tn display vs tft display manufacturer

IPS (In-Plane Switching) lcd is still a type of TFT LCD, IPS TFT is also called SFT LCD (supper fine tft ),different to regular tft in TN (Twisted Nematic) mode, theIPS LCD liquid crystal elements inside the tft lcd cell, they are arrayed in plane inside the lcd cell when power off, so the light can not transmit it via theIPS lcdwhen power off, When power on, the liquid crystal elements inside the IPS tft would switch in a small angle, then the light would go through the IPS lcd display, then the display on since light go through the IPS display, the switching angle is related to the input power, the switch angle is related to the input power value of IPS LCD, the more switch angle, the more light would transmit the IPS LCD, we call it negative display mode.

The regular tft lcd, it is a-si TN (Twisted Nematic) tft lcd, its liquid crystal elements are arrayed in vertical type, the light could transmit the regularTFT LCDwhen power off. When power on, the liquid crystal twist in some angle, then it block the light transmit the tft lcd, then make the display elements display on by this way, the liquid crystal twist angle is also related to the input power, the more twist angle, the more light would be blocked by the tft lcd, it is tft lcd working mode.

A TFT lcd display is vivid and colorful than a common monochrome lcd display. TFT refreshes more quickly response than a monochrome LCD display and shows motion more smoothly. TFT displays use more electricity in driving than monochrome LCD screens, so they not only cost more in the first place, but they are also more expensive to drive tft lcd screen.The two most common types of TFT LCDs are IPS and TN displays.

tn display vs tft display manufacturer

TN panels generally are good enough for most people especially if they do not want to spend a lot of money. Their colors are not as accurate as PVA / MVA / IPS panels, but for most people it"s a non factor unless what you do with your monitor absolutely requires accurate colors. Due to the nature of how TN panels work however, they are more prone to display video artifiact than other panel techs.

For example, in Batman: The Dark Knight DVD movie there is a scene where the Joker blows up a hospital and there"s lots of thick black smoke. On my Asus VK246H TN panel monitor the smoke is pixelated (blocky) and the Joker"s bare arms and leg also gets pixelated in that scene. I do not see those artifacts when viewing my the movie on my NEC LCD2690WUXi or Planar PX2611w monitors with H-IPS panels.

Go to a store and look at monitors there. 99% of then will be using TN panels. If you don"t like how any of them look, then it"s time consider the other more expensive types of LCD monitors.

tn display vs tft display manufacturer

– Liquid crystal material: Both use nematic LC materials but FSTN fluid has more cholesteric doping materials in it in order to help its molecular to twist higher degree.

– Viewing Angle: FSTN LCD has much better wide viewing angle than TN LCD especially at higher multiplexing application. TN LCD has a weak viewing direction, that is the reason we have to define 6 or 12 o’clock viewing angle. But FSTN LCD can be viewed clearly from all the viewing directions.

– Response time:  Between FSTN LCD has higher twist angle, it takes more time to make a change. It has longer response time or slower response speed than TN LCD.

– Operation Temperature Range:  Because of extremely slow response and background color change for FSTN LCDs at low temperature, FSTN LCDs can only be used within -20oC to +70oC, but TN LCDs can be used with -40oC to +90oC which can be easily used for outdoor applications. FSTN LCD response speed in extremely cold environment can be improved by adding a heater. FSTN LCD color change at low and high temperature can be solved by adding a reversed optical compensation cell as DSTN (Double STN), but the cost will be more than double.

– Power Consumption: Theoretically, FSTN and TN LCDs should consume the same level of power. But FSTN LCDs are normally used for high multiplex application, they use higher frequency drive and their LCD controllers and drivers normally consume more power than TN LCDs. While in general opinions, TN uses much less power than STN or FSTN LCD displays.

– Assembly (Display Module):  Because most of TN displays have fewer contacts, it can use pins, zebra, FPC (Flex Printed Circuit) to make the connections. When assembled in the LCD modules, normally COB (Chip on Board) is used. While FSTN displays have more contacts, high density and more reliable assembly ways have to be used. COG (Chip on Glass) excels because of its low cost and compatible for high volume production.

– Sunlight Readable: It is a big advantage for both TN and FSTN LCD. By applying a reflective or transflective polarizer at the back of the LCD, the high contrast display can be achieved under sunlight.

tn display vs tft display manufacturer

In market, LCD means passive matrix LCDs which increase TN (Twisted Nematic), STN (Super Twisted Nematic), or FSTN (Film Compensated STN) LCD Displays. It is a kind of earliest and lowest cost display technology.

LCD screens are still found in the market of low cost watches, calculators, clocks, utility meters etc. because of its advantages of low cost, fast response time (speed), wide temperature range,  low power consumption, sunlight readable with transflective or reflective polarizers etc.  Most of them are monochrome LCD display and belong to passive-matrix LCDs.

TFT LCDs have capacitors and transistors. These are the two elements that play a key part in ensuring that the TFT display monitor functions by using a very small amount of energy without running out of operation.

Normally, we say TFT LCD panels or TFT screens, we mean they are TN (Twisted Nematic) Type TFT displays or TN panels, or TN screen technology. TFT is active-matrix LCDs, it is a kind of LCD technologies.

TFT has wider viewing angles, better contrast ratio than TN displays. TFT display technologies have been widely used for computer monitors, laptops, medical monitors, industrial monitors, ATM, point of sales etc.

Actually, IPS technology is a kind of TFT display with thin film transistors for individual pixels. But IPS displays have superior high contrast, wide viewing angle, color reproduction, image quality etc. IPS screens have been found in high-end applications, like Apple iPhones, iPads, Samsung mobile phones, more expensive LCD monitors etc.

Both TFT LCD displays and IPS LCD displays are active matrix displays, neither of them can produce color, there is a layer of RGB (red, green, blue) color filter in each LCD pixels to make LCD showing colors. If you use a magnifier to see your monitor, you will see RGB color. With switch on/off and different level of brightness RGB, we can get many colors.

Neither of them can’t release color themselves, they have relied on extra light source in order to display. LED backlights are usually be together with them in the display modules as the light sources. Besides, both TFT screens and IPS screens are transmissive, it will need more power or more expensive than passive matrix LCD screens to be seen under sunlight.  IPS screens transmittance is lower than TFT screens, more power is needed for IPS LCD display.

tn display vs tft display manufacturer

Everyday, we look at LCD display, TV, cell phone, monitor. It becomes a necessity in modern society. LCD panel is the most important part of an LCD display. It determines LCD screen"s performance, e.g. brightness, contrast, color and viewing angle. Therefore, picking the right type of LCD panel is critical to your application.

These names reflect the alignment of crystal molecules inside the LCD, and how they change when they are charged electrically. All liquid crystal displays change the alignment of liquid crystal molecules to work, but the manner in which they do so can drastically affect the image quality and response time. Each panel type has its advantages and disadvantages. The easiest way to choose between them is to decide which attributes are most important to your project. It mainly depends on what you use your LCD display for, and your budget.

TN is the most mature technology in LCD panel manufacturing. When there is no voltage difference between the two transparent electrodes, liquid crystal molecules are twisted 90 degrees, in combination of upper and bottom polarizers, allows light to pass through LCD. As voltage applied, crystal molecules are untwisted and aligned to the same direction, blocking light.

In IPS panel, crystal molecules are parallel to the glass substrates at initial stage, LCD is off. When the in-plane electrodes is charged, crystal molecules are rotated, modifying light"s direction. Which lights up the LCD display.

So in summary, TN panels twist, IPS panels use a parallel alignment and rotate, while VA panels use a perpendicular alignment and tilt. These difference create LCD display with distinctive performance.

IPS LCD is the clear winner in this aspect. It has 178/178 viewing angle ratings. Which means you can look at IPS LCD display from any angle without the image shifting in color and contrast. VA LCD has pretty wide viewing angle, too. But it has contrast shifts at off-center angles. As for TN LCD, viewing angle is its weakest point.

Most TN LCDs have 6-bits colors. Manufacturers use frame rate control (FRC) to enhance its color performance. For IPS and VA panels, you can still find 6-bits entry level LCD. But most of them are 8-bits. And IPS technology can provide natively 10-bits colors.

Color gamut is another part that VA and IPS panels shine at. The best TN LCD can reach sRGB gamut. VA panels typically start with full sRGB coverage, and get to around 90% DCI-P3 coverage. With IPS LCD panel, you could find the best ones full DCI-P3 and Adobe RGB coverage. That is why you see most professional grade LCD displays use IPS panel.

There is no inherent differences among the three panel technologies, because LCD backlight is the main factor here. However, there is a big gap in terms of contrast ratio. TN LCD panel tends to have the lowest value among the three. IPS LCD screen sits in the middle can reach 1500:1. For VA panel, the best one can exceed 4500:1 easily. VA LCD display provides far darker screen than TN & IPS. That is why they are used in vehicle dashboard.

TN panel does have an advantage when it comes to refresh rate. The panel offers the best refresh rate and response time. This is the reason why most gaming LCD monitors are made of TN panel.

TN LCD provides the best refresh rate and economic solution. If your application requires wide viewing angles and good color presentation, VA panel is probably the choice. While IPS has the best overall visual performance, in general it is more expensive than the other two.

tn display vs tft display manufacturer

The word TFT means Thin Film Transistor. It is the technology that is used in LCD or Liquid Crystal Display. It is also called Active Matrix LCD which differentializes from Passive Matrix LCD. A TFT substrate is composed of a matrix of pixels and ITO electrode (Indium Tin Oxide, a transparent electric conducting film) each with a TFT device and is so called array. Thousands or millions of these pixels together create an image on the display. The diagram below shows the simple structure of a pixel.

As long as there are TFT in the LCD, the LCD should be called a TFT LCD. But when the TFT LCD display was first commercialized, 100% TFT LCDs were TN (twisted Nematic) type TFT displays. As TN is a very technical term so most of the users ignored TN and named TN type TFT display as TFT display. While the newly developed TFT LCD display technologies such as IPS (in-plane-switching ) type TFT display, O-Film type TFT display (derived from TN type TFT display), MVA( Multi-domain Vertical Alignment) type TFT display, AFFS (Advanced Fringe Field Switching) type TFT display, they are widely call IPS display, O-Film display, MVA display and AFFS display. As the above terms have been used for long and widely accepted in the market, we will not try to correct the misunderstanding here. We will still use the TFT display (should be TN type TFT display) and IPS display (should be IPS type TFT display) in the following.

The twisted nematic effect (TN-LCD) was a main technology breakthrough that made LCDs practical. TN LCDs first make battery powered devices popular. TN-LCD displays led to the rapid expansion in the display field, quickly replacing other displays like LEDs, plasma, CRTs etc. By the 1990s, TN LCDs were widely used in portable electronics.

The TN display takes advantage of the ability of the nematic substance to rotate the polarization of light beams passing through it. Two polarizing filters, parallel planes of glass with their polarizing lines oriented at right angles with respect to each other, are positioned on either side of the liquid crystal. When light enters the display, it is polarized by the input filter. In the absence of an electric field, all the incoming light is transmitted. This is because the light polarization is rotated 90 degrees by the nematic liquid crystal, and the light therefore passes easily through the output filter, which is oriented to match the 90-degree shift. With the application of a voltage, an electric field is produced in the nematic liquid crystal. Under these conditions the polarization effect is reduced. If the voltage is large enough, the polarization effect disappears altogether, and the light is blocked by the output polarizing filter. The diagram below shows how a TN LCD works.

The best feature of TFT displays is the low cost due to a simpler manufacturing process, low-cost raw materials, and one of the oldest technologies for LCD displays. But they are not the best quality considering poor viewing angles, lower contrast ratio, slower response time, lower aperture ratio (each pixel not bright enough), and the worst is that there is one view angle with gray scale inversion (reversed image), see the below picture for reference.

IPS (in-plane-switching) technology is also one type of TFT LCD display. The basic LCD structure is similar to TN type TFT display but the inside display schematic is different.

In 1992, Hitachi researchers in Japan first developed details of the IPS technology. NEC and Hitachi became early manufacturers of active-matrix addressed LCDs based on the IPS technology. In 1996, Samsung developed the optical patterning technique that enables multi-domain LCD. Multi-domain and in-plane switching subsequently remained the dominant LCD designs through 2006. IPS technology is widely used in LCD panels for TVs, laptops, monitors, and smartphones. Apple Inc. products branded with the label Retina Display (such as iPhone 4 onward, iPad 3 on, iPad Mini 2 on, MacBook Pro with Retina display adopted IPS LCDs with LED backlighting.

An IPS LCD panel, when no electric field is applied to the liquid crystal cells, the cells naturally align in liquid crystal cells in a horizontal direction between two glass substrates which blocks the transmission of light from the backlight. This makes the display dark and results in a black display screen. When an electric field is applied, the liquid crystal cells are able to rotate through 90° allowing light to pass through resulting in a white display screen. IPS panels have superior image quality, good contrast ratio and wide viewing angles of up to 170°. IPS panels are well suited for graphics design and other applications which require accurate and consistent color reproduction.

In summary, normally high-end products such as Apple Mac computer monitors and Samsung mobile phones generally use IPS panels. Some high-end TV and mobile phones even use AMOLED (Active Matrix Organic Light Emitting Diodes) displays. This cutting-edge technology provides even better color reproduction, clear image quality, better color gamut, less power consumption when compared to LCD technology. Of course, a TFT LCD display can always meet the basic needs at the most efficient price.

This article is an original piece of content written by Bill Cheung, a marketing manager who has an engineering and technical support background at Orient Display. We are a LCD and display technology provider with over two decades of industry experience in delivering cutting edge display solutions. Please browse our knowledge base if you would like to learn more about LCDs!

tn display vs tft display manufacturer

Take your design to the next level with our range of TFT Displays including latest IPS TFT, circular and bar shape as well as large size TFT. With or without touch, these are fully customisable to your system requirements.

TFT-LCD technology is now fairly mature. As a result, manufacturing processes are efficient and production yields are high, leading to very competitive unit prices. Upgrading from a monochrome display to a TFT is now an affordable way to give your product an uplift.

Users of industrial display devices are wanting the same experience they have come to expect from a consumer device with all-round viewing angles. Switching to a superior IPS TFT display has become very cost effective as production increases and unit prices decrease.

Choosing a circular display for your next product design could really set you apart from your competition. Models are available from 1" to 4.2"in TFT, PMOLED and AMOLED, we have something to suit every application.

It is now possible to transform from a monochrome display to a colour display in space constrained systemsby using a letterbox shaped display. These ultra-wide displays are ideal for applications with restricted build height such as rack mount systems or landscape format front panels.

Large TFT display systems are increasingly being used for transportation information, retail signage and vending machines and kiosks. We can supply a large range of TFT solutions up to 65" diameter and in bar-style, square or rectangular configurations.

Anders have partnered with world leading brand Kastus®to offer a globally patentedantimicrobial & antiviralsurface coating which has a proven kill rate of up to 99.99% against harmful bacteria, fungi and antibiotic-resistant superbugs, which makes it particularly useful for products including glass and ceramics. This year, an independent testing report found Kastus to be effective against human Coronavirus on screens.

We are now offering increasing cover lens customisation options and processes to make your TFT LCD user interface truly stand out! Anders’ experienced marketers and engineers work with our manufacturing partners around the world to keep informed of the latest innovations, including mirrored glass,tinted glass, spot-facing, three dimension glass, and many more!

Here at Anders we don"t just strive to design a best in class display solution for your product, but we also want to make sure the display is driven with the right embedded system. We can help achieve a hardware solution that ensures your display works perfectly within your application. Hardware solutions include:

Get started quickly on your new user interface with our HMI development kits. The display, the processor and the OS work together out of the box with optimised QT GUI images. We"ll then optimise the kit to meet exactly your system requirements with our design services.

At Anders we understand that no two customers are the same, which is why we specialise in custom display solutionsand offer unique productstailored to your end application.

See below our range of TFT Displayswith sizes ranging from0.96" to 64.5" and including circular and bar type shape. All our displays can be tailored to suit your application antimicrobial coating technology,

We aim to offer reliable and long-term solutions to our B2B customers. If you are a business and would like to discuss your display and/or embedded system requirements please contact us below

A TFT display is a form of Liquid Crystal Display with thin film transistors for controlling the image formation. The TFT technology works by controlling brightness in red, green and blue sub-pixels through transistors for each pixel on the screen.

There are many display technologies, but do you know which one would be better for your application? Particularly when considering optimum viewing angle and contrast. We discuss 2 of the best options.

Compare IPS vs TFT displays - the TFT display is the display of choice for industrial designs, but it can have its limitations. A newer technology called IPS (in plane switching) offers better viewing angles and colours, but is it really the best choice - we discuss benefits and negatives of both types of TFT display.

tn display vs tft display manufacturer

Raystar is a global leading LCD panel supplier and specialized in producing TFT LCD Panel, including Color TFT, Monochrome TFT Display and bar type TFT Display. Raystar Color TFT displays are available in various resolutions and offers a wide product range of small to medium-sized TFT-LCD modules from 0.96” to 12.3". The interface options are in MCU / RGB / SPI / UART / 8080 / LVDS. TFT Panel with control board or TFT LCD Panel with micro controller are also available.

tn display vs tft display manufacturer

By far the most common types of display panels used on PC monitors are TN, IPS and VA. We"re sure you"ve heard these terms before if you"ve researched monitors to purchase, and to be clear, the type of panel is a key piece of information that reveals a lot about how the monitor will behave and perform.

TN is the oldest of the LCD technologies and it stands for twisted nematic. This refers to the twisted nematic effect, which is an effect that allows liquid crystal molecules to be controlled with voltage. While the actual workings of a TN-effect LCD are a little more complicated, essentially the TN-effect is used to change the alignment of liquid crystals when a voltage is applied. When there is no voltage, so the crystal is "off," the liquid crystal molecules are twisted 90 degrees and in combination with polarization layers, allow light to pass through. Then when a voltage is applied, these crystals are essentially untwisted, blocking light.

IPS stands for in-plane switching and, like all LCDs, it too uses voltage to control the alignment of liquid crystals. However unlike with TN, IPS LCDs use a different crystal orientation, one where the crystals are parallel to the glass substrates, hence the term "in plane". Rather than "twisting" the crystals to modify the amount of light let through, IPS crystals are essentially rotated, which has a range of benefits.

There are many IPS variants on the market, with each of the three big LCD manufacturers using a different term to describe their IPS-type technology. LG simply calls their tech "IPS" which is easy for everyone. Samsung uses the term PLS or plane-to-line switching, while AU Optronics uses the term AHVA or advanced hyper viewing angle. AHVA shouldn"t be confused with regular VA displays, it"s an annoying and confusing name in my opinion, but AHVA is an IPS-like technology. Each of LG"s IPS, Samsung"s PLS and AUO"s AHVA are slightly different but the fundamentals are rooted in IPS.

So in summary, TN panels twist, IPS panels use a parallel alignment and rotate, while VA panels use a vertical alignment and tilt. Now let"s get into some of the performance characteristics and explore how each of the technologies differ and in general, which technology is better in any given category.

By far the biggest difference between the three technologies is in viewing angles. TN panels have the weakest viewing angles, with significant shift to color and contrast in both the horizontal and especially vertical directions. Typically viewing angles are rated as 170/160 but realistically you"ll get pretty bad shifts when viewing anywhere except for dead center. Higher-end TNs tend to be somewhat better but overall this is a big weakness for TNs.

VA and IPS panels are both significantly better, with IPS being the best overall for viewing angles. 178/178 viewing angle ratings are a realistic reflection of what you can expect with an IPS, you won"t get much shift in colors or contrast from any angle. VAs are good in this regard but not as good as IPS, mostly due to contrast shifts at off-center angles. With VAs and especially TNs having some color and contrast shifts when viewing at angles, they"re not as well suited to color-critical professional work as IPS panels, which is why you see most pro-grade monitors sticking to IPS.

In terms of brightness there"s no inherent differences between the technologies because the backlight, which determines brightness, is separate to the liquid crystal panel. However there are significant differences to contrast ratios, and this an area most people look at when determining which panel type they want.

Both TN and IPS panels tend to have a contrast ratio around 1000:1, although in my testing I have noted some differences. TN panels tend to have the lowest contrast ratios when calibrated, with an entry-level panel sitting between 700:1 and 900:1 and good panels pushing up to that 1000:1 mark. IPS has a larger range, I"ve seen some as low as 700:1 like TNs, however the very best tend to push up higher than TN, with 1200:1 as the upper range for desktop monitors and some laptop-grade displays reaching as high as 1500:1.

Neither TN nor IPS get to the range of VA though. Entry-level VA panels start with a contrast ratio of 2000:1 from those that we"ve tested, with the best easily exceeding 4500:1, although 3000:1 is a typical figure for most monitors.

TVs make extensive use of VA panels and there contrast ratios can be even higher. It"s not unusual to see over 6000:1. So if you want deep blacks and high contrast ratios, you"ll need to go with something VA.

While IPS panels tend to be a middle ground for contrast they do suffer from a phenomenon called "IPS glow," which is an apparent white glow when viewing dark imagery at an angle. The best panels exhibit minimal glow but it"s still an issue across all displays of this type.

Color quality is another difference many people cite between TN displays and other display panels in particular. And this can be split into two categories: color depth or bit depth, and color gamut.

In both of these regards, TN panels tend to fall on the weaker end of the scale. Many TN displays, in particular entry-level models, are only natively 6-bit and use frame rate control, otherwise called FRC or dithering, to achieve standard 8-bit output. 6-bit panels are prone to color banding, while native 8-bit panels have smoother color gradients and therefore better color output.

Not all TN panels are 6-bit. The top-end TNs are native 8-bit, but it"s safe to say most TNs will only be native 6-bit, even today. If you are after a native 8-bit display, you"ll need to go with either IPS or VA, where many more panels come native 8-bit.

As for native true 10-bit, typically you"ll need to look for an IPS panel, which make up the majority of native 10-bit panels. Some VA panels can do it, but they are rare. Most displays you purchase that claim to be 10-bit, are actually 8-bit+FRC, with only high-end professional-grade monitors offering a native 10-bit experience.

This is another area where VA and IPS provide a superior experience. The best TN panels tend to be limited to sRGB, or in the case of the worst entry-level panels, don"t even cover the entirety of the sRGB gamut. Wide-gamut TN panels do exist, but they are rare.

With IPS panels, there is the largest variance. Entry-level IPS displays tend to offer 95% sRGB coverage or less, while the majority stick to full sRGB coverage. Then with high-end displays, usually for professionals, it"s not unusual to see full DCI-P3 and Adobe RGB coverage. Of all the wide gamut IPS displays I"ve tested, the lowest DCI-P3 coverage I"ve seen has been 93%, with over 95% a typical figure. This makes IPS the best technology for wide gamut work.

Throughout most of this discussion we"ve been talking about TN as the worst of the three technologies. So far, it has the worst color reproduction, contrast ratios and viewing angles. But it does have one key advantage, and that comes in the form of speed. TN panels have historically been the best for both refresh rates and response times, however that trend is slowly changing for the better.

Not long ago, we argued that only with a TN panel it was possible to hit 240 Hz, doing so at 1080p and later up to 1440p. Most recently, however we"ve seen IPS monitors hit the highest mark ever for a consumer-grade gaming monitor at 360Hz, and do so very convincingly. We"re sure other monitors will follow but as of writing, the Asus ROG Swift PG259QN can deliver both the fastest response times and an accurate color experience using an IPS panel.

Most IPS displays, especially high-grade options for professionals, as well as entry-level office monitors, are either 60 or 75 Hz. Meanwhile, a significantly larger number of VA panels across a wider range of sizes and resolutions are high-refresh, while the big selling point of TN is its super high refresh capabilities.

Another major consideration is response times, which govern the level of ghosting, smearing and overall clarity of a panel. Early IPS and VA panels were very slow, however this has improved a lot with modern panels, so the differences between the three technologies aren"t as pronounced as they once were. TN still holds an advantage here.

Most TN panels have a rated transition time of 1ms, or even lower with some recent releases. Actual grey to grey averages we"ve measured for TN panels tend to be in the 2-3 ms range when overdrive is factored in, which makes TN the fastest technology.

IPS panels are next in terms of speed, though as tends to be the case with IPS, there is a wide variance between the best and worst of this type. High-end IPS monitors, typically those with high refresh rates, can have a transition time as fast as 3ms. Compared to the best TN panels, this still makes IPS slower. However entry-level IPS panels or those without overdrive sit closer to the 10ms range, while mid-tier options tend to occupy the 5 to 7 ms bracket.

While a lot of people are unlikely to spot the difference between an 8ms VA panel and a 5ms IPS, TN panels overall tend to be noticeably clearer in motion, but that gap is closing with every generation. The slowness of VA panels also limits their real world refresh rate: a 144 Hz panel that only manages a 9ms response time, is actually delivering an image most equivalent to a 110 Hz panel. Whereas most 144 Hz IPS panels can transition faster than the 6.94ms refresh window, leading to a true 144 Hz experience. So that"s something to consider.

As a quick summary, TN panels are the fastest and have the highest refresh rates, however they have the worst viewing angles by far, as well as weak color performance and typically the lowest contrast ratios. TNs are typically used for ultra-fast gaming displays, as well as budget class displays, for both desktop monitors and laptops.

IPS is a middle-ground technology. They typically have the best color performance and viewing angles, mid-tier response times and refresh rates, along with mid-tier black levels and contrast ratios. Due to its top-end color output, IPS panels are the go-to choice for professionals, but you"ll also find them in entry-level displays, office monitors, most laptops and a handful of gaming monitors.

VA panels are the slowest of the three, but have the best contrast ratio and black levels by far. Color performance isn"t quite at the level of IPS, but they still offer a significantly better experience than TN in this regard.

With response times for the best modern VAs approaching the level of a typical IPS, along with broad support for high refresh rates, VA monitors are commonly used for gaming monitors. Entry-level VAs also tend to be superior to entry-level TN and IPS panels, though you won"t find VA used in laptops.

There"s no right answer to which monitor technology is best, because all have their strengths and weaknesses which is why all three coexist on the market today. However if you want our recommendation, we tend to gravitate towards VA panels for most buyers, especially gamers and those after something entry-level. Creative professionals should be looking exclusively at IPS monitors, while those after something dirt cheap or ultra high refresh for competitive gaming should opt for TN, although superior latest-gen IPS and VA offerings are finally matching or even beating the best of TN in some regards.

tn display vs tft display manufacturer

Again, IPS is the clear winner here. The vertical viewing angles are very similar to the horizontal ones on both IPS and VA panels. Unfortunately, this is one area where TN panels are usually much, much worse. TN monitors degrade rapidly from below, and colors actually inverse - resulting in a negative image that can be distracting. For this reason, if you decide to buy a TN monitor, look for one with an excellent height adjustment, or consider buying a VESA mounting arm, as you should mount TN monitors at eye level. Even when mounted properly, larger TN displays can appear non-uniform at the edges.

There"s usually not much difference between VA and IPS panels in terms of gray uniformity. It"s rare for monitors to have uniformity issues, and even on monitors that perform worse than average, it"s usually not noticeable with regular content. TN monitors tend to perform a bit worse than usual, though, and the top half of the screen is almost always darker than the rest, but that"s an artifact of the bad vertical viewing angles.

Black uniformity tends to vary significantly, even between individual units of the same model, and there"s no single panel type that performs the best. It"s rare for monitors to have good black uniformity, and almost every monitor we"ve tested has some noticeable cloudiness or backlight bleed. IPS and TN panels can look slightly worse due to their low contrast ratios, as the screen can take on more of a bluish tint when displaying dark scenes. Like with contrast, black uniformity issues usually aren"t very noticeable unless you"re looking at dark content and you"re in a dark room. If you only use your monitor in a bright environment, generally speaking, you don"t need to worry about black uniformity.

Historically, TN panels used to have the worst colors, as many of them were cheaper models that only supported 6-bit colors or used techniques like dithering (FRC) to approximate 8-bit colors. Most displays today, including TN models, are at least 8 bit, and many of them are even able to approximate 10-bit colors through dithering. New technologies, like LG"s Nano IPS and Samsung"s Quantum Dot, add an extra layer to the LCD stack and have significantly improved the color gamut of modern IPS and VA displays, leaving TN a bit behind. Between them, NANO IPS is slightly better, as it tends to offer better coverage of the Adobe RGB color space. Although the difference is minor, IPS panels still have a slight edge over VA and TN displays.

Although TN panels have caught up a bit in the SDR color space, they"re far behind when it comes to HDR, so if you"re looking for a good HDR color gamut, avoid TN panels. Between VA and IPS panels, the difference isn"t as significant; however, IPS panels still have a slight edge. The best VA panels top out at around 90% coverage of the DCI P3 color space used by most current HDR content. IPS panels go as high as 98% coverage of DCI P3, rivaling even some of the best TVs on the market. Due to the very high coverage of DCI P3 on both VA and IPS, the difference isn"t that noticeable, though, as most content won"t use the entire color space anyway.

Although not necessarily as noticeable to everyone as the differences in picture quality, there can also be a difference in motion handling between IPS, VA, and TN displays. TN panels historically offered the best gaming performance, as they had the highest refresh rates and extremely fast response times. Manufacturers have found ways to drastically improve the motion handling of VA and IPS panels, though, and the difference isn"t as pronounced.

LCD panel technology has changed drastically over the last few years, and the historical expectations for response time performance don"t necessarily hold anymore. For years, TN monitors had the fastest response times by far, but that"s started to change. New high refresh-rate IPS monitors can be just as fast.

VA panels are a bit of a strange situation. They typically have slightly slower response times overall compared to similar TN or IPS models. It"s especially noticeable in near-black scenes, where they tend to be significantly slower, resulting in dark trails behind fast-moving objects in dark scenes, commonly known as black smear. Some recent VA panels, such as the Samsung Odyssey G7 LC32G75T, get around it by overdriving the pixels. It results in much better dark scene performance but a more noticeable overshoot in brighter areas.

There"s another display technology that"s growing in popularity: OLED. OLED, or organic light-emitting diode, is very different from the conventional LCD technology we"ve explored above. OLED panels are electro-emissive, which means each pixel emits its own light when it receives an electric signal, eliminating the need for a backlight. Since OLED panels can turn off individual pixels, they have deep, inky blacks with no blooming around bright objects. They also have excellent wide viewing angles, a near-instantaneous response time, and excellent gray uniformity.

As you can probably tell by now, no one panel type works best for everyone; it all depends on your exact usage. Although there used to be some significant differences between panel types, as technology has improved, these differences aren"t as noticeable. The two exceptions to this are viewing angles and contrast. If you"re in a dark room, a VA panel that can display deep blacks is probably the best choice. If you"re not in a dark room, you should focus on the other features of the monitor and choose based on the features that appeal to your exact usage. IPS panels are generally preferred for office use, and TN typically offers the best gaming experience, but recent advancements in VA and IPS technology are starting to change those generalizations. For the most part, the differences between each panel type are so minor now that it doesn"t need to be directly factored into your buying decision.

tn display vs tft display manufacturer

First, to be clear, there is no “best” panel type out of these, as all have their respective advantages and disadvantages over the others. The information here pertains to general characteristics, as even panels of the same panel type will have some variance in characteristics (power consumption, backlight bleed, etc.) depending on the luck of the draw. Manufacturer tuning can also impact display output, affording some differentiating leverage to manufacturers sourcing from panel suppliers (which is effectively all of them).

CRT displays are sometimes still used in medical, simulation, military, and government fields that have embedded the displays into control panels and machinery.

CRT monitors have largely gone out of production, and are rarely sold new (finding a used CRT is fairly easy), but their advantages temporarily lent themselves to some special uses. In regards to gaming, CRT monitors have historically been advantageous to use when gaming competitively due to very little motion blur and very little input lag. That being said, these advantages have faded with the progressive march of TN panels.

TN panels now have low motion blur (especially with lightboost or a similar technology), offer high refresh rates, low response times (1ms GTG in many cases), and are more than adequate even in the world’s most competitive games.

Ultimately, for the vast majority of users, the disadvantages of CRTs aren’t worth their limited gains, especially when TN panels meant for gaming more than adequately satisfy the needs of even competitive gamers.

TN panels have many benefits over the previously popular CRT monitors: lower weight, lower cost to produce, lower power consumption, they’re much thinner, offer clearer pictures, have no realistically achievable resolution limits, offer flexibility in size and shape, and the ability to eliminate flicker.

That being said, TN panels weren"t and still aren’t perfect, and compared to the previously popular CRT monitors, they’ve suffered from limited viewing angles, uneven backlighting, worse motion blur, higher input lag, dead/stuck pixels, and poor display in sunlight.

To be clear, many of these issues have been improved upon, but due to the underlying science of LCD TN panels, cannot be completely resolved. In fact, many of these issues -- like uneven backlighting, motion blur, input lag, and dead/stuck pixels -- are inherent issues across all LCD panel types. Poor viewing angles become a more pressing issue with larger displays, since the viewing angle when viewed straight on increases towards the outside of the monitor, thus causing more color distortion. TN panels do have the advantages of lower response times and higher refresh rates than other panel types/CRTs. TN panels are generally from 60Hz to 144Hz, offering substantially greater fluidity of gameplay with higher frequencies.

TN panels provide a good compromise between CRTs and other LCD panels as their traditionally low response rates, input lag, and high refresh rate make them comparable to CRTs for accuracy; TN panels also have the advantages of offering sharper pictures, widescreen output, lower weight, smaller physical dimensions, and higher resolutions compared to CRTs.

Still, compared to other LCD panels, TN panels suffer from poor viewing angles and worse color reproduction. Ultimately, for most gamers playing somewhat competitively to very competitively, TN panels are a good choice, but for those looking for a prettier and improved color experience, another panel type may be worth considering.

IPS (In-Plane Switching) was created to address the shortcomings of TN panels. IPS panels seek to solve TN panels’ issues of poor color reproduction and viewing angles. In this regard, IPS panels have largely succeed. Not only do they offer a higher contrast ratio (superior blacks), high color accuracy (which leads to IPS panels also generally looking less “washed out”), but IPS panels also have very little color shift when changing the viewing angles.

PLS (Plane to Line Switching) are quite similar to IPS panels, so much so that they have the same advantages and disadvantages, with a couple extra minor advantages. PLS is produced by Samsung, who claims that compared to IPS panels, PLS panels have better viewing angles, a 10% increase in brightness, 15% decrease in production costs, increased image quality, and allow for flexible panels. Samsung’s PLS panels have been known to overclock well in monitors such as the QNIX 2710 in particular. Overall, PLS is basically Samsung’s version of IPS, as it is very similar in functionality (and even name). AHVA is also very similar to IPS and PLS, and differentiation between them is rare, although it should not be confused with the next panel type.

VA (Vertical Alignment) panels offer a solid medium between TN and IPS panels. VA was created to combine the advantages of IPS and TN panels, and largely did, although they did so with some compromise. That seems to be a theme in the world of monitors.

Compared to IPS panels, VA panels have the advantage of higher possible refresh rates. Although most are currently 60Hz, there are a few that are above 60Hz. VA has more advantages over TN panels than IPS, with better color reproduction, higher maximum brightness, and better viewing angles. VA panels do have the best contrast ratios of all panel types mentioned, but they also have the worst response times of the monitor technologies covered here. This causes blurring in fast-moving pictures and is disadvantageous to gaming.

For the use of gaming, VA is not the greatest option due to generally higher response time in comparison to other panel types; this slower response causes more motion blur, effectively eliminating its deployment for fast-moving titles. For a general work monitor, VA panels provide high contrast ratios, brightness, refresh rates, good color reproduction, and good viewing angles.

TN panels are another good choice for competitive gamers, as they support higher refresh rates, low response times, decent input lag, and high resolutions. Their bad viewing angles, color reproduction, and slight blurring compared to CRT monitors (due to higher response times) are all disadvantages, ones which cannot be easily fixed.

IPS panels solve the issues of TN panels, with better color reproduction and viewing angles, but do so at the cost of refresh rate and response time. IPS panels are especially useful for those not wanting to play too competitively, but want a beautiful/immersive visual experience. PLS and AHVA are similar enough to IPS to usually not be differentiated.

VA panels provide a good middle ground with better-than-IPS refresh rates and contrast levels, but have worse viewing angles and color production, although generally still better than TN. Response times are VA’s largest downfall, though, being slower than IPS and its variants and TN.

What’s best for you will depend on all of these items. For those wanting to play at a competitive level and who favor FPS or racing games, TN panels are best. Those wanting a more impressive and immersive experience may want an IPS (or similar variant, such as PLS), especially if working on artistic endeavors. Finally, those wanting a general monitor for work might consider a VA panel, although due to their higher response times, they won’t be good for gaming.

While monitors may sometimes seem simple in that they just display pretty pictures -- as with everything else -- they are more complicated than they appear at first glance.

tn display vs tft display manufacturer

These cookies are used to track your activity on the BenQ website and other websites across the Internet, help measure the effectiveness of our advertising campaign and deliver advertisements that are more relevant to you and your interests. We use various advertising partners, including Amazon, Facebook, and Google. These cookies and other technologies capture data like your IP address, when you viewed the page or email, what device you were using and where you were. You can find out how to avoid them below.

tn display vs tft display manufacturer

A thin-film-transistor liquid-crystal display (TFT LCD) is a variant of a liquid-crystal display that uses thin-film-transistor technologyactive matrix LCD, in contrast to passive matrix LCDs or simple, direct-driven (i.e. with segments directly connected to electronics outside the LCD) LCDs with a few segments.

In February 1957, John Wallmark of RCA filed a patent for a thin film MOSFET. Paul K. Weimer, also of RCA implemented Wallmark"s ideas and developed the thin-film transistor (TFT) in 1962, a type of MOSFET distinct from the standard bulk MOSFET. It was made with thin films of cadmium selenide and cadmium sulfide. The idea of a TFT-based liquid-crystal display (LCD) was conceived by Bernard Lechner of RCA Laboratories in 1968. In 1971, Lechner, F. J. Marlowe, E. O. Nester and J. Tults demonstrated a 2-by-18 matrix display driven by a hybrid circuit using the dynamic scattering mode of LCDs.T. Peter Brody, J. A. Asars and G. D. Dixon at Westinghouse Research Laboratories developed a CdSe (cadmium selenide) TFT, which they used to demonstrate the first CdSe thin-film-transistor liquid-crystal display (TFT LCD).active-matrix liquid-crystal display (AM LCD) using CdSe TFTs in 1974, and then Brody coined the term "active matrix" in 1975.high-resolution and high-quality electronic visual display devices use TFT-based active matrix displays.

The liquid crystal displays used in calculators and other devices with similarly simple displays have direct-driven image elements, and therefore a voltage can be easily applied across just one segment of these types of displays without interfering with the other segments. This would be impractical for a large display, because it would have a large number of (color) picture elements (pixels), and thus it would require millions of connections, both top and bottom for each one of the three colors (red, green and blue) of every pixel. To avoid this issue, the pixels are addressed in rows and columns, reducing the connection count from millions down to thousands. The column and row wires attach to transistor switches, one for each pixel. The one-way current passing characteristic of the transistor prevents the charge that is being applied to each pixel from being drained between refreshes to a display"s image. Each pixel is a small capacitor with a layer of insulating liquid crystal sandwiched between transparent conductive ITO layers.

The circuit layout process of a TFT-LCD is very similar to that of semiconductor products. However, rather than fabricating the transistors from silicon, that is formed into a crystalline silicon wafer, they are made from a thin film of amorphous silicon that is deposited on a glass panel. The silicon layer for TFT-LCDs is typically deposited using the PECVD process.

Polycrystalline silicon is sometimes used in displays requiring higher TFT performance. Examples include small high-resolution displays such as those found in projectors or viewfinders. Amorphous silicon-based TFTs are by far the most common, due to their lower production cost, whereas polycrystalline silicon TFTs are more costly and much more difficult to produce.

The twisted nematic display is one of the oldest and frequently cheapest kind of LCD display technologies available. TN displays benefit from fast pixel response times and less smearing than other LCD display technology, but suffer from poor color reproduction and limited viewing angles, especially in the vertical direction. Colors will shift, potentially to the point of completely inverting, when viewed at an angle that is not perpendicular to the display. Modern, high end consumer products have developed methods to overcome the technology"s shortcomings, such as RTC (Response Time Compensation / Overdrive) technologies. Modern TN displays can look significantly better than older TN displays from decades earlier, but overall TN has inferior viewing angles and poor color in comparison to other technology.

Most TN panels can represent colors using only six bits per RGB channel, or 18 bit in total, and are unable to display the 16.7 million color shades (24-bit truecolor) that are available using 24-bit color. Instead, these panels display interpolated 24-bit color using a dithering method that combines adjacent pixels to simulate the desired shade. They can also use a form of temporal dithering called Frame Rate Control (FRC), which cycles between different shades with each new frame to simulate an intermediate shade. Such 18 bit panels with dithering are sometimes advertised as having "16.2 million colors". These color simulation methods are noticeable to many people and highly bothersome to some.gamut (often referred to as a percentage of the NTSC 1953 color gamut) are also due to backlighting technology. It is not uncommon for older displays to range from 10% to 26% of the NTSC color gamut, whereas other kind of displays, utilizing more complicated CCFL or LED phosphor formulations or RGB LED backlights, may extend past 100% of the NTSC color gamut, a difference quite perceivable by the human eye.

In-plane switching was developed by Hitachi Ltd. in 1996 to improve on the poor viewing angle and the poor color reproduction of TN panels at that time.

In 2004, Hydis Technologies Co., Ltd licensed its AFFS patent to Japan"s Hitachi Displays. Hitachi is using AFFS to manufacture high end panels in their product line. In 2006, Hydis also licensed its AFFS to Sanyo Epson Imaging Devices Corporation.

It achieved pixel response which was fast for its time, wide viewing angles, and high contrast at the cost of brightness and color reproduction.Response Time Compensation) technologies.

Less expensive PVA panels often use dithering and FRC, whereas super-PVA (S-PVA) panels all use at least 8 bits per color component and do not use color simulation methods.BRAVIA LCD TVs offer 10-bit and xvYCC color support, for example, the Bravia X4500 series. S-PVA also offers fast response times using modern RTC technologies.

A technology developed by Samsung is Super PLS, which bears similarities to IPS panels, has wider viewing angles, better image quality, increased brightness, and lower production costs. PLS technology debuted in the PC display market with the release of the Samsung S27A850 and S24A850 monitors in September 2011.

TFT dual-transistor pixel or cell technology is a reflective-display technology for use in very-low-power-consumption applications such as electronic shelf labels (ESL), digital watches, or metering. DTP involves adding a secondary transistor gate in the single TFT cell to maintain the display of a pixel during a period of 1s without loss of image or without degrading the TFT transistors over time. By slowing the refresh rate of the standard frequency from 60 Hz to 1 Hz, DTP claims to increase the power efficiency by multiple orders of magnitude.

Due to the very high cost of building TFT factories, there are few major OEM panel vendors for large display panels. The glass panel suppliers are as follows:

External consumer display devices like a TFT LCD feature one or more analog VGA, DVI, HDMI, or DisplayPort interface, with many featuring a selection of these interfaces. Inside external display devices there is a controller board that will convert the video signal using color mapping and image scaling usually employing the discrete cosine transform (DCT) in order to convert any video source like CVBS, VGA, DVI, HDMI, etc. into digital RGB at the native resolution of the display panel. In a laptop the graphics chip will directly produce a signal suitable for connection to the built-in TFT display. A control mechanism for the backlight is usually included on the same controller board.

The low level interface of STN, DSTN, or TFT display panels use either single ended TTL 5 V signal for older displays or TTL 3.3 V for slightly newer displays that transmits the pixel clock, horizontal sync, vertical sync, digital red, digital green, digital blue in parallel. Some models (for example the AT070TN92) also feature input/display enable, horizontal scan direction and vertical scan direction signals.

New and large (>15") TFT displays often use LVDS signaling that transmits the same contents as the parallel interface (Hsync, Vsync, RGB) but will put control and RGB bits into a number of serial transmission lines synchronized to a clock whose rate is equal to the pixel rate. LVDS transmits seven bits per clock per data line, with six bits being data and one bit used to signal if the other six bits need to be inverted in order to maintain DC balance. Low-cost TFT displays often have three data lines and therefore only directly support 18 bits per pixel. Upscale displays have four or five data lines to support 24 bits per pixel (truecolor) or 30 bits per pixel respectively. Panel manufacturers are slowly replacing LVDS with Internal DisplayPort and Embedded DisplayPort, which allow sixfold reduction of the number of differential pairs.

The bare display panel will only accept a digital video signal at the resolution determined by the panel pixel matrix designed at manufacture. Some screen panels will ignore the LSB bits of the color information to present a consistent interface (8 bit -> 6 bit/color x3).

With analogue signals like VGA, the display controller also needs to perform a high speed analog to digital conversion. With digital input signals like DVI or HDMI some simple reordering of the bits is needed before feeding it to the rescaler if the input resolution doesn"t match the display panel resolution.

Kawamoto, H. (2012). "The Inventors of TFT Active-Matrix LCD Receive the 2011 IEEE Nishizawa Medal". Journal of Display Technology. 8 (1): 3–4. Bibcode:2012JDisT...8....3K. doi:10.1109/JDT.2011.2177740. ISSN 1551-319X.

Brody, T. Peter; Asars, J. A.; Dixon, G. D. (November 1973). "A 6 × 6 inch 20 lines-per-inch liquid-crystal display panel". 20 (11): 995–1001. Bibcode:1973ITED...20..995B. doi:10.1109/T-ED.1973.17780. ISSN 0018-9383.

K. H. Lee; H. Y. Kim; K. H. Park; S. J. Jang; I. C. Park & J. Y. Lee (June 2006). "A Novel Outdoor Readability of Portable TFT-LCD with AFFS Technology". SID Symposium Digest of Technical Papers. AIP. 37 (1): 1079–82. doi:10.1889/1.2433159. S2CID 129569963.

Kim, Sae-Bom; Kim, Woong-Ki; Chounlamany, Vanseng; Seo, Jaehwan; Yoo, Jisu; Jo, Hun-Je; Jung, Jinho (15 August 2012). "Identification of multi-level toxicity of liquid crystal display wastewater toward Daphnia magna and Moina macrocopa". Journal of Hazardous Materials. Seoul, Korea; Laos, Lao. 227–228: 327–333. doi:10.1016/j.jhazmat.2012.05.059. PMID 22677053.

tn display vs tft display manufacturer

A liquid-crystal display (LCD) is a flat-panel display or other electronically modulated optical device that uses the light-modulating properties of liquid crystals combined with polarizers. Liquid crystals do not emit light directlybacklight or reflector to produce images in color or monochrome.seven-segment displays, as in a digital clock, are all good examples of devices with these displays. They use the same basic technology, except that arbitrary images are made from a matrix of small pixels, while other displays have larger elements. LCDs can either be normally on (positive) or off (negative), depending on the polarizer arrangement. For example, a character positive LCD with a backlight will have black lettering on a background that is the color of the backlight, and a character negative LCD will have a black background with the letters being of the same color as the backlight. Optical filters are added to white on blue LCDs to give them their characteristic appearance.

LCDs are used in a wide range of applications, including LCD televisions, computer monitors, instrument panels, aircraft cockpit displays, and indoor and outdoor signage. Small LCD screens are common in LCD projectors and portable consumer devices such as digital cameras, watches, digital clocks, calculators, and mobile telephones, including smartphones. LCD screens are also used on consumer electronics products such as DVD players, video game devices and clocks. LCD screens have replaced heavy, bulky cathode-ray tube (CRT) displays in nearly all applications. LCD screens are available in a wider range of screen sizes than CRT and plasma displays, with LCD screens available in sizes ranging from tiny digital watches to very large television receivers. LCDs are slowly being replaced by OLEDs, which can be easily made into different shapes, and have a lower response time, wider color gamut, virtually infinite color contrast and viewing angles, lower weight for a given display size and a slimmer profile (because OLEDs use a single glass or plastic panel whereas LCDs use two glass panels; the thickness of the panels increases with size but the increase is more noticeable on LCDs) and potentially lower power consumption (as the display is only "on" where needed and there is no backlight). OLEDs, however, are more expensive for a given display size due to the very expensive electroluminescent materials or phosphors that they use. Also due to the use of phosphors, OLEDs suffer from screen burn-in and there is currently no way to recycle OLED displays, whereas LCD panels can be recycled, although the technology required to recycle LCDs is not yet widespread. Attempts to maintain the competitiveness of LCDs are quantum dot displays, marketed as SUHD, QLED or Triluminos, which are displays with blue LED backlighting and a Quantum-dot enhancement film (QDEF) that converts part of the blue light into red and green, offering similar performance to an OLED display at a lower price, but the quantum dot layer that gives these displays their characteristics can not yet be recycled.

Since LCD screens do not use phosphors, they rarely suffer image burn-in when a static image is displayed on a screen for a long time, e.g., the table frame for an airline flight schedule on an indoor sign. LCDs are, however, susceptible to image persistence.battery-powered electronic equipment more efficiently than a CRT can be. By 2008, annual sales of televisions with LCD screens exceeded sales of CRT units worldwide, and the CRT became obsolete for most purposes.

Each pixel of an LCD typically consists of a layer of molecules aligned between two transparent electrodes, often made of Indium-Tin oxide (ITO) and two polarizing filters (parallel and perpendicular polarizers), the axes of transmission of which are (in most of the cases) perpendicular to each other. Without the liquid crystal between the polarizing filters, light passing through the first filter would be blocked by the second (crossed) polarizer. Before an electric field is applied, the orientation of the liquid-crystal molecules is determined by the alignment at the surfaces of electrodes. In a twisted nematic (TN) device, the surface alignment directions at the two electrodes are perpendicular to each other, and so the molecules arrange themselves in a helical structure, or twist. This induces the rotation of the polarization of the incident light, and the device appears gray. If the applied voltage is large enough, the liquid crystal molecules in the center of the layer are almost completely untwisted and the polarization of the incident light is not rotated as it passes through the liquid crystal layer. This light will then be mainly polarized perpendicular to the second filter, and thus be blocked and the pixel will appear black. By controlling the voltage applied across the liquid crystal layer in each pixel, light can be allowed to pass through in varying amounts thus constituting different levels of gray.

Most color LCD systems use the same technique, with colo