that of P2-P5 LED displays, and their protection level is far less than that of outdoor LED displays. Therefore, in the field of outdoor digital signage with P2-P5 dot pitch, LED displays have advantages in price, brightness, and protection performance. However, in the field of fine-pitch products with higher pixel specifications, its price advantage is still inferior to LCD products. Therefore, major companies in the LED industry are trying to reduce the price difference and seize more digital signage market share.
In addition to regular comparisons of LCD and LED technologies in terms of resolution and seam, OMDIA believes that analyzing brightness specifications can provide more interesting comparisons for these technologies in the "outdoor" market. People usually ask "Isn"t LED more advantageous in terms of brightness?" It seems to be. However, due to the advancement of LCD panel technology, LCD can now provide products with brightness above 4000 nits without any technical difficulties. Therefore, it is difficult to say that LEDs are stronger than LCDs in the outdoor market.
At present, the price of outdoor LED displays with a dot pitch in the range of 2-5mm has approached or is better than that of high-brightness LCD display products, but for small-pitch products with higher pixel specifications, the price is higher than LCD products. Therefore, the major companies in the LED industry are trying to reduce the price difference and grab more market share. It is foreseeable that the LED and LCD are outdoors, and the semi-outdoor competition will become more intense.
With the maturity of LED display technology and the decline in the price of small pitches, the Commercial terminal advertising display market will become intensified, and spread to the small pitch field, digital signage, and other major fields, and the competition of major machine manufacturers will also increase. It"s getting more intense. As a high-brightness display terminal, LED display screens have been gradually decreasing in price in recent years, and the dot pitch has been shrinking, and the display size has been shrinking. It has a strong impact on the digital signage display market and has become a dark horse in this field.
Shopping for a new TV is like wading through a never-ending pool of tech jargon, display terminology, and head-spinning acronyms. It was one thing when 4K resolution landed in the homes of consumers, with TV brands touting the new UHD viewing spec as a major marketing grab. But over the last several years, the plot has only continued to thicken when it comes to three- and four-letter acronyms with the introduction of state-of-the-art lighting and screen technology. But between OLEDs, QLEDs, mini-LEDs, and now QD-OLEDs, there’s one battle of words that rests at the core of TV vocabulary: LED versus LCD.
Despite having a different acronym, LED TV is just a specific type of LCD TV, which uses a liquid crystal display (LCD) panel to control where light is displayed on your screen. These panels are typically composed of two sheets of polarizing material with a liquid crystal solution between them. When an electric current passes through the liquid, it causes the crystals to align, so that light can (or can’t) pass through. Think of it as a shutter, either allowing light to pass through or blocking it out.
Since both LED and LCD TVs are based around LCD technology, the question remains: what is the difference? Actually, it’s about what the difference was. Older LCD TVs used cold cathode fluorescent lamps (CCFLs) to provide lighting, whereas LED LCD TVs used an array of smaller, more efficient light-emitting diodes (LEDs) to illuminate the screen.
Since the technology is better, all LCD TVs now use LED lights and are colloquially considered LED TVs. For those interested, we’ll go deeper into backlighting below, or you can move onto the Local Dimming section.
Three basic illumination forms have been used in LCD TVs: CCFL backlighting, full-array LED backlighting, and LED edge lighting. Each of these illumination technologies is different from one another in important ways. Let’s dig into each.
CCFL backlighting is an older, now-abandoned form of display technology in which a series of cold cathode lamps sit across the inside of the TV behind the LCD. The lights illuminate the crystals fairly evenly, which means all regions of the picture will have similar brightness levels. This affects some aspects of picture quality, which we discuss in more detail below. Since CCFLs are larger than LED arrays, CCFL-based LCD TVs are thicker than LED-backlit LCD TVs.
Full-array backlighting swaps the outdated CCFLs for an array of LEDs spanning the back of the screen, comprising zones of LEDs that can be lit or dimmed in a process called local dimming. TVs using full-array LED backlighting to make up a healthy chunk of the high-end LED TV market, and with good reason — with more precise and even illumination, they can create better picture quality than CCFL LCD TVs were ever able to achieve, with better energy efficiency to boot.
Another form of LCD screen illumination is LED edge lighting. As the name implies, edge-lit TVs have LEDs along the edges of a screen. There are a few different configurations, including LEDs along just the bottom, LEDs on the top and bottom, LEDs left and right, and LEDs along all four edges. These different configurations result in picture quality differences, but the overall brightness capabilities still exceed what CCFL LCD TVs could achieve. While there are some drawbacks to edge lighting compared to full-array or direct backlight displays, the upshot is edge lighting that allows manufacturers to make thinner TVs that cost less to manufacture.
To better close the local-dimming quality gap between edge-lit TVs and full-array back-lit TVs, manufacturers like Sony and Samsung developed their own advanced edge lighting forms. Sony’s technology is known as “Slim Backlight Master Drive,” while Samsung has “Infinite Array” employed in its line of QLED TVs. These keep the slim form factor achievable through edge-lit design and local dimming quality more on par with full-array backlighting.
Local dimming is a feature of LED LCD TVs wherein the LED light source behind the LCD is dimmed and illuminated to match what the picture demands. LCDs can’t completely prevent light from passing through, even during dark scenes, so dimming the light source itself aids in creating deeper blacks and more impressive contrast in the picture. This is accomplished by selectively dimming the LEDs when that particular part of the picture — or region — is intended to be dark.
Local dimming helps LED/LCD TVs more closely match the quality of modern OLED displays, which feature better contrast levels by their nature — something CCFL LCD TVs couldn’t do. The quality of local dimming varies depending on which type of backlighting your LCD uses, how many individual zones of backlighting are employed, and the quality of the processing. Here’s an overview of how effective local dimming is on each type of LCD TV.
TVs with full-array backlighting have the most accurate local dimming and therefore tend to offer the best contrast. Since an array of LEDs spans the entire back of the LCD screen, regions can generally be dimmed with more finesse than on edge-lit TVs, and brightness tends to be uniform across the entire screen. Hisense’s impressive U7G TVs are great examples of relatively affordable models that use multiple-zone, full-array backlighting with local dimming.
“Direct local dimming” is essentially the same thing as full-array dimming, just with fewer LEDs spread further apart in the array. However, it’s worth noting that many manufacturers do not differentiate “direct local dimming” from full-array dimming as two separate forms of local dimming. We still feel it’s important to note the difference, as fewer, further-spaced LEDs will not have the same accuracy and consistency as full-array displays.
Because edge lighting employs LEDs positioned on the edge or edges of the screen to project light across the back of the LCD screen, as opposed to coming from directly behind it, it can result in very subtle blocks or bands of lighter pixels within or around areas that should be dark. The local dimming of edge-lit TVs can sometimes result in some murkiness in dark areas compared with full-array LED TVs. It should also be noted that not all LED edge-lit TVs offer local dimming, which is why it is not uncommon to see glowing strips of light at the edges of a TV and less brightness toward the center of the screen.
Since CCFL backlit TVs do not use LEDs, models with this lighting style do not have dimming abilities. Instead, the LCD panel of CCFL LCDs is constantly and evenly illuminated, making a noticeable difference in picture quality compared to LED LCDs. This is especially noticeable in scenes with high contrast, as the dark portions of the picture may appear too bright or washed out. When watching in a well-lit room, it’s easier to ignore or miss the difference, but in a dark room, it will be, well, glaring.
As if it wasn’t already confusing enough, once you begin exploring the world of modern display technology, new acronyms crop up. The two you’ll most commonly find are OLED and QLED.
An OLED display uses a panel of pixel-sized organic compounds that respond to electricity. Since each tiny pixel (millions of which are present in modern displays) can be turned on or off individually, OLED displays are called “emissive” displays (meaning they require no backlight). They offer incredibly deep contrast ratios and better per-pixel accuracy than any other display type on the market.
Because they don’t require a separate light source, OLED displays are also amazingly thin — often just a few millimeters. OLED panels are often found on high-end TVs in place of LED/LCD technology, but that doesn’t mean that LED/LCDs aren’t without their own premium technology.
QLED is a premium tier of LED/LCD TVs from Samsung. Unlike OLED displays, QLED is not a so-called emissive display technology (lights still illuminate QLED pixels from behind). However, QLED TVs feature an updated illumination technology over regular LED LCDs in the form of Quantum Dot material (hence the “Q” in QLED), which raises overall efficiency and brightness. This translates to better, brighter grayscale and color and enhances HDR (High Dynamic Range) abilities.
