tft lcd shield arduino nano manufacturer

Connector for connecting a TFT display 320x240 (displays of various diagonals 2.4", 2.8" and 3.2" can be used, as well as connecting the display both on one side of the board and on the back).

tft lcd shield arduino nano manufacturer

Hello! I am currently trying to interface the LCD shield from the UNO to the Nano Every. It currently is a white screen and reads an ID of 0x0 when using the "tft.readID()" command. I am writing this post since my other post got removed as spam.

tft lcd shield arduino nano manufacturer

In this guide we’re going to show you how you can use the 1.8 TFT display with the Arduino. You’ll learn how to wire the display, write text, draw shapes and display images on the screen.

The 1.8 TFT is a colorful display with 128 x 160 color pixels. The display can load images from an SD card – it has an SD card slot at the back. The following figure shows the screen front and back view.

This module uses SPI communication – see the wiring below . To control the display we’ll use the TFT library, which is already included with Arduino IDE 1.0.5 and later.

The TFT display communicates with the Arduino via SPI communication, so you need to include the SPI library on your code. We also use the TFT library to write and draw on the display.

The 1.8 TFT display can load images from the SD card. To read from the SD card you use the SD library, already included in the Arduino IDE software. Follow the next steps to display an image on the display:

In this guide we’ve shown you how to use the 1.8 TFT display with the Arduino: display text, draw shapes and display images. You can easily add a nice visual interface to your projects using this display.

tft lcd shield arduino nano manufacturer

- RO NANO expansion boards are tailored for DUINO NANO sensor expansion board. It solves the wiring confusion problems when connecting the several sensor

- 1. Arduino MEGA / MEGA2560 ProtoShield prototype expansion board with Immersion Gold PCB processing technology, motherboards, small gold square pad spacing, welding components easier.

tft lcd shield arduino nano manufacturer

The ESPLORA Joystick Photosensitive Sensor Board is a microcontroller board compatible with Arduino & derived from the Arduino Leonardo. The ESPLORA Joystick Photosensitive Sensor Board differs from all preceding Arduino boards in that it provides a number of built-in; ready-to-use set of onboard sensors for interaction.

It’s designed for people who want to get up and running with Arduino without having to learn about the electronics first. For a step-by-step introduction to the Esplora; check out the Getting Started with Esplora guide.

The ESPLORA Joystick Photosensitive Sensor Board has onboard sound and light outputs, and several input sensors; including a joystick, a slider, a temperature sensor, an accelerometer, a microphone, and a light sensor. It also has the potential to expand its capabilities with two Tinker-kit input and output connectors, and a socket for a color TFT LCD screen.

The board contains everything need to support the microcontroller; simply connect it to a computer with a USB cable to get started. The Esplora has built-in USB communication; it can appear to a connected computer as a mouse or keyboard, in addition to a virtual (CDC) serial / COM port. This has other implications for the behavior of the board; these are detailed on the getting started page. You can find all the information you need to configure your board, use the Arduino Software (IDE); and start to tinker with coding and electronics.Input and Output

tft lcd shield arduino nano manufacturer

In this article, you will learn how to use TFT LCDs by Arduino boards. From basic commands to professional designs and technics are all explained here.

There are several components to achieve this. LEDs,  7-segments, Character and Graphic displays, and full-color TFT LCDs. The right component for your projects depends on the amount of data to be displayed, type of user interaction, and processor capacity.

TFT LCD is a variant of a liquid-crystal display (LCD) that uses thin-film-transistor (TFT) technology to improve image qualities such as addressability and contrast. A TFT LCD is an active matrix LCD, in contrast to passive matrix LCDs or simple, direct-driven LCDs with a few segments.

In Arduino-based projects, the processor frequency is low. So it is not possible to display complex, high definition images and high-speed motions. Therefore, full-color TFT LCDs can only be used to display simple data and commands.

There are several components to achieve this. LEDs,  7-segments, Character and Graphic displays, and full-color TFT LCDs. The right component for your projects depends on the amount of data to be displayed, type of user interaction, and processor capacity.

TFT LCD is a variant of a liquid-crystal display (LCD) that uses thin-film-transistor (TFT) technology to improve image qualities such as addressability and contrast. A TFT LCD is an active matrix LCD, in contrast to passive matrix LCDs or simple, direct-driven LCDs with a few segments.

In Arduino-based projects, the processor frequency is low. So it is not possible to display complex, high definition images and high-speed motions. Therefore, full-color TFT LCDs can only be used to display simple data and commands.

After choosing the right display, It’s time to choose the right controller. If you want to display characters, tests, numbers and static images and the speed of display is not important, the Atmega328 Arduino boards (such as Arduino UNO) are a proper choice. If the size of your code is big, The UNO board may not be enough. You can use Arduino Mega2560 instead. And if you want to show high resolution images and motions with high speed, you should use the ARM core Arduino boards such as Arduino DUE.

In electronics/computer hardware a display driver is usually a semiconductor integrated circuit (but may alternatively comprise a state machine made of discrete logic and other components) which provides an interface function between a microprocessor, microcontroller, ASIC or general-purpose peripheral interface and a particular type of display device, e.g. LCD, LED, OLED, ePaper, CRT, Vacuum fluorescent or Nixie.

The LCDs manufacturers use different drivers in their products. Some of them are more popular and some of them are very unknown. To run your display easily, you should use Arduino LCDs libraries and add them to your code. Otherwise running the display may be very difficult. There are many free libraries you can find on the internet but the important point about the libraries is their compatibility with the LCD’s driver. The driver of your LCD must be known by your library. In this article, we use the Adafruit GFX library and MCUFRIEND KBV library and example codes. You can download them from the following links.

You must add the library and then upload the code. If it is the first time you run an Arduino board, don’t worry. Just follow these steps:Go to www.arduino.cc/en/Main/Software and download the software of your OS. Install the IDE software as instructed.

First you should convert your image to hex code. Download the software from the following link. if you don’t want to change the settings of the software, you must invert the color of the image and make the image horizontally mirrored and rotate it 90 degrees counterclockwise. Now add it to the software and convert it. Open the exported file and copy the hex code to Arduino IDE. x and y are locations of the image. sx and sy are sizes of image. you can change the color of the image in the last input.

Upload your image and download the converted file that the UTFT libraries can process. Now copy the hex code to Arduino IDE. x and y are locations of the image. sx and sy are size of the image.

In this template, We converted a .jpg image to .c file and added to the code, wrote a string and used the fade code to display. Then we used scroll code to move the screen left. Download the .h file and add it to the folder of the Arduino sketch.

In this template, We used sin(); and cos(); functions to draw Arcs with our desired thickness and displayed number by text printing function. Then we converted an image to hex code and added them to the code and displayed the image by bitmap function. Then we used draw lines function to change the style of the image. Download the .h file and add it to the folder of the Arduino sketch.

In this template, We added a converted image to code and then used two black and white arcs to create the pointer of volumes.  Download the .h file and add it to the folder of the Arduino sketch.

In this template, We added a converted image and use the arc and print function to create this gauge.  Download the .h file and add it to folder of the Arduino sketch.

while (a < b) { Serial.println(a); j = 80 * (sin(PI * a / 2000)); i = 80 * (cos(PI * a / 2000)); j2 = 50 * (sin(PI * a / 2000)); i2 = 50 * (cos(PI * a / 2000)); tft.drawLine(i2 + 235, j2 + 169, i + 235, j + 169, tft.color565(0, 255, 255)); tft.fillRect(200, 153, 75, 33, 0x0000); tft.setTextSize(3); tft.setTextColor(0xffff); if ((a/20)>99)

while (b < a) { j = 80 * (sin(PI * a / 2000)); i = 80 * (cos(PI * a / 2000)); j2 = 50 * (sin(PI * a / 2000)); i2 = 50 * (cos(PI * a / 2000)); tft.drawLine(i2 + 235, j2 + 169, i + 235, j + 169, tft.color565(0, 0, 0)); tft.fillRect(200, 153, 75, 33, 0x0000); tft.setTextSize(3); tft.setTextColor(0xffff); if ((a/20)>99)

In this template, We display simple images one after each other very fast by bitmap function. So you can make your animation by this trick.  Download the .h file and add it to folder of the Arduino sketch.

In this template, We just display some images by RGBbitmap and bitmap functions. Just make a code for touchscreen and use this template.  Download the .h file and add it to folder of the Arduino sketch.

tft lcd shield arduino nano manufacturer

This is a 2.0 inch TFT LCD expansion board with 8-bit parallel interface. This display has a controller built into it with RAM buffering, so that almost no work is done by the microcontroller. It leads out the pins of the TFT and breakout pins pitch is 2.54mm, so the secondary development is easy.

- Compatibility: Because the logic level is 3.3V, it is compatible with 3.3V Arduino board, you can connect to it OPEN-SMART UNO Black version with 5V/3.3V power switch. You need to add a level conversion circuit if you use a 5V Arduino Board (Arduino UNO R3 / Arduino Mega2560 / Arduino Leonardo). You can also connect it to other 3.3V MCU directly.

tft lcd shield arduino nano manufacturer

Pioneers in the industry, we offer prototype shield with breadboard for arduino uno, arduino compatible pro mini 5v 16m board, digispark attiny85 usb development board mini arduino, arduino nano ch340 - compatible, 2.4 inch lcd tft display and arduino compatible wemos d1 r2 wifi esp8266 shield from India.

tft lcd shield arduino nano manufacturer

The first Arduino board based on an ARM processor. Features 2 channel 12-bit DAC, 84 MHz clock frequency, 32-bit architecture, 512 KB flash and 96 KB SRAM. Unlike most Arduino boards, it operates on 3.3 V and is not 5 V tolerant.

Arduino Yún is the combination of a classic Arduino Leonardo (based on the ATmega32U4 processor) with a Wi-Fi system on a chip (SoC) running Linino, a MIPS Linux based on OpenWrt.

Total memory of 256 KB. Uses the ATmega16U2 (ATmega8U2 before Rev3) USB chip. Most shields that were designed for the Duemilanove, Diecimila, or Uno will fit, but a few shields will not fit because of interference with the extra pins.

Although the hardware and software designs are freely available under copyleft licenses, the developers have requested that the name "Arduino" be exclusive to the official product and not be used for derivative works without permission. The official policy document on the use of the Arduino name emphasizes that the project is open to incorporating work by others into the official product.

As a result of the protected naming conventions of the Arduino, a group of Arduino users forked the Arduino Diecimila, releasing an equivalent board called Freeduino. The name "Freeduino" is not trademarked and is free to use for any purpose.

The following boards are fully or almost fully compatible with both the Arduino hardware and software, including being able to accept "shield" daughterboards.

Seeeduino V4.2 is an Arduino-compatible board, which is based on ATmega328P MCU, Arduino UNO bootloader, and with an ATmega16U2 as a UART-to-USB converter. The three on-board Grove interface can make your board connect to over 300 Grove modules.

SMART™ SAM D21 is a series of low-power microcontrollers using the 32-bit ARM® Cortex®-M0+ processor with 256 KB flash and 32 KB of SRAM. The Seeeduino Lotus Cortex-M0+ can be considered as a combination of Seeeduino and Base Shield.

LoRaWAN Class A/C Ultra long range communication Ultra low power consumption Arduino programming (based on Arduino Zero bootloader). Embedded with lithium battery management chip 4 Grove connectors onboard

LoRaWAN Class A/C Ultra long range of communication GPS communication Ultra low power consumption Arduino programming (based on Arduino Zero bootloader). Embedded with lithim battery management chip 4 Grove connectors onboard

Built on Dragino Wi-Fi IoT module HE and ATmega32U4 Compatible with Arduino Yun Support 2.4 GHz Wi-Fi, 802.11 b/g/n Built-in Ethernet port and USB 2.0 Running OpenWrt system

inviot U1 (arduino-compatible) all-in-one board with LCD, rotary encoder, RTC DS3231, EEPROM, buzzer, push buttons, RGB Led, NRF24 plug, and ESP8266 plug.Added features:

Japanese Arduino compatible kit using Uno board setting. Includes two mini-B USB sockets, 1602 LCD socket, 5 V or 3.3 V power selection, breadboard area.

Platino is an Arduino compatible board that supports 28-pin and 40-pin AVR devices. The board features multiple footprints for user interface elements like LCDs, pushbuttons, rotary encoders, LEDs and buzzer, supported by an extensive library. Bootloaders are available for all supported processors. On its backside are Arduino shield compatible connectors plus other extension connectors.

A low cost Arduino clone using the ATmega168/ATmega 328/ATmega 8 and designed for prototyping, it includes onboard peripherals such as an RGB LED, switches, IR LED, TSOP and LDR.

Minimalistic version of Arduino: small, without serial converter. Available as a kit, board only or assembled. Smaller than Arduino, with different footprint.

It has an improved automatic voltage selector, resolves problems during programming caused by shields that use the serial port, with an automatic serial port selector, and has the LM1117 voltage regulator.

Fully Arduino compatible board, that fits perfectly on a Raspberry Pi, and can be programmed through the Raspberry Pi"s serial interface. It also breaks out the Raspberry Pi"s SPI and I²C interfaces, or can be used as a stand-alone Arduino when powered with the external power header.

A low cost, high power, shield-compatible, complete Arduino-compatible board kit. Based on the Duemilanove, it comes with a 5 V / 1 A voltage regulator (optional 3.3 V regulator). Designed for low component count and for ease of assembly.

A South African Arduino-compatible board derived from the Duemilanove, it features mostly through-hole construction except for the SMD FT232RL IC, power selection switches, option for a Phoenix power connector instead of DC jack, extra I/O pads for using Veroboard as shields. Designed for easy assembly in countries where exotic components are hard to find. PCB layout and board now available on Circuitmaker as Open Source Hardware

Includes both 3.3 V and 5 V regulators for shields, D13 pin isolated with a MOSFET of which can also be used as an input. Can be connect to Arduino using CAT5 cable.

Arduino Due with onboard Ethernet, software-compatible with Arduino Ethernet shield, D13 pin isolated with a MOSFET of which can also be used as an input.

Uses Arduino Due form factor and largely compatible pin allocation. Runs at 5 V, but can be modified to run at 3.3 V. Triple-core, 32-bit, 200 MHz Aurix processor. 4 MB flash, 550 kB SRAM, 128 kB DataFlash. Optional CIC61508 safety monitor. Arduino IDE supported via add-in, plus Eclipse-based tools with multicore debugger.

MBZ Pro Mega is an Arduino compatible stand-alone board with a prototyping area and built-in Wi-Fi. Featuring a compact design, it helps to shrink Arduino projects and make it permanent.

Embed version of Mega 2560 CH340G/ATmega2560 - compatible with Arduino Mega 2560 board. Built on the Atmel ATmega2560 microcontroller and USB-UART interface chip CH340G.

Compatible with Arduino shields and Pmod extension cards. ARM Cortex-A9 CPU (max frequency 667 MHz) and FPGA fabric, 512 Mb RAM, 8 Gb eMMC storage, on-board Wi-Fi and Bluetooth, USB 2.0 host.

Special purpose Arduino-compatible boards add additional hardware optimised for a specific application. It is kind of like having an Arduino and a shield on a single board. Some are Shield compatible, others are not.

This is a minimalist tracked platform based on the Arduino Duemilanove. Has an ATmega328 with Arduino bootloader, a dual H-bridge and additional prototyping space and headers. It is compatible with many shields, though four digital pins are used when operating the motor controller. Has an onboard voltage regulator, additional LEDs, a temperature sensor, and a light sensor. Part of the DFRobotShop Rover kit.

An Arduino-compatible board designed for inertial measurement and inertial navigation of aircraft, cars, and boats. It uses the ATmega128RFA1 and a variety of sensors IMU for various applications.

An Arduino Mega 2560 compatible board designed for auto-piloting and autonomous navigation of multirotor aircraft. Designed to be stacked with sensor bobs and boards with several breakout boards available.

Universal platform for wireless data transmission in the frequency band 868 MHz. The board combines features of Arduino Mini and the radio EZRadioPRO for receiving and transmitting data. With DataFlash.

WIOT is an Open Source, rechargeable, Li-Ion battery powered, Arduino compatible, development board designed around the ATmega32U4 processor and ESP8266 Wi-Fi Module.

FPGA-based drop-in replacement for Arduino UNO R3; offers faster clock rates and overall applications speed, higher-performance through vendor-supplied hardware-specific library functions utilizing FPGA; half of FPGA"s space remains available for further customizations including ones written by end user

iono is a general-purpose industrial controller based on Arduino, suitable for professional use (e.g. industrial automation, building automation). It features wide-range power supply, analog/digital inputs with robust protection circuits, power relays with double-winding latching bistable coils, 0÷10 V analog output, DIN rail case.

These boards are compatible with the Arduino software, but they do not accept standard shields. They have different connectors for power and I/O, such as a series of pins on the underside of the board for use with breadboards for prototyping, or more specific connectors. One of the important choices made by Arduino-compatible board designers is whether or not to include USB circuitry in the board. For many Arduino tasks, the USB circuitry is redundant once the device has been programmed, so that circuitry can be placed in the cable between development PC and board, thus making each instance of the board less expensive, potentially smaller, and more power efficient.

Seeeduino XIAO is the smallest Arduino compatible board in Seeeduino Family. It is an Arduino microcontroller that is embedded with the SAMD21 microchip. The interfaces of Seeeduino XIAO is rich enough in such a tiny Dev. Board as well.

Built around ATmega 2560 @ 16 MHz Massive GPIOs: 70 digital I/Os, 16 analog inputs and 4 UARTs, etc. Small form factor, 30% smaller than Arduino Mega 3.3 V and 5 V dual mode. Can be powered through a battery or through an AC to DC adaptor

A very power efficient breadboard friendly Arduino compatible board with onboard RFM69W/RFM69HW transceiver and a stock speed of 16 MHz @ 3.3 V. You can solder your own antenna or connect an antenna via U.FL connector.

BBFuino come with the ATmega328 controller, loaded with Optiboot (Arduino UNO"s bootloader), compatible with Arduino IDE and sample code, design to fit breadboard for prototyping and learning, lower down the cost by taking out the USB to UART IC, so the board has the basic component to operate.

The Crumbuino-Nano is a low-cost module comparable to the Arduino-Nano and can be used as Arduino-Nano in the Arduino-IDE. The Arduino bootloader is preloaded, hence the module is ready-to-use. The documentation shows the pin mapping of Arduino-naming to module pinout.

The Crumbuino-Mega is a low-cost module comparable to the Arduino-Mega 2560 and can be used as Arduino-Mega 2560 in the Arduino-IDE. The Arduino bootloader is preloaded, hence the module is ready-to-use. The documentation shows the pin mapping of Arduino-naming to module pinout.

Freeduino USB Mega 2560, designed in India with Male headers (coming soon with Female Headers). Suitable for use in project, R&D, device and applicationsFreeduino USB Mega 2560 is a cost-effective and 100% pin and software compatible to the popular Arduino Mega 2560. Uses through hole components and has male headers.

Freeduino nano designed in India, completely breadboard friendly, elegant and compact design.Freeduino Nano is a low cost Arduino Nano compatible board with mini USB connector using SMD components Freeduino Nano.

The world"s first wireless 3D position, inertia, and orientation beacon. Designed in the San Francisco bay area, this board provides a 10-DoF IMU with on-board ATmega32U4 chip (the same as the Arduino Leonardo).

A combination of an ATmega328P and an I²C based RGB backlit LCD interface (software compatible with the Adafruit RGB LCD shield), along with a USB serial programming interface done as a "backpack" module for the LCD.

The modified Arduino IDE allows the compiled user sketch to be uploaded onto the processor either with or without the proprietary GNSS software. NavSpark has 17 GPIO pins, which include two UARTs, