difference between lcd and tft display in mobiles quotation

Have you ever wonder where TFT derive from?  Why is TFT referred to as LCD?  The phenomenon started in early days, when bulky CRT displays were thing of the past and LCD was its replacement, but as time progresses, there were still room for improvement, which leads to the birth of TFT’s.

TFT is a variant of an LCD which uses thin film transistor technology to improve an image quality, while an LCD is class of displays that uses modulating properties of liquid crystals to form what we call an LCD (liquid crystals display) which in fact does not emits light directly.

Even though LCDs were very energy efficient, light weight and thin in nature, LCD were falling behind to the CRT display, which  then leads to a change in LCD manufacturing, where performance became a big problem.

For example, having a 2001 Mustang vs a 2014 Mustang, the dimensions and engine of the 2014 has been redesign for performance reasons, not mentioning user friendly, so does the LCD to TFT.

Back in the day, wafers were cut to accommodate transistors similar to the way chip makers fabricate silicon wafers with the layout transistors which is known as the masking technique, to produce microprocessor.

As the birth of TFT, the elements are deposited directly on the glass substrate which in fact the main reason for the switch was because TFTs are easier to produce, better performance in terms of adjusting the pixels within the display to get better quality.

LCDs became ineffective over a period of time, almost all aspect of watching a TV, playing video games or using a handheld device to surf the net became daunting, this phenomenon is known as high response time with low motion rate.

Another problem with LCD was crosstalking, in terms of pixelating, this happens when signals of adjacent pixels affects operations or gives an undesired effect to the other pixel.

As TFT’s become very popular throughout the century due to its elaborate low charge associate and outstanding response time, LCDs became a thing of the past, and TFT became the predominant technology with their wider viewing angles and better quality this technology will be around for a long time.

difference between lcd and tft display in mobiles quotation

IPS (In-Plane Switching) lcd is still a type of TFT LCD, IPS TFT is also called SFT LCD (supper fine tft ),different to regular tft in TN (Twisted Nematic) mode, theIPS LCD liquid crystal elements inside the tft lcd cell, they are arrayed in plane inside the lcd cell when power off, so the light can not transmit it via theIPS lcdwhen power off, When power on, the liquid crystal elements inside the IPS tft would switch in a small angle, then the light would go through the IPS lcd display, then the display on since light go through the IPS display, the switching angle is related to the input power, the switch angle is related to the input power value of IPS LCD, the more switch angle, the more light would transmit the IPS LCD, we call it negative display mode.

The regular tft lcd, it is a-si TN (Twisted Nematic) tft lcd, its liquid crystal elements are arrayed in vertical type, the light could transmit the regularTFT LCDwhen power off. When power on, the liquid crystal twist in some angle, then it block the light transmit the tft lcd, then make the display elements display on by this way, the liquid crystal twist angle is also related to the input power, the more twist angle, the more light would be blocked by the tft lcd, it is tft lcd working mode.

A TFT lcd display is vivid and colorful than a common monochrome lcd display. TFT refreshes more quickly response than a monochrome LCD display and shows motion more smoothly. TFT displays use more electricity in driving than monochrome LCD screens, so they not only cost more in the first place, but they are also more expensive to drive tft lcd screen.The two most common types of TFT LCDs are IPS and TN displays.

difference between lcd and tft display in mobiles quotation

Key Difference: LCDs are a type of television screen that uses liquid crystals sandwiched between two sheets of polarizing material. TFT (Thin-film transistor) is a field-effect transistor that is used to build the LCD screen and is embedded in every pixel, making it faster and giving a better image quality.

An LCD is type of television screen that uses liquid crystals sandwiched between two sheets of polarizing material. LCDs are used in TVs, computer monitors, clocks, calculators, cell phones, etc. LCDs provide significant benefits compared to CRTs and plasmas, such as they consume less power than both. Both CRTs and Plasmas are susceptible to burn-ins while LCDs are not. However, LCDs require a backlight as it does not emit light by itself.

difference between lcd and tft display in mobiles quotation

TFT and LCD are two different types of electronic displays used in computers, TVs, and smartphones. However, they are not as different as you might think. Let’s start with what those abbreviations mean.

A key weakness of TFT panels is that they do not have wide viewing angles, so they are better suited to displays that require you to view head-on. This can be a good or a bad thing, depending on your needs. For example, the narrower viewing angles mean people sitting or standing around you are less likely to be able to snoop on what you are doing on your mobile phone.

TFT panels are cheaper to manufacture, but they also consume much more power than regular LCD panels. Lastly, they have poorer sunlight visibility. You will find TFT displays on feature phones, smart feature phones, and low-end Android phones.

LCD: This is an abbreviation for “liquid crystal display”. It is a flat panel display with wider viewing angles compared to TFT. They also have lower power consumption and so deliver much better battery life than their TFT counterparts.

In summary, while TFT panels have some distinct advantages, they fall short in other areas and so their use have been limited to low end phones, from feature phones to entry-level Android phones. Plastic feels inferior to touch than glass, which means that TFT screens don’t get to feature much on mid-range and premium devices.

As we see improvements to TFT technology, we will see them deployed on higher end devices over time. In 2022, Samsung used TFT displays in its mid-range Galaxy A13 and Galaxy A23. Perhaps those improvements are happening already.

For now, LCD is the most widely used display type in modern smartphones. At the very top end, we have premium flagships using OLED and AMOLED displays.

TFT displays are higher quality components than regular LCD displays. TFT displays are sharper, brighter, and refresh better than LCD panels. However, they have weaknesses that make them unsuitable for higher end phones.

AMOLED panels have all the benefits of OLED screens, which means they are better than LCD panels. They are expensive though, and so are used in high-end smartphones only.

These are improved versions of AMOLED screens and were developed by Samsung. They are also thinner. The name explains it: think of Super AMOLED as AMOLED on steroids.

Founder of MobilityArena. Yomi’s journey in mobile started in 2001. Besides obsessing over mobile phones, he also started creating WAP sites (early mobile-friendly websites created with WML). He began writing about phones in 2004 and has been at it since then. He has owned over 200 devices, from Symbian, Palm, PocketPC/Windows Mobile, BlackBerry/BB10, webOS, Windows Phone, Firefox, Ubuntu Touch, to Android, iOS, and KaiOS operating systems.Share This Article

difference between lcd and tft display in mobiles quotation

The short name of TFT:Thin Film Transistor in Chinese. What is the difference between TFT and LCD? Our laptops and desktops now use relatively advanced TFT displays, which consist of LCD pixels and are powered by thin-film transistors integrated behind the pixels. Therefore, the TFT type display screen also belongs to a class of display devices with a source matrix.

TFT type display screen is currently a better LCD color display, TFT type display has many advantages: high responsiveness, high brightness, high contrast, and so on.TFT displays are closest to CRT displays. The TFT screen also often appears on the screen of each big mobile phone, there are 65536 colors, 160,000 colors, 16 million colors three, its display effect is also very good.

TFT means that every LCD pixel on an LCD is driven by a thin-film transistor integrated behind it. Thus can achieve high speed, high brightness, high contrast display screen information, TFT-LCD(thin-film transistor liquid crystal display) is one of the majority of LIQUID crystal displays.

Liquid Crystal Display (LCD). The structure of the LCD is placed in the middle of the two pieces of parallel glass liquid crystal box, the substrate glass set on TFT (thin-film transistor), set the color filter substrate glass on, on the TFT signal, and the voltage change to control the rotation direction of the liquid crystal molecules, so as to achieve control of each pixel display emergent polarized light or not and to achieve. Now THAT LCD has replaced CRT as the mainstream, the price has dropped a lot and become widely available.

The TFT(Thin Film Field-effect Transistor) is a video in which every single pixel in the liquid crystal display is actuated by a Thin Film Transistor embedded in the rear. Thus can achieve high speed, high brightness, high contrast display screen information.

Now we see the TN panel is improved more TN + film, film or compensation film, used to make up for the inadequacy of TN panel viewing angles, the improvement of TN, the visual Angle of the panel up to 160 °, of course, this is the manufacturer in contrast to 10:1 case of limit, actually fall in contrast to 100-1 when the image has been distorted or even partial color.

Color screens of mobile phones vary depending on LCD quality and research and development technology. The types of color screens include STN (CSTN), TFT(LTPS), TFD, UFB, and OLED.

Liquid Crystal Display (LCD). Generally divided into monochrome and color LCD two kinds, the current monochrome LCD has almost out of the notebook computer market, and color LCD still continues to develop. The color LCD can be divided into two types: STN and TFT. The TFT(Thin Film Transistorized)LCD, also known as the active transistorized Transistor LIQUID crystal display (LCD), is the true-color LIQUID crystal display that many people describe as the Thin Film Transistor.DSTN (Dual Scan Twisted Nematic)LCD, namely double scan LIQUID crystal display. It is a display mode of STN LCD, which is no longer on the market.

What is the difference between TFT and LCD? Read here I believe you have a general understanding and cognition of TFT and LCD, LCD refers to liquid crystal display, TFT is a kind of LCD. The former is for laptops and the latter is for desktop computers. There are several different technologies for LCD, FED, PDP, OLED, TFT-LCD, they are all LCD. Only the desktop with several fronts more, lower cost, TFT technology cost is higher, generally used for notebook, or MOTO, etc., now most of the display is TFT type display, I believe we will pay more attention to the choice and purchase of digital goods.

difference between lcd and tft display in mobiles quotation

A thin-film-transistor liquid-crystal display (TFT LCD) is a variant of a liquid-crystal display that uses thin-film-transistor technologyactive matrix LCD, in contrast to passive matrix LCDs or simple, direct-driven (i.e. with segments directly connected to electronics outside the LCD) LCDs with a few segments.

In February 1957, John Wallmark of RCA filed a patent for a thin film MOSFET. Paul K. Weimer, also of RCA implemented Wallmark"s ideas and developed the thin-film transistor (TFT) in 1962, a type of MOSFET distinct from the standard bulk MOSFET. It was made with thin films of cadmium selenide and cadmium sulfide. The idea of a TFT-based liquid-crystal display (LCD) was conceived by Bernard Lechner of RCA Laboratories in 1968. In 1971, Lechner, F. J. Marlowe, E. O. Nester and J. Tults demonstrated a 2-by-18 matrix display driven by a hybrid circuit using the dynamic scattering mode of LCDs.T. Peter Brody, J. A. Asars and G. D. Dixon at Westinghouse Research Laboratories developed a CdSe (cadmium selenide) TFT, which they used to demonstrate the first CdSe thin-film-transistor liquid-crystal display (TFT LCD).active-matrix liquid-crystal display (AM LCD) using CdSe TFTs in 1974, and then Brody coined the term "active matrix" in 1975.high-resolution and high-quality electronic visual display devices use TFT-based active matrix displays.

The liquid crystal displays used in calculators and other devices with similarly simple displays have direct-driven image elements, and therefore a voltage can be easily applied across just one segment of these types of displays without interfering with the other segments. This would be impractical for a large display, because it would have a large number of (color) picture elements (pixels), and thus it would require millions of connections, both top and bottom for each one of the three colors (red, green and blue) of every pixel. To avoid this issue, the pixels are addressed in rows and columns, reducing the connection count from millions down to thousands. The column and row wires attach to transistor switches, one for each pixel. The one-way current passing characteristic of the transistor prevents the charge that is being applied to each pixel from being drained between refreshes to a display"s image. Each pixel is a small capacitor with a layer of insulating liquid crystal sandwiched between transparent conductive ITO layers.

The circuit layout process of a TFT-LCD is very similar to that of semiconductor products. However, rather than fabricating the transistors from silicon, that is formed into a crystalline silicon wafer, they are made from a thin film of amorphous silicon that is deposited on a glass panel. The silicon layer for TFT-LCDs is typically deposited using the PECVD process.

Polycrystalline silicon is sometimes used in displays requiring higher TFT performance. Examples include small high-resolution displays such as those found in projectors or viewfinders. Amorphous silicon-based TFTs are by far the most common, due to their lower production cost, whereas polycrystalline silicon TFTs are more costly and much more difficult to produce.

The twisted nematic display is one of the oldest and frequently cheapest kind of LCD display technologies available. TN displays benefit from fast pixel response times and less smearing than other LCD display technology, but suffer from poor color reproduction and limited viewing angles, especially in the vertical direction. Colors will shift, potentially to the point of completely inverting, when viewed at an angle that is not perpendicular to the display. Modern, high end consumer products have developed methods to overcome the technology"s shortcomings, such as RTC (Response Time Compensation / Overdrive) technologies. Modern TN displays can look significantly better than older TN displays from decades earlier, but overall TN has inferior viewing angles and poor color in comparison to other technology.

Most TN panels can represent colors using only six bits per RGB channel, or 18 bit in total, and are unable to display the 16.7 million color shades (24-bit truecolor) that are available using 24-bit color. Instead, these panels display interpolated 24-bit color using a dithering method that combines adjacent pixels to simulate the desired shade. They can also use a form of temporal dithering called Frame Rate Control (FRC), which cycles between different shades with each new frame to simulate an intermediate shade. Such 18 bit panels with dithering are sometimes advertised as having "16.2 million colors". These color simulation methods are noticeable to many people and highly bothersome to some.gamut (often referred to as a percentage of the NTSC 1953 color gamut) are also due to backlighting technology. It is not uncommon for older displays to range from 10% to 26% of the NTSC color gamut, whereas other kind of displays, utilizing more complicated CCFL or LED phosphor formulations or RGB LED backlights, may extend past 100% of the NTSC color gamut, a difference quite perceivable by the human eye.

The transmittance of a pixel of an LCD panel typically does not change linearly with the applied voltage,sRGB standard for computer monitors requires a specific nonlinear dependence of the amount of emitted light as a function of the RGB value.

In-plane switching was developed by Hitachi Ltd. in 1996 to improve on the poor viewing angle and the poor color reproduction of TN panels at that time.

Initial iterations of IPS technology were characterised by slow response time and a low contrast ratio but later revisions have made marked improvements to these shortcomings. Because of its wide viewing angle and accurate color reproduction (with almost no off-angle color shift), IPS is widely employed in high-end monitors aimed at professional graphic artists, although with the recent fall in price it has been seen in the mainstream market as well. IPS technology was sold to Panasonic by Hitachi.

Most panels also support true 8-bit per channel color. These improvements came at the cost of a higher response time, initially about 50 ms. IPS panels were also extremely expensive.

IPS has since been superseded by S-IPS (Super-IPS, Hitachi Ltd. in 1998), which has all the benefits of IPS technology with the addition of improved pixel refresh timing.

In 2004, Hydis Technologies Co., Ltd licensed its AFFS patent to Japan"s Hitachi Displays. Hitachi is using AFFS to manufacture high end panels in their product line. In 2006, Hydis also licensed its AFFS to Sanyo Epson Imaging Devices Corporation.

It achieved pixel response which was fast for its time, wide viewing angles, and high contrast at the cost of brightness and color reproduction.Response Time Compensation) technologies.

Less expensive PVA panels often use dithering and FRC, whereas super-PVA (S-PVA) panels all use at least 8 bits per color component and do not use color simulation methods.BRAVIA LCD TVs offer 10-bit and xvYCC color support, for example, the Bravia X4500 series. S-PVA also offers fast response times using modern RTC technologies.

When the field is on, the liquid crystal molecules start to tilt towards the center of the sub-pixels because of the electric field; as a result, a continuous pinwheel alignment (CPA) is formed; the azimuthal angle rotates 360 degrees continuously resulting in an excellent viewing angle. The ASV mode is also called CPA mode.

A technology developed by Samsung is Super PLS, which bears similarities to IPS panels, has wider viewing angles, better image quality, increased brightness, and lower production costs. PLS technology debuted in the PC display market with the release of the Samsung S27A850 and S24A850 monitors in September 2011.

TFT dual-transistor pixel or cell technology is a reflective-display technology for use in very-low-power-consumption applications such as electronic shelf labels (ESL), digital watches, or metering. DTP involves adding a secondary transistor gate in the single TFT cell to maintain the display of a pixel during a period of 1s without loss of image or without degrading the TFT transistors over time. By slowing the refresh rate of the standard frequency from 60 Hz to 1 Hz, DTP claims to increase the power efficiency by multiple orders of magnitude.

Due to the very high cost of building TFT factories, there are few major OEM panel vendors for large display panels. The glass panel suppliers are as follows:

External consumer display devices like a TFT LCD feature one or more analog VGA, DVI, HDMI, or DisplayPort interface, with many featuring a selection of these interfaces. Inside external display devices there is a controller board that will convert the video signal using color mapping and image scaling usually employing the discrete cosine transform (DCT) in order to convert any video source like CVBS, VGA, DVI, HDMI, etc. into digital RGB at the native resolution of the display panel. In a laptop the graphics chip will directly produce a signal suitable for connection to the built-in TFT display. A control mechanism for the backlight is usually included on the same controller board.

The low level interface of STN, DSTN, or TFT display panels use either single ended TTL 5 V signal for older displays or TTL 3.3 V for slightly newer displays that transmits the pixel clock, horizontal sync, vertical sync, digital red, digital green, digital blue in parallel. Some models (for example the AT070TN92) also feature input/display enable, horizontal scan direction and vertical scan direction signals.

New and large (>15") TFT displays often use LVDS signaling that transmits the same contents as the parallel interface (Hsync, Vsync, RGB) but will put control and RGB bits into a number of serial transmission lines synchronized to a clock whose rate is equal to the pixel rate. LVDS transmits seven bits per clock per data line, with six bits being data and one bit used to signal if the other six bits need to be inverted in order to maintain DC balance. Low-cost TFT displays often have three data lines and therefore only directly support 18 bits per pixel. Upscale displays have four or five data lines to support 24 bits per pixel (truecolor) or 30 bits per pixel respectively. Panel manufacturers are slowly replacing LVDS with Internal DisplayPort and Embedded DisplayPort, which allow sixfold reduction of the number of differential pairs.

Backlight intensity is usually controlled by varying a few volts DC, or generating a PWM signal, or adjusting a potentiometer or simply fixed. This in turn controls a high-voltage (1.3 kV) DC-AC inverter or a matrix of LEDs. The method to control the intensity of LED is to pulse them with PWM which can be source of harmonic flicker.

The bare display panel will only accept a digital video signal at the resolution determined by the panel pixel matrix designed at manufacture. Some screen panels will ignore the LSB bits of the color information to present a consistent interface (8 bit -> 6 bit/color x3).

With analogue signals like VGA, the display controller also needs to perform a high speed analog to digital conversion. With digital input signals like DVI or HDMI some simple reordering of the bits is needed before feeding it to the rescaler if the input resolution doesn"t match the display panel resolution.

The statements are applicable to Merck KGaA as well as its competitors JNC Corporation (formerly Chisso Corporation) and DIC (formerly Dainippon Ink & Chemicals). All three manufacturers have agreed not to introduce any acutely toxic or mutagenic liquid crystals to the market. They cover more than 90 percent of the global liquid crystal market. The remaining market share of liquid crystals, produced primarily in China, consists of older, patent-free substances from the three leading world producers and have already been tested for toxicity by them. As a result, they can also be considered non-toxic.

Kawamoto, H. (2012). "The Inventors of TFT Active-Matrix LCD Receive the 2011 IEEE Nishizawa Medal". Journal of Display Technology. 8 (1): 3–4. Bibcode:2012JDisT...8....3K. doi:10.1109/JDT.2011.2177740. ISSN 1551-319X.

Brody, T. Peter; Asars, J. A.; Dixon, G. D. (November 1973). "A 6 × 6 inch 20 lines-per-inch liquid-crystal display panel". 20 (11): 995–1001. Bibcode:1973ITED...20..995B. doi:10.1109/T-ED.1973.17780. ISSN 0018-9383.

Richard Ahrons (2012). "Industrial Research in Microcircuitry at RCA: The Early Years, 1953–1963". 12 (1). IEEE Annals of the History of Computing: 60–73. Cite journal requires |journal= (help)

K. H. Lee; H. Y. Kim; K. H. Park; S. J. Jang; I. C. Park & J. Y. Lee (June 2006). "A Novel Outdoor Readability of Portable TFT-LCD with AFFS Technology". SID Symposium Digest of Technical Papers. AIP. 37 (1): 1079–82. doi:10.1889/1.2433159. S2CID 129569963.

Kim, Sae-Bom; Kim, Woong-Ki; Chounlamany, Vanseng; Seo, Jaehwan; Yoo, Jisu; Jo, Hun-Je; Jung, Jinho (15 August 2012). "Identification of multi-level toxicity of liquid crystal display wastewater toward Daphnia magna and Moina macrocopa". Journal of Hazardous Materials. Seoul, Korea; Laos, Lao. 227–228: 327–333. doi:10.1016/j.jhazmat.2012.05.059. PMID 22677053.

difference between lcd and tft display in mobiles quotation

When we purchase a new smartphone we go through a list of specifications that includes the processor, software, cameras, display type, battery, etc. The display of the smartphone is something which has always been a concern for people. And smartphone technology has advanced so much in the past decade that you get several display technology options to choose from.

Today, a smartphone is not just a means to send and receive calls and texts. It has become a general necessity, so choosing the right technology should be your main priority. Coming back to displays, as we said there are plenty of display types available right now.

Two of the main contenders for display technologies that are widely available are AMOLED and LCD. Here in this article, we will be comprising AMOLED vs LCD and find out which one is better for you.

Starting with the AMOLED first, it is a part of the OLED display technology but with some more advanced features. To completely know about it must understand its all three components. The first one is LED, “Light Emitting Diode”. Then we have “O” which stands for organic and makes the OLED.

It actually means that organic material is placed with two conductors in each LED, which helps to produce the light. And the “AM” in AMOLED means Active Matrix, it has the capability to increase the quality of a pixel.

The AMOLED display is similar to the OLED in various factors like high brightness and sharpness, better battery life, colour reproduction, etc. AMOLED display also has a thin film transistor, “TFT” that is attached to each LED with a capacitor.

TFT helps to operate all the pixels in an AMOLED display. This display might have a lot of positives but there are a few negatives too let’s point both of them out.

It comes with individual LEDs so, the pixels can be turned on and off individually. This will show you true black colours, as the pixels on the black part of the image will be turned off.

A major issue with these displays is of burning of pixels. After showing a specific image or colour for a longer period of time, the pixel can get burned. And if there is a problem with a single pixel it will affect the entire display.

Low outdoor visibility, usually the AMOLED Displays are quote not bright in direct sunlight and outdoor readability could be a problem for some devices but average screen brightness.

The LCD stands for “Liquid Crystal Display”, and this display produces colours a lot differently than AMOLED. LCD display uses a dedicated backlight for the light source rather than using individual LED components.

The LCD displays function pretty simply, a series of thin films, transparent mirrors, and some white LED lights that distributes lights across the back of the display.

As we have mentioned, an LCD display always requires a backlight and also a colour filter. The backlight must have to pass through a thin film transistor matrix and a polarizer. So, when you see it, the whole screen will be lit and only a fraction of light gets through. This is the key difference comparing AMOLED vs LCD and this is what differentiates these two display technologies.

The LCD displays are cheaper compared to the AMOLED as there is only one source of light which makes it easier to produce. Most budget smartphones also use LCD displays.

LCD displays have bright whites, the backlight emits lots of light through pixels which makes it easy to read in outdoors. It also shows the “Accurate True to Life” colours, which means it has the colours that reflect the objects of the real world more accurately than others.

LCDs also offer the best viewing angle. Although it may depend on the smartphone you have. But most high-quality LCD displays support great viewing angles without any colour distortion or colour shifting.

The LCD displays can never show the deep blacks like AMOLED. Due to the single backlight, it always has to illuminate the screen making it impossible to show the deep blacks.

The LCDs are also thicker than other displays because of the backlight as it needs more volume. So, LCD smartphones are mostly thicker than AMOLED ones.

Both of these display technologies have their own Pros and Cons. Taking them aside everything ends up with the user preferences as people might have different preferences among different colours and contrast profiles. However, a few factors might help you to decide which one fits perfectly for you.

Let’s start with the pricing. Most AMOLED display smartphones always cost more than an LCD smartphone. Although the trend is changing a bit. But still, if you want to get a good quality AMOLED display you have to go for the flagship devices.

The colors are also very sharp and vibrant with the AMOLED displays. And they look much better than any LCD display. The brightness is something where LCDs stood ahead of the AMOLED display. So using an LCD display outdoors gives much better results.

The last thing is battery consumption, and there is no one near the AMOLED displays in terms of battery. As of now, all smartphones feature a Dark Mode and most of the apps and UI are dark black with a black background. This dark UI on smartphones doesn’t require any other light, it gives the AMOLED displays a boost in battery performance.

Looking at all these factors and comparing AMOLED vs LCD displays, the AMOLED displays are certainly better than the LCDs. Also, the big display OEMs, like Samsung and LG are focusing more the OLED technologies for their future projects. So, it makes sense to look out for AMOLED displays. That being said, if we see further enhancements in the LCD technology in terms of battery efficiency and more, there is no point to cancel them at this moment.

difference between lcd and tft display in mobiles quotation

Display size, contrast, color, brightness, resolution, and power are key factors in choosing the right display technology for your application. However, making the right choice in how you feed the information to the display is just as vital, and there are many interface options available.

All displays work in a similar manner. In a very basic explanation, they all have many rows and columns of pixels driven by a controller that communicates with each pixel to emit the brightness and color needed to make up the transmitted image. In some devices, the pixels are diodes that light up when current flows (PMOLEDs and AMOLEDs), and in other electronics, the pixel acts as a shutter to let some of the light from a backlight visible. In all cases, a memory array stores the image information that travels to the display through an interface.

According to Wikipedia, "an interface is a shared boundary across which two separate components of a computer system exchange information. The exchange can be between software, computer hardware, peripheral devices, humans, and combinations of these. Some computer hardware devices such as a touchscreen can both send and receive data through the interface, while others such as a mouse or microphone may only provide an interface to send data to a given system.” In other words, an interface is something that facilitates communication between two objects. Although display interfaces serve a similar purpose, how that communication occurs varies widely.

Serial Peripheral Interface (SPI) is a synchronous serial communication interface best-suited for short distances. It was developed by Motorola for components to share data such as flash memory, sensors, Real-Time Clocks, analog-to-digital converters, and more. Because there is no protocol overhead, the transmission runs at relatively high speeds. SPI runs on one master (the side that generates the clock) with one or more slaves, usually the devices outside the central processor. One drawback of SPI is the number of pins required between devices. Each slave added to the master/slave system needs an additional chip select I/O pin on the master. SPI is a great option for small, low-resolution displays including PMOLEDs and smaller LCDs.

Philips Semiconductors invented I2C (Inter-integrated Circuit) or I-squared-C in 1982. It utilizes a multi-master, multi-slave, single-ended, serial computer bus system. Engineers developed I2C for simple peripherals on PCs, like keyboards and mice to then later apply it to displays. Like SPI, it only works for short distances within a device and uses an asynchronous serial port. What sets I2C apart from SPI is that it can support up to 1008 slaves and only requires two wires, serial clock (SCL), and serial data (SDA). Like SPI, I2C also works well with PMOLEDs and smaller LCDs. Many display systems transfer the touch sensor data through I2C.

RGB is used to interface with large color displays. It sends 8 bits of data for each of the three colors, Red Green, and Blue every clock cycle. Since there are 24 bits of data transmitted every clock cycle, at clock rates up to 50 MHz, this interface can drive much larger displays at video frame rates of 60Hz and up.

Low-Voltage Differential Signaling (LVDS) was developed in 1994 and is a popular choice for large LCDs and peripherals in need of high bandwidth, like high-definition graphics and fast frame rates. It is a great solution because of its high speed of data transmission while using low voltage. Two wires carry the signal,  with one wire carrying the exact inverse of its companion. The electric field generated by one wire is neatly concealed by the other, creating much less interference to nearby wireless systems. At the receiver end, a circuit reads the difference (hence the "differential" in the name) in voltage between the wires. As a result, this scheme doesn’t generate noise or gets its signals scrambled by external noise. The interface consists of four, six, or eight pairs of wires, plus a pair carrying the clock and some ground wires. 24-bit color information at the transmitter end is converted to serial information, transmitted quickly over these pairs of cables, then converted back to 24-bit parallel in the receiver, resulting in an interface that is very fast to handle large displays and is very immune to interference.

Mobile Industry Processor Interface (MIPI) is a newer technology that is managed by the MIPI Alliance and has become a popular choice among wearable and mobile developers. MIPI uses similar differential signaling to LVDS by using a clock pair and one to eight pairs of data called lanes. MIPI supports a complex protocol that allows high speed and low power modes, as well as the ability to read data back from the display at lower rates. There are several versions of MIPI for different applications, MIPI DSI being the one for displays.

Display components stretch the limitations of bandwidth. For perspective, the most common internet bandwidth in a residential home runs on average at around 20 megabits per second or 20 billion 1s and 0s per second. Even small displays can require 4MB per second, which is a lot of data in what is often a tightly constrained physical space.

To give an example, a small monochrome PMOLED with a resolution of 128 x 128 contains 16,384 individual diodes. A still image of various diodes carrying current represents a frame. A frame rate is the number of times that a picture needs refreshing. Most videos have a frame rate of 60 fps (frames per second), which means that it is updated 60 times every second.

Take the same PMOLED display with the 128 x 128 resolution and 16,384 separate diodes; it requires information as to when and how brightly to illuminate each pixel. For a display with only 16 shades, it takes 4 bits of data. 128 x 128 x 4 = 65,536 bits for one frame. Now multiply it by the 60Hz, and you get a bandwidth of 4 megabits/second for a small monochrome display.

difference between lcd and tft display in mobiles quotation

In market, LCD means passive matrix LCDs which increase TN (Twisted Nematic), STN (Super Twisted Nematic), or FSTN (Film Compensated STN) LCD Displays. It is a kind of earliest and lowest cost display technology.

LCD screens are still found in the market of low cost watches, calculators, clocks, utility meters etc. because of its advantages of low cost, fast response time (speed), wide temperature range,  low power consumption, sunlight readable with transflective or reflective polarizers etc.  Most of them are monochrome LCD display and belong to passive-matrix LCDs.

TFT LCDs have capacitors and transistors. These are the two elements that play a key part in ensuring that the TFT display monitor functions by using a very small amount of energy without running out of operation.

Normally, we say TFT LCD panels or TFT screens, we mean they are TN (Twisted Nematic) Type TFT displays or TN panels, or TN screen technology. TFT is active-matrix LCDs, it is a kind of LCD technologies.

TFT has wider viewing angles, better contrast ratio than TN displays. TFT display technologies have been widely used for computer monitors, laptops, medical monitors, industrial monitors, ATM, point of sales etc.

Actually, IPS technology is a kind of TFT display with thin film transistors for individual pixels. But IPS displays have superior high contrast, wide viewing angle, color reproduction, image quality etc. IPS screens have been found in high-end applications, like Apple iPhones, iPads, Samsung mobile phones, more expensive LCD monitors etc.

Both TFT LCD displays and IPS LCD displays are active matrix displays, neither of them can produce color, there is a layer of RGB (red, green, blue) color filter in each LCD pixels to make LCD showing colors. If you use a magnifier to see your monitor, you will see RGB color. With switch on/off and different level of brightness RGB, we can get many colors.

Neither of them can’t release color themselves, they have relied on extra light source in order to display. LED backlights are usually be together with them in the display modules as the light sources. Besides, both TFT screens and IPS screens are transmissive, it will need more power or more expensive than passive matrix LCD screens to be seen under sunlight.  IPS screens transmittance is lower than TFT screens, more power is needed for IPS LCD display.

difference between lcd and tft display in mobiles quotation

Liquid Crystal Display (LCD) screens are a staple in the digital display marketplace and are used in display applications across every industry. With every display application presenting a unique set of requirements, the selection of specialized LCDs has grown to meet these demands.

LCD screens can be grouped into three categories: TN (twisted nematic), IPS (in-plane switching), and VA (Vertical Alignment). Each of these screen types has its own unique qualities, almost all of them having to do with how images appear across the various screen types.

This technology consists of nematic liquid crystal sandwiched between two plates of glass. When power is applied to the electrodes, the liquid crystals twist 90°. TN (Twisted Nematic) LCDs are the most common LCD screen type. They offer full-color images, and moderate viewing angles.

TN LCDs maintain a dedicated user base despite other screen types growing in popularity due to some unique key features that TN display offer. For one,

TN TFTs remain very popular among competitive PC gaming communities, where accuracy and response rates can make the difference between winning and losing.

Refresh rates and response times refer to the time it takes pixels to activate and deactivate in response to user inputs; this is crucial for fast-moving images or graphics that must update as fast as possible with extreme precision.

VA, also known as Multi-Domain Vertical Alignment (MVA) dislays offer features found in both TN and IPS screens. The Pixels in VA displays align vertically to the glass substrate when voltage is applied, allowing light to pass through.

Displays with VA screens deliver wide viewing angles, high contrast, and good color reproduction. They maintain high response rates similar to TN TFTs but may not reach the same sunlight readable brightness levels as comparable TN or IPS LCDs. VA displays are generally best for applications that need to be viewed from multiple angles, like digital signage in a commercial setting.

IPS (In-Plane Switching) technology improves image quality by acting on the liquid crystal inside the display screen. When voltage is applied, the crystals rotate parallel (or “in-plane”) rather than upright to allow light to pass through. This behavior results in several significant improvements to the image quality of these screens.

IPS is superior in contrast, brightness, viewing angles, and color representation compared to TN screens. Images on screen retain their quality without becoming washed out or distorted, no matter what angle they’re viewed from. Because of this, viewers have the flexibility to view content on the screen from almost anywhere rather than having to look at the display from a front-center position.

IPS displays offer a slightly lower refresh rate than TN displays. Remember that the time for pixels to go from inactive to active is measured in milliseconds. So for most users, the difference in refresh rates will go unnoticed.

Based on current trends, IPS and TN screen types will be expected to remain the dominant formats for some time. As human interface display technology advances and new product designs are developed, customers will likely choose IPS LCDs to replace the similarly priced TN LCDs for their new projects.

difference between lcd and tft display in mobiles quotation

This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.

difference between lcd and tft display in mobiles quotation

If you need to repair your phone screen you may have been looking into different types of screen replacements. You’ve probably heard of the acronyms LCD and OLED in TVs before, but what are the differences between LCD and OLED screens and what will be best for your phone?

LCD or Liquid Crystal Display has been the standard for computer, tablet, and phone screens for the past decade. These screens offer great brightness, high definition, and are becoming relatively inexpensive. We tend to see LCD screens on the less expensive cell phone models, today. LCD screens can have great HD quality and have good performance in direct sunlight but tend to be more inefficient when it comes to power consumption compared to an OLED screen.

Over the past few years, many companies have been switching to newer screen technology: OLED displays. OLED, which stands for organic light-emitting diode, is being used on all of the latest flagship devices. They tout amazing contrast of color, they’re lighter and flexible and tend to be more efficient than LCDs. OLED technology is being used for curved edge phones like theGalaxy S10+and theGalaxy S20, S20+, and S20 Ultra 5G. OLEDs have also been used in folding smartphone displays like theSamsung Galaxy Fold, the newMotorola razrsmart flip phone, and theSamsung Galaxy Z Flip.

OLED displays are being used by Apple in their iPhone 11 Pro Max, 11 Pro, XS Max, XS, and X. iPhone X flagship series and newer will come with OLED. Both flagship Samsung Galaxy S and Note Series have OLED displays as the standard on all recent devices including the Samsung Galaxy S10 and Note 10 series, S9+, S9, Note 9, S8, S8+, Note 8, and so on. These phones also all have OLED displays: LG V40, LG V30, Huawei P30 Pro, Huawei Mate 20 Pro, OnePlus 6T, and the Motorola Moto Z2 Force Edition.

The iPhone 11 and the XR still use LCD displays as well as all other iPhones that came before the X series including the iPhone 8, iPhone 8 Plus, iPhone 7, iPhone 7 Plus, iPhone 6s, and so on. Basically, any iPhone with a Home Button will have a LCD screen on it. The LG G7 ThinQ, LG G6, Moto E5, and Moto E6 all have LCD displays as well.

When getting your device repaired, it is a good idea to use the display type that was originally installed on your phone. For example, if you have the iPhone X, which comes with an OLED display, ideally, you will want to get an OLED replacement. This will keep your phone running as efficiently as possible. If you need a more economical solution it is sometimes possible to get an LCD replacement, but keep in mind that they can drain your battery faster and may not have the same color contrast and may not be optimized for your phone.

One of the easiest ways to determine which display type you have is to go to a true black screen – you can search for this on Google Images. If your display type is LCD your pixels will still be displaying a dark gray light. If you have an OLED display the screen will be totally black. It is easier to tell when this experiment is performed in a dark room. You can also searchGSMArenafor your phone and then view its display type.

difference between lcd and tft display in mobiles quotation

Is LCD or AMOLED better for eyes?The full English name of LCD is Liquid Crystal Display, which is a general term. According to its driving method, it can be divided into various specifications. Most monitors and laptops on the market today are thin-film transistors. Because TFT has better color saturation and viewing angles than other technologies, it is also the mainstream specification on the market today. The models on the market are mainly based on TFT, and LCD has now become synonymous with the term TFT display. Next, I will tell you in detail which LCD screen or OLED screen is better for the eyes.

Both OLED and LCD can cause damage to the eyes, because both OLED and LCD emit blue light, which is unavoidable. However, users can turn on the eye protection mode of the mobile phone to reduce the damage of blue light to the eyes. In addition, OLED"s dimming technology and LCD"s blue backlight are also one of the reasons for the "eye-hurt". OLED adopts PWM low-frequency dimming technology, which is a technology that adjusts the brightness through the rapid flickering of the light-emitting unit, so looking at the screen for a long time will cause eye fatigue. The blue backlight of an LCD monitor emits high-energy short-wave blue light.

In terms of manufacturing process, OLED adopts self-luminous technology and has no backlight layer, so this screen can be made very thin. In addition, each light-emitting unit of OLED can emit light independently when it emits light, and has the function of color screen display. LCD is composed of backlight layer, liquid crystal layer, color filter and other components, and the screen is made of inorganic materials, so the service life of this screen is relatively long.

Is LCD or AMOLED better for eyes?The above is the difference between lcd and oled. Users should try to avoid staring at the phone screen for a long time. Reduce LCD and AMOLED viewing time in dark environments. If you have the habit of reading late at night, you also need to turn on a light to neutralize the strobe light. Moisten your eyes with eye drops when your eyes are dry.

difference between lcd and tft display in mobiles quotation

WASHINGTON – A Thin-Film Transistor-Liquid Crystal Display (TFT-LCD) producer and seller has agreed to plead guilty and pay $220 million in criminal fines for its role in a conspiracy to fix prices in the sale of liquid crystal display panels, the Department of Justice announced today.

According to a one-count felony charge filed today in U.S. District Court in San Francisco, Chi Mei Optoelectronics participated in a conspiracy to fix the prices of TFT-LCD panels sold worldwide from Sept. 14, 2001, to Dec. 1, 2006. According to the plea agreement, which is subject to court approval, Chi Mei has agreed to cooperate with the department’s ongoing antitrust investigation.

TFT-LCD panels are used in computer monitors and notebooks, televisions, mobile phones and other electronic devices. By the end of the conspiracy period, the worldwide market for TFT-LCD panels was valued at $70 billion. Companies directly affected by the LCD price-fixing conspiracy are some of the largest computer and television manufacturers in the world, including Apple, Dell and HP.

According to the charge, Chi Mei carried out the conspiracy by agreeing during meetings, conversations and communications to charge prices of TFT-LCD panels at certain pre-determined levels and issuing price quotations in accordance with the agreements reached. As a part of the conspiracy, Chi Mei exchanged information on sales of TFT-LCD panels for the purpose of monitoring and enforcing adherence to the agreed-upon prices.

Chi Mei, which is based in Tainan, Taiwan, is charged with price fixing in violation of the Sherman Act. Each violation carries a maximum fine of $100 million for corporations. The maximum fine may be increased to twice the gain derived from the crime or twice the loss suffered by the victims of the crime, if either of those amounts is greater than the statutory maximum fine.

Including today’s charges, as a result of this investigation, six companies have pleaded guilty or have agreed to plead guilty and have been sentenced to pay or have agreed to pay criminal fines totaling more than $860 million. Additionally, nine executives have been charged to date in the department’s ongoing investigation.

Today’s charge is the result of a joint investigation by the Department of Justice Antitrust Division’s San Francisco Field Office and the FBI in San Francisco.

Anyone with information concerning illegal conduct in the TFT-LCD industry is urged to call the Antitrust Division’s San Francisco Field Office at 415-436-6660.

difference between lcd and tft display in mobiles quotation

Take your product to the next level with a capacitive touch screen LCD by Displaytech. Our PCAP (projected capacitive) touch screen technology is a premium alternative to a resistive touchscreen. We offer capacitive touchscreens for our 2.8-inch, 3.5-inch, 4.3-inch, 5-inch and 7-inch TFT LCD displays.

Capacitive touch technology allows for an enhanced product user interface since it supports gestures and proximity sensing. Unlike resistive touch screens which rely on pressure, capacitive touch responds to an electric current and can handle multi-finger touch points. This means that capacitive touchscreens can be used with your bare finger and it supports gestures such as pinch-to-zoom or swipe.

difference between lcd and tft display in mobiles quotation

Thin-film transistors deliver precise images to displays By Liane Cassavoy Liane Cassavoy Writer Boston University"s College of Communications Liane Cassavoy is a former freelance contributor to Lifewire who has been reviewing and writing articles about smartphones since 1999. lifewire"s editorial guidelines Updated on April 13, 2020 Tweet Share Email Tweet Share Email Accessories & Hardware The Quick Guide to Webcams Keyboards & Mice Monitors Cards HDD & SSD Printers & Scanners Raspberry Pi TFT stands for thin-film transistor and is used with LCD to improve image quality over older digital display technologies. Each pixel on a TFT LCD has its own transistor on the glass itself, which offers greater control over the images and colors that it renders. TFT is also an abbreviation for other technical terms including time from transmission, text fix test, Trinitron flat tube, and trivial file transfer protocol. Waveshare

TFT Benefits and Uses Since the transistors in a TFT LCD screen are so small, the technology offers the added benefit of requiring less power. However, while TFT LCDs can deliver sharp images, they also tend to offer relatively poor viewing angles. The result is that TFT LCDs look best when viewed head-on, but viewing images from the

side is often difficult. TFT LCDs are found on low-end smartphones as well as basic cell phones. The technology is also used on TVs, handheld video game systems, computer monitors, and GPS navigation systems.

How Do TFT Displays Work All the pixels on a TFT screen are configured in a row-and-column format, and each pixel is attached to an amorphous silicon transistor that rests directly on the glass panel. This allows each pixel to be given a charge and for the charge to be kept even when the screen is refreshed to produce a new image. With this type of setup, the state of a particular pixel is being actively maintained even while other pixels are being used. This is why TFT LCDs are considered active matrix displays (as opposed to a passive matrix displays).

Newer Screen Technologies Lots of smartphone manufacturers use IPS-LCD (Super LCD), which provides wider viewing angles and richer colors, but newer phones feature displays that utilize OLED or Super-AMOLED technology. For example, Samsung"s flagship smartphones boast OLED panels, while most of Apple"s iPhones and iPads come equipped with an IPS-LCD. Super LCD and Super-AMOLED have their own pros and cons, but they both far exceed the capabilities of TFT LCD technology. Was this page helpful? Thanks for letting us know! Get the Latest Tech News Delivered Every Day

OLED vs. LED: Which TV Display is Better? What to Look for When Buying a Projector Samsung Galaxy A Phones: What You Need to Know A Beginner"s Guide to the Technology Behind IPS Display The Difference Between an LCD TV and a Plasma TV An Overview of Cellphone Displays How to Test and Calibrate a Monitor"s Settings What Is a Liquid Retina Display? LED LCD Backlights: What You Should Know QLED vs. OLED How to Buy a TV in 2022 What Is MicroLED? What Is a Sub-field Drive on a Plasma TV? All About Active and Passive 3D Glasses LCD TV vs LED TV: What You Need To Know Newsletter Sign Up Newsletter Sign Up Newsletter Sign Up Newsletter Sign Up Newsletter Sign Up By clicking “Accept All Cookies”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. Cookies Settings Accept All Cookies.

xQc vs Kai Cenat Who is the bigger Twitch streamer in 2022 × Follow Us Create Notifications New User posted their first comment this is comment text Link Approve Reject & ban Delete Log in Manage your profile Editing Story Queue

Richik "anarkiddie" Bhattacharya Modified 28 Sep 2022 Follow Us Comment Share Who is the biggest English speaking streamer on Twitch in 2022 so far? (Image via Sportskeeda) By amassing a whopping 90K subscribers within two years of starting off as a Twitch streamer, Kai Cenat has already cemented his place among the biggest content creators on the platform. With an average concurrent viewership in the tens of thousands, it is only natural that Kai has been compared to pre-established giants in the streaming world. His explosive growth on the platform saw him increase his sub count by an astonishing rate, going from 80K to 90K in the span of a couple of days. AMP [email protected] JUST HIT 80K 3 DAYS AGOOOO?90K SUBS NOW THIS IS RIDICULOUS OMFG?‍THE SUPPORT IS SO CRAZY RIGHT NOW, MAFIA 4L957178073WE JUST HIT 80K 3 DAYS AGOOOO?90K SUBS NOW THIS IS RIDICULOUS OMFG?‍THE SUPPORT IS SO CRAZY RIGHT NOW, MAFIA 4L https://t.co/q0FnxYs2Al A good way to gauge how big Kai Cenat has gotten on the purple platform would be to compare his 2022 statistics with those of other major streamers. And who better to compare him with than one of the most popular streamers on the Amazon-owned platform, Felix "xQc."

xQc vs Kai Cenat The biggest streamer of 2022 by the numbers Kai became the most subscribed English channel on the platform on September 24. According to Twitch Tracker, at the time of writing this article, he had over 93.6K active subs, giving him a 12K lead on xQc"s 81K. Although both the streamers have a huge presence on the platform, there is a stark difference in the type of content they create. Without further ado, let"s take a deep dive into how they fare against each other.

Kai Cenat s stream analysis for 2022 Born and brought up in New York, Kai Cenat was attracted to a life of content creation from a young age and became a successful content creator on YouTube. Known for his short comedy skits, he only began streaming on Twitch in January 2021. As of September 2022, he has amassed 2.2 million followers under his belt. His energetic streams, coupled with multiple high-level collaborations with other streamers, have no doubt helped him build a loyal community. Kai Cenat frequently appears on talk shows, podcasts, and dating shows on Adin Ross"s streams, and he also streams with his fellow AMP house members. Famous creators such as ImDavisss, Fanum, Agent 00, and Duke Dennis frequently appear on his stream, and because he lives in the AMP house, in-house collaborations are also a major part of his content. Stuff like Prank Wars, where different groups living in the house prank each other with fireworks and squirt guns, often cause his clips to go viral.

Kai Cenat"s channel graph for the year 2022 (Image via Twitch Tracker) In 2022 alone, Kai Cenat grew his channel by 1.35 million followers. With 864 hours streamed and an average viewership of 42 million viewers, all metrics suggest an upward trend. This means that his channel is still growing and will likely break the 100K subs goal in a few weeks.

xQc s stream analysis for 2022 xQc also didn"t really start off as a streamer but was trying to make it big in the esports world. He played Overwatch for both the national Canadian team and Dallas Fuel, but his career was short-lived and he became a full-time streamer in 2020. As a player who streamed during his stint at the Overwatch League, Felix had acquired quite some support. xQc has a whopping 11.2 million followers on Twitch in September 2022, knocking Kai Cenat"s 2.1 million completely out of the park.

xQc"s channel graph for the year 2022 (Image via Twitch Tracker) Having said that, xQc had a good headstart, so let"s look at the numbers pertaining to this year. Since January, the Juicer has grown his channel by 1.4 million followers. Having streamed for an impressive 2.6K hours, he had an average viewership of 72.7K.

xQc vs Kai Cenat verdict The Canadian streamer has built a loyal community of millions who have made him one of the biggest content creators on the platform. According to Twitch Tracker, xQc"s channel was the most watched channel in the last 30 days (18 million hours watched), while Kai Cenat is behind by more than five million (12.8 million hours watched).

The top five streamers on the platform in the last 30 days (Image via Twitch Tracker) Determining the bigger streamer is not all about the numbers, but here are some direct comparisons with the winners in each category typed in bold. Streamer nameKai Cenat xQc Followers gained in 20221.35 M1.44 MHours watched in 202236.5 M189 MHours streamed in 20228642,605Average Viewership in 202242,19172,702Subscriber count on September 27, 202293,62381,022Follower count on September 27, 20222.18 M11.1 M Both the streamers have broken the Twitch glass ceiling, and it is clear from the graphs numbers that Kai Cenat"s explosive growth has made him a worthy contender for the title of "King of Twitch." His lower numbers in terms of hours watched correspond to his vastly lower number of hours streamed. However, xQc"s high numbers indicate that he won"t be giving up his title without a fight. Read about your favorite creators only on TikTok Wiki & Youtube Wiki Poll : 0 votes Quick Links More from Sportskeeda Edited by Siddharth Satish × Feedback Thank You! Be the first one to comment Follow Us Share Show More Comments GIF Comment in moderation 0 0 Reply x Edit

Timeless Stories Logout No Results Found Get the free App now Manage notifications Popular ‍ Sports (30+) CricketCricket HomeScheduleT20 World CupT20 warm upIND vs SAENG vs PAKAUS vs ENGLegends LeagueECS T10 CroatiaWBBL 2022ECC T10SMAT 2022Bukhatir LeagueNZ T20 Tri-SeriesWomen"s Asia Cup 2022ECT10 FootballFootball HomeNewslettersSK Experts ScheduleEPLNations LeagueLa LigaLigue 1Champions LeagueFIFA WCMLS Bundesliga Serie A WWEWWE HomeNewslettersRumor RoundupRAWSmackDownResultsRosterChampionsWWE Crown Jewel 2022PPV ScheduleAEW EsportsEsports HomeMinecraftOverwatch 2RobloxGenshin ImpactFortniteGTAStreamersFree FirePUBGValorantBGMIPop CultureAnimeGaming TechWiki Guides TennisTennis HomeTennis calendarTennis Results TodayATP RankingsWTA RankingsRoger FedererRafael NadalNovak DjokovicSerena Williams MMAMMA HomeUFC NewsONE ChampionshipUFC Fight NightScheduleRankingsResultsUFC Fights TonightONE Championship ResultsONE Championship ScheduleONE Championship Rankings KabaddiKabaddi HomePKL 2022PKL SchedulePKL Points TableKabaddi Rules WikiWiki HomeMinecraft WikiNaruto WikiTikTok WikiYoutube WikiGTA WikiTerraria WikiOne Piece Wiki MoreSportsBasketballIndian FootballNFLMinecraftFormula 1NascarPop CultureCollege FootballHockeyGolfAthleticsBadmintonGymnasticsWrestlingSwimmingTennisShootingBoxingArcheryWinter SportsRobloxFree PicksSkateboardingKho KhoLifestyle LINKS About Us Write For Us Policies Editorial Standards Journalism Awards Fact Check Affiliate Program Careers CSR Privacy Policy Contact Us Edition: English हिन्दी