And now to make things extra confusing, part of Samsung’s 2022 TV lineup is being billed as traditional OLEDs, although a deeper dive will reveal this is actually the company’s first foray into a new panel technology altogether called QD-OLED.
For a further description of QLED and its features, read our list of the best TVs you can buy. The article further compares the qualities of both QLED and OLED TV; however, we also recommend checking outfor a side-by-side look at these two top-notch technologies.
There are more even displays to become familiar with, too, including microLED and Mini-LED, which are lining up to be the latest head-to-head TV technologies. Consider checking out how the two features compare to current tech leaders in
In the world of TV technology, there’s never a dull moment. However, with this detailed research, we hope you feel empowered to make an informed shopping decision and keep your Best Buy salesperson on his or her toes.
A Liquid Crystal Display (LCD) is one of the most enduring and fundamental technologies found in monitors, televisions, tablets, and smartphones. TVs and monitors once used cathode ray tubes (CRTs) to provide the image on your screen. But CRTs were bulky and contained dangerous chemicals. Once LCDs became affordable, they replaced CRTs.
An LCD features a panel of liquid crystal molecules. The molecules can be induced using an electrical current to take certain patterns which either block or allow light to pass through. An LCD TV or monitor has a light source at the rear of the display, which lights up the crystals. LCDs commonly use Cold Cathode Fluorescent Lamps (CCFL) to provide the TV or monitor backlight.
To provide a color image on your screen, the LCD has red, green, and blue sub-pixels in each screen pixel. Transistors within the display control the direction of light each pixel emits, which then passes through either a red, green, or blue filter.
Light Emitting Diodes (LEDs) are small semiconductors that emit visible light when an electrical current passes through them. LEDs are typically more efficient and longer-lasting than traditional lighting.
While manufacturers often use "LED" in place of "LCD," an LED TV is also a type of LCD. Instead of CCFL tubes to provide the LCDs backlight, rows of LEDs provide the backlight. The LEDs give better control of the light, as well as greater efficiency as it is possible to control individual LEDs.
For accuracy, a TV or monitor description should read "LED-Backlit LCD Monitor." But that is a) a mouthful and b) doesn"t allow for the creation of a separate marketable product. That"s not to say there aren"t differences between the two.
However, both LED and LCD monitors have different technologies that make certain panels more appealing to gamers, film buffs, designers, and so on. You should also note that on older screens, the difference between an LCD and LED TV or monitor is more pronounced, due to the relative age of the two lighting options.
There are several different types of LED and LCD monitors. When you"re trying to buy a new TV or monitor, understanding the differences and the terminology will help you bag a better deal. Here are some of the most common variations of the LED and LCD panels.
An Edge-Lit LED TV or monitor has its LEDs arranged around the rim of the display, behind the LCD panels facing the screen. The Edge-Lit option allows for slimmer designs, uses fewer LEDs, and can bring the cost of a new screen down. Light reflects across the screen uniformly to create the image.
One downside to an Edge-Lit screen is the dark contrast. Because the Edge-Lit LED display is brightest closer to the edges, color uniformity and black levels can become an issue, with some areas appearing darker than others.
A Full-Array LED display uses a grid of LED lights behind the LCD. The LEDs shine outwards directly towards the LCD, creating a bright and uniform picture. Full-Array LED panels enjoy the efficiency benefits of LEDs.
For the best image reproduction, a Full-Array LED display may include local dimming. Local dimming means that groups of LEDs can switch on and off as required to provide better overall control of the brightness level.
LEDs are often referred to as emitting white light. Actually, LEDs produce light closer to yellow than a pure white. That difference can create a color shift in the image you see on your screen. To improve on this issue, some manufacturers replace white LEDs with groupings of red, green, and blue (RGB) LEDs.
The display uses advanced electronics and programming to control the RGB LEDs accurately, along with more LEDs. The combination increases the cost of an RGB LED screen significantly for what most viewers would consider a marginal improvement. RGB LED displays never became mainstream because of their higher cost.
Organic Light-Emitting Diodes (OLED) are an advanced form of LED lighting found in some LED monitors. Each pixel of an OLED TV can glow or dim independently, resulting in much better black levels, extremely sharp colors, and better contrast ratios. The majority of OLED TVs and monitors have excellent viewing angles and color quality.
Without a doubt, OLED TVs and monitors (and even smartphone screens) have incredible color depth. But that does come at a cost. The latest generation of flagship smartphones all feature OLED screens, and it is a contributing factor to their massive cost. Another consideration is power. An OLED screen consumes more power than other LED-backlit screens and standard LCD screens.
The acronyms continue with QLED, which stands for Quantum Dot LED. Samsung"s QLED improves color accuracy as much as 90-percent from a regular LED TV or monitor and can hit the high levels of brightness and color depth that HDR requires.
So, what is a quantum dot monitor? In short, quantum dots are semiconductor nanocrystals that absorb light at one wavelength and output it at a different wavelength. The LEDs in a QLED emit all of the blue shades the picture requires. But a blue picture isn"t what consumers want. The quantum dots refract the blue LED light into the green and red shades needed to complete the picture.
A single quantum dot monitor or TV contains billions of semiconductor nanocrystals. Those nanocrystals give QLED screens outstanding black range and color depth, as well as excellent color saturation and contrast.
Just as there are types of LED monitor technology, so is there LCD monitor and TV technology, too. The type of LCD tech powering your screen makes a difference to the final picture. Here"s what you need to look out for.
Twisted nematic (TN) was one of the first LCD panel types, dating back to the 1980s. TN panels have fast response time. Most of the fastest gaming monitors use a TN LCD panel to offer exceptionally fast refresh rates, up to 240Hz. That level of refresh isn"t necessary for most people, but it can make a difference for top-level gamers (for instance, in reducing motion blur and image transition smoothness).
Vertical alignment (VA) panels originated in the 1990s. The liquid crystals in a VA panel are aligned vertically, as the name suggests. The vertical alignment structure allows VA panels to produce much deeper blacks and more vibrant array of other colors in comparison to a TN panel. A VA panel usually has better contrast, too.
While a VA LCD panel has a better color range than a TN panel, they also have a slower refresh rate. They also usually cost more and, as such, are rarely marketed toward gamers. Between TN panels and IPS panels (read below), VA is the least popular LCD panel technology.
In-Plane Switching (IPS) panels are considered the best LCD panel technology for a variety of reasons. An IPS panel offers very wide viewing angles with very fast refresh rates. They"re not as fast as a TN panel, but IPS panels are widely available at 144Hz. At the time of writing, the first few 240Hz IPS LCD panels are hitting the market, although they are extremely expensive for a marginal gain.
Color-wise, IPS panels are excellent. High-quality IPS LCD panel prices continue to fall. However, there are several reasons why you shouldn"t buy a ridiculously cheap IPS gaming monitor.
The type of LCD panel you need depends on its use. Gamers want fast response times and rich depth of color, which is why IPS panels are a great option. If you"re more concerned about picture quality for your favorite films, an OLED panel will perform extremely well.
Still, now you know the terminology behind LCD panels and the pros and cons to each type, you can make an informed decision for your TV or monitor upgrade. But wait, the type of LCD or LED panel isn"t the only thing to consider. Take a moment to learn about the differences between 4K, Ultra HD, and 8K screens.
Chances are, the screen that you"re reading this article on is either an LED, OLED, or an LCD display. These are just three of the many display types out there in the wild. On the surface, they all seem the same. But deep down, they couldn"t be more different.
So, when it comes to OLED vs. LCD—or OLED vs. LED—what are the differences? Here"s a look at these three display technologies, what makes them different, and which one is the best.
LCD stands for "liquid crystal display". The early roots of LCD displays stretch back to 1888 when German scientist, Friedrich Reinitzer, discovered an odd substance. It was a liquid that had the molecular structure of a solid. It was later named "liquid crystal." After decades of study, someone eventually saw the potential for this strange substance to be used for displays.
The first LCD displays to be used on consumer devices were on digital clocks back in 1968. The technology developed over the following years, being put into numerous other devices.
LCD display panels are divided into layers. The backmost layer is a light source. This is a translucent sheet that disperses light from bulbs at the bottom of the display.
OLED stands for "organic light emitting diode." During the 1970s, scientists were experimented with organic materials that can emit light. In 1987, scientists at Eastman Kodak developed an OLED display that consumed a low amount of energy. And in 2007, Sony unveiled the world"s first OLED television: the Sony XEL-1.
The light from an LED is emitted from an electrical current going through an organic compound. That organic compound is sandwiched between a positively charged anode and a negatively charged cathode. The cathode is rich in electrons, and the anode is rich in electron "holes". Electron holes are areas in an atom where there is no electron.
On the other side of the OLED, the electrons flow from the cathode. The electrons then flow to the emissive layer, where they meet the holes. Since the electrons are sent through a voltage, they are "excited", meaning that they have an excess of energy.
When they meet the electron holes, they have to lose that excess energy in order to relax to the ground state for that atom. They release that energy in the form of photos (light particles). From there, the light travels through the red, blue, and green sub-pixels, just like with an LCD display.
LED displays are virtually indistinguishable from LCD displays. The only difference is in how the two types of displays get their light. Instead of using a translucent sheet, LED displays use individually LEDs. There are three primary arrangements of LEDs in the displays.
Full array LED displays have the LEDs arranged evenly throughout the display. This is the preferred arrangement on higher-end TVs. There are a lot of LEDs behind the panel, which means that local dimming is possible.
The direct-lit arrangement can appear to be similar to full array, but there are some differences. With the direct-lit arrangement, the LEDs are also dispersed evenly throughout the panel, but there are far less of them. Because of this, direct-lit displays can not do local dimming. This arrangement is present on lower-end devices.
A display is usually judged by its ability to create vibrant colors. This is an area where OLEDs come out on top. Compared to OLED displays, LCD displays often appear washed out and not as saturated. This is why OLED displays are becoming more popular in the smartphone market.
OLED displays can also produce images with higher contrast than the other two technologies. Since all of the OLEDs on the panel can be turned on and off individually, darker areas of the display can go as dark as they need to.
Full array LED displays come in right behind OLED displays because, like in the case of OLED displays, the LEDs in an LED display can be controlled individually. Full array LED displays use a method called "local dimming", a technique of shutting off LEDs completely in areas that are darker.
LCD displays come in last place because in order for any pixels to be visible, the entire back panel has to be lit. This means that completely black areas are impossible to achieve.
In terms of price, LCD displays are typically cheaper. High definition LCD displays can run you no more than a few hundred dollars. Since LED displays offer better contrast over LCD, you can expect there to be an added price premium.
When it comes to power consumption, OLED scores a win. Since the OLEDs are powered individually, the display only gives power to the ones that need it. Pixels can be turn off completely when there are blacks in the picture.
Full array LED displays come in second place because of the local dimming functionality. Certain LEDs can be completely turned off when the scene calls for blacks. Even though they have this feature, more energy is consumed per LED because the light has to pass through all of the layers of the LCD before reaching the viewers" eyes.
LCDs are the least power efficient. Regardless of the presence of blacks in the scene, the entire panel needs to be lit. This means that the light source is shining at 100% the entire time.
Each display technology has its benefits and its drawbacks. LCD displays are for people who want to save more money, while LED displays are for people who would like to spend more for a bit more contrast in their picture. You"ll spend more on the TV, but it will have a less significant impact on your electricity bill.
OLED displays are for those who want the best of all worlds. They produce the best contrast with the most vivid colors. You will be paying the most for the actual device, but the more power efficient display technology will help even out some of that cost.
From panel technology to refresh rates, there are a lot of things to consider when looking for a new gaming monitor. To aid you on your journey for the perfect setup, we"re breaking down two of the most common display technology terms: LED and LCD. Here"s what you need to know about LED and LCD screens, what the terms stand for, and how they factor into modern gaming monitors.
LCD stands for liquid-crystal display, which refers to how the monitor works. Behind the screen, liquid crystals are sandwiched between two layers of glass and used to change the colors of pixels to create the images that you see. The whole process is a lot more complicated, but that"s the gist of how LCDs function.
In the past, some LCDs were backlit by CCFLs (cold-cathode fluorescent lamps). LCDs with fluorescent backlighting have been around longer, so if you can find one, they will be cheaper than LED monitors. However, if you"re a gamer looking for decent refresh rates and response times, it"s going to be hard to find a monitor with fluorescent backlighting. They"ve almost completely been replaced by LCD monitors with LED backlights.
LEDs work in a similar way; in fact, you can consider LEDs a subcategory of LCDs. The only difference between some LCDs and LEDs is the type of backlighting: LEDs use LED (light-emitting diodes) backlighting.
In contrast to fluorescent backlighting, LED backlighting generally provides brighter colors and sharper contrast. The monitors are also thinner in size and, in the long run, more energy efficient than LCDs with fluorescent backlights. LED backlighting is the newer technology and the current standard for monitors with high refresh rates and fast response times. When you see LCD in product descriptions, they"re almost always LCD monitors that use LED (as opposed to fluorescent) backlighting. For example, BenQ"s EL2870U monitor is listed as an LCD, but it"s an LCD with LED backlighting.
There are different types of LED backlighting: edge-lit and array-lit. In edge-lit monitors, the lights are placed around the edges of the monitor. Light guides are then used to diffuse the light evenly across the screen. In array-lit monitors, lights are placed behind the screen in a pattern.
For example, some edge-lit and array-lit LEDs have local dimming capabilities, a feature that can selectively dim certain zones of LED lights. Local dimming improves contrast ratio and provides deeper blacks in dimly lit scenes. These monitors, however, tend to be pricey. Some well-reviewed options include the Samsung Odyssey G7 and Philips Momentum 436M6VBPAB, both of which are edge-lit monitors with partial local dimming capabilities. The Acer Predator X35 is an (expensive) full-array monitor with full local dimming (FALD) capabilities.
You won"t have much of a choice between LED or LCD. Most monitors, regardless of whether they"re marked as LED or LCD, will use LED backlights. LED backlights became the new standard because they allow manufacturers to make thinner, more energy-efficient monitors with better graphics. It"s not worth going out of your way to find an LCD with fluorescent backlighting, unless you really, really hate LED lights.
Which backlights a monitor has isn"t as important as other factors such as panel technology, refresh rates and response time, G-Sync vs. FreeSync, and HDR --those are the characteristics you should pay more attention to when choosing a monitor. If you"re not looking to break the bank, a couple of great LED monitors at excellent price points we can recommend are the Asus VP249QGR, a nice budget 1080p monitor, and Acer XF250Q Cbmiiprx 24.5, a well-reviewed budget 240Hz monitor.
Check out our guide to the best cheap gaming monitors for more budget options; plus, see our picks for the best monitors for PS5 and Xbox Series X, best 144Hz monitors, and the best 4K gaming monitors for more LED displays worth picking up.
Before buying a new TV, you should know the difference between LED and LCD displays. Both provide a high-definition picture, but each handles creating it a little differently and has a few other differences as well. We examined these two screen technologies to help you get a better idea of which one is right for you.
Both LCD and LED TV screens and monitors display a bright, high-definition picture. If you want to save money on the hardware, go with the older LCD setup. LED screens may offer more cost savings over time, however, because the system generally requires less energy to operate.
Although more expensive, newer LED screens are generally lighter than LCDs, especially on an edge-lit display that has fewer components to add bulk to the device.
Before you buy an LCD TV with LED backlighting, consider one important factor: price. LED full-array backlit TVs are impressive but are more expensive than their florescent-lit peers. If picture quality is important to you, spending more money to enjoy the benefits of full-array LED backlighting may make sense for you. If you want the thinnest TV on the block, edge-lit LED is the way to go.
If you"re a bargain shopper, you will probably satisfy yourself and your wallet with a florescent-lit LCD TV. That said, they are getting harder to find since demand is shrinking.
In the context of televisions, the term LED refers to the TV backlighting system, not the display technology that produces the image content. LED TVs use LCD displays; however, they use LED backlights rather than the fluorescent backlights found in traditional LCD TVs. Just as LED TVs are a type of LCD TV, OLED and S-AMOLED are different types of LED TVs.
The liquid crystals in LCD TVs do not produce light, so backlighting is needed to illuminate the image for the viewer. LCD sets originally used a series of fluorescent tubes (termed CCFL-backlit technology) for this purpose. In LED TVs, the illumination source is a series of light-emitting diodes, better known as LEDs. In most modern LCD sets, those fluorescent tubes have been replaced with full-array LEDs, but both types of TVs still use LCD technology.
Each backlighting system has advantages and disadvantages. Edge-lit sets are typically thinner and lighter than those that use a full array because the lighting source takes up less space. Full array sets are thicker and heavier, but they make up for that with local dimming, which means one section of the LED panel can be dimmed while other sections remain bright. This feature slightly improves image contrast.
LED sets that use full-array backlighting tend to produce the best picture of all LCD TVs. Those that use edge lighting sacrifice picture quality, but they are the lightest and thinnest TVs on the market.
Because LCD screens rely on fluorescent panels behind the entire screen to make the picture visible, they use more energy than LED sets. TVs and monitors that use edge-lighting are more efficient than full-array ones because they contain fewer lights in general. However, full-array screens don"t necessarily use all of the LED backlights at once.
When it comes to picture quality, LED TVs look better than older LCD TVs. Manufacturers also make a big deal out of LED backlighting because sets that use the technology are usually more energy-efficient than CCFL LCD TVs. Therefore, the money you save on your power bill could eventually offset the extra cost of an LED TV.
You"ll be happy with the picture regardless of what kind of display you buy. Still, LEDs have a few practical advantages that make them a better purchase than the older LCDs.
When it comes todisplay technologies such asprojectorsand panels, factors such as resolution and refresh rate are often discussed. But the underlying technology is equally, if not more, important. There are tons of different types of screens, from OLED and LED to TN, VA, and IPS. Learn about the various monitor and television types, from operation to pros and cons!
1)Film layer that polarizes light entering2)glass substrate that dictates the dark shapes when the LCD screen is on3)Liquid crystal layer4)glass substrate that lines up with the horizontal filter5)Horizontal film filter letting light through or blocking it6)Reflective surface transmitting an image to the viewer
The most common form of monitor or TV on the market is LCD or Liquid Crystal Display. As the name suggests, LCDs use liquid crystals that alter the light to generate a specific colour. So some form of backlighting is necessary. Often, it’s LED lighting. But there are multiple forms of backlighting.
LCDs have utilized CCFLs or cold cathode fluorescent lamps. An LCD panel lit with CCFL backlighting benefits from extremely uniform illumination for a pretty even level of brightness across the entire screen. However, this comes at the expense of picture quality. Unlike an LED TV, cold cathode fluorescent lamp LCD monitors lack dimming capabilities. Since the brightness level is even throughout the entire array, a darker portion of scenes might look overly lit or washed out. While that might not be as obvious in a room filled with ambient light, under ideal movie-watching conditions, or in a dark room, it’s noticeable. LED TVs have mostly replaced CCFL.
An LCD panel is transmissive rather than emissive. Composition depends on the specific form of LCD being used, but generally, pixels are made up of subpixel layers that comprise the RGB (red-green-blue) colour spectrum and control the light that passes through. A backlight is needed, and it’s usually LED for modern monitors.
While many newer TVs and monitors are marketed as LED TVs, it’s sort of the same as an LCD TV. Whereas LCD refers to a display type, LED points to the backlighting in liquid crystal display instead. As such, LED TV is a subset of LCD. Rather than CCFLs, LEDs are light-emitting diodes or semiconductor light sources which generate light when a current passes through.
LED TVs boast several different benefits. Physically, LED television tends to be slimmer than CCFL-based LCD panels, and viewing angles are generally better than on non-LED LCD monitors. So if you’re at an angle, the picture remains relatively clear nonetheless. LEDs are also extremely long-lasting as well as more energy-efficient. As such, you can expect a lengthy lifespan and low power draw. Chances are you’ll upgrade to a new telly, or an internal part will go out far before any LEDs cease functioning.
Further segmenting LED TVs down, you’ll find TN panels. A TN display or Twisted Nematic display offers a low-cost solution with low response time and low input lag. TN monitors sport high refresh rates, so 100Hz, 144Hz, or higher. Thus, many monitors marketed toward gamers feature TN technology. Unfortunately, while an affordable, fast panel may sound ideal, TN panels suffer from inferior colour reproduction and horrible viewing angles. A TN panel works so that liquid crystal molecules point at the viewer, and light polarizers are oriented at 90-degree angles.
Like TN, IPS or In-plane Switching displays are a subset of LED panels. IPS monitors tend to boast accurate colour reproduction and great viewing angles. Price is higher than on TN monitors, but in-plane switching TVs generally feature a better picture when compared with twisted nematic sets. Latency and response time can be higher on IPS monitors meaning not all are ideal for gaming.
An IPS display aligns liquid crystals in parallel for lush colours. Polarizing filters have transmission axes aligned in the same direction. Because the electrode alignment differs from TN pan