at056tn52 at056tn53 4 3 lcd panel free sample
We are based in Zhejiang, China, start from 2009,sell to Western Europe(30.00%),North America(30.00%),Eastern Europe(10.00%),South America(5.00%),Northern Europe(5.00%),Mid East(4.00%),Southern Europe(1.00%). There are total about 11-50 people in our office.
Hangzhou Leehon Technology Co., Ltd is a main distributor of AUO/ BOE/ Kyocera /Innolux TFT-LCD modules in China mainland, founded in 2009, the products vary from 2.2 to 43 inches, which include GD(Industrial grade), AV(car class), PID(General Application)
Unlike conventional displays, the lcd panel is suitable for 4k Smart TV, and has a built-in Wi-Fi connectivity as a option and can be used for a variety of purposes. 4 inch LCD panels for Wi-Fi connection, 4 Wi-Fi connectors, and 4 have Wi-Fi connectivity options and are the most conventional options. 4inch LCD panels (4-in-one displays) and a Wi-Fi connection have the built-in Wi-Fi connectivity features (LCD), and are the for basic functions, and have the same function as a 4inch Smart TV.
They have the same functions like smartphone displays, and still have the screen functions of a flexible smartphone. 4-inch lcd panels are versatile and can be used for a variety of purposes, including for the in-depth functions of a flexible smartphone. 4ft LCD panels have versatile functions, such as the curved monitor, 4 at the top time and the more is display. Tft LCD panels are versatile and can be used for a variety of purposes.
LCD display with 4K pixels are short and provide a better performance. However, 4k pixels are short, and 4k pixels are short for a better frame and display. While lcd panels are versatile, they have the functions like smartphone displays, and they consume even the most functions like smartphone displays.
4in LCD modules are one of the most popular components and are the ideal choice for users who are looking for 4-in-1 LCD modules, and for a more natural-looking experience. 4in lcd display and 4in1 Lcd modules are one of the most popular choices and are not suitable for all-in-one displays.
So, why is this important? A monitor’s panel technology is important because it affects what the monitor can do and for which uses it is best suited. Each of the monitor panel types listed above offer their own distinctive benefits and drawbacks.
Choosing which type of monitor panel type to buy will depend largely on your intended usage and personal preference. After all, gamers, graphic designers, and office workers all have different requirements. Specific types of displays are best suited for different usage scenarios.
The reason for this is because none of the different monitor panel types as they are today can be classified as “outstanding” for all of the attributes mentioned above.
Below we’ll take a look at how IPS, TN, and VA monitors affect screen performance and do some handy summaries of strengths, weaknesses, and best-case uses for each type of panel technology.
IPS monitors or “In-Plane Switching” monitors, leverage liquid crystals aligned in parallel to produce rich colors. IPS panels are defined by the shifting patterns of their liquid crystals. These monitors were designed to overcome the limitations of TN panels. The liquid crystal’s ability to shift horizontally creates better viewing angles.
IPS monitor variations include S-IPS, H-IPS, e-IPS and P-IPS, and PLS (Plane-to-Line Switching), the latter being the latest iteration. Since these variations are all quite similar, they are all collectively referred to as “IPS-type” panels. They all claim to deliver the major benefits associated with IPS monitors – great color and ultra-wide viewing angles.
With regard to gaming, some criticisms IPS monitors include more visible motion blur coming as a result of slower response times, however the impact of motion blur will vary from user to user. In fact, mixed opinions about the “drawbacks” of IPS monitor for gaming can be found all across the web. Take this excerpt from one gaming technology writer for example: “As for pixel response, opinions vary. I personally think IPS panels are quick enough for almost all gaming. If your gaming life is absolutely and exclusively about hair-trigger shooters, OK, you’ll want the fastest response, lowest latency LCD monitor. And that means TN. For the rest of us, and certainly for those who place even a modicum of importance on the visual spectacle of games, I reckon IPS is clearly the best panel technology.” Read the full article here.
IPS monitors deliver ultra-wide 178-degree vertical and horizontal viewing angles. Graphic designers, CAD engineers, pro photographers, and video editors will benefit from using an IPS monitor. Many value the color benefits of IPS monitors and tech advances have improved IPS panel speed, contrast, and resolution. IPS monitors are more attractive than ever for general desktop work as well as many types of gaming. They’re even versatile enough to be used in different monitor styles, so if you’ve ever compared an ultrawide vs. dual monitor setup or considered the benefits of curved vs. flat monitors, chances are you’ve already come into contact with an IPS panel.
TN monitors, or “Twisted Nematic” monitors, are the oldest LCD panel types around. TN panels cost less than their IPS and VA counterparts and are a popular mainstream display technology for desktop and laptop displays.
Despite their lower perceived value, TN-based displays are the panel type preferred by competitive gamers. The reason for this is because TN panels can achieve a rapid response time and the fastest refresh rates on the market (like this 240Hz eSports monitor). To this effect, TN monitors are able to reduce blurring and screen tearing in fast-paced games when compared to an IPS or VA panel.
On the flip side, however, TN panel technology tends to be ill-suited for applications that benefit from wider viewing angles, higher contrast ratios, and better color accuracy. That being said, LED technology has helped shift the perspective and today’s LED-backlit TN models offer higher brightness along with better blacks and higher contrast ratios.
The greatest constraint of TN panel technology, however, is a narrower viewing angle as TN monitors experience more color shifting than other types of panels when being viewed at an angle.
Today’s maximum possible viewing angles are 178 degrees both horizontally and vertically (178º/178º), yet TN panels are limited to viewing angles of approximately 170 degrees horizontal and 160 degrees vertical (170º /160º).
TN monitors are the least expensive panel technology, making them ideal for cost-conscious businesses and consumers. In addition, TN monitors enjoy unmatched popularity with competitive gamers and other users who seek rapid graphics display.
Vertical alignment (VA) panel technology was developed to improve upon the drawbacks of TN. Current VA-based monitors offer muchhigher contrast, better color reproduction, and wider viewing angles than TN panels. Variations you may see include P-MVA, S-MVA, and AMVA (Advanced MVA).
These high-end VA-type monitors rival IPS monitors as the best panel technology for professional-level color-critical applications. One of the standout features of VA technology is that it is particularly good at blocking light from the backlight when it’s not needed. This enables VA panels to display deeper blacks and static contrast ratios of up to several times higher than the other LCD technologies. The benefit of this is that VA monitors with high contrast ratios can deliver intense blacks and richer colors.
MVA and other recent VA technologies offer the highest static contrast ratios of any panel technology. This allows for an outstanding visual experience for movie enthusiasts and other users seeking depth of detail. Higher-end, feature-rich MVA displays offer the consistent, authentic color representation needed by graphic designers and other pro users.
There is another type of panel technology that differs from the monitor types discussed above and that is OLED or “Organic Light Emitting Diode” technology. OLEDs differ from LCDs because they use positively/negatively charged ions to light up every pixel individually, while LCDs use a backlight, which can create an unwanted glow. OLEDs avoid screen glow (and create darker blacks) by not using a backlight. One of the drawbacks of OLED technology is that it is usually pricier than any of the other types of technology explained.
When it comes to choosing the right LCD panel technology, there is no single right answer. Each of the three primary technologies offers distinct strengths and weaknesses. Looking at different features and specs helps you identify which monitor best fits your needs.
LCD or “Liquid Crystal Display” is a type of monitor panel that embraces thin layers of liquid crystals sandwiched between two layers of filters and electrodes.
While CRT monitors used to fire electrons against glass surfaces, LCD monitors operate using backlights and liquid crystals. The LCD panel is a flat sheet of material that contains layers of filters, glass, electrodes, liquid crystals, and a backlight. Polarized light (meaning only half of it shines through) is directed towards a rectangular grid of liquid crystals and beamed through.
Note: When searching for monitors you can be sure to come across the term “LED Panel” at some point or another. An LED panel is an LCD screen with an LED – (Light Emitting Diode) – backlight. LEDs provide a brighter light source while using much less energy. They also have the ability to produce white color, in addition to traditional RGB color, and are the panel type used in HDR monitors.
Early LCD panels used passive-matrix technology and were criticized for blurry imagery. The reason for this is because quick image changes require liquid crystals to change phase quickly and passive matrix technology was limited in terms of how quickly liquid crystals could change phase.
Thanks to active-matrix technology, LCD monitor panels were able to change images very quickly and the technology began being used by newer LCD panels.
Ultimately, budget and feature preferences will determine the best fit for each user. Among the available monitors of each panel type there will also be a range of price points and feature sets. Additionally, overall quality may vary among manufacturers due to factors related to a display’s components, manufacturing, and design.
Alternatively, if you’re into gaming and are in the market for TN panel these gaming monitor options may be along the lines of what you’re looking for.
The new line of 3.5” TFT displays with IPS technology is now available! Three touchscreen options are available: capacitive, resistive, or without a touchscreen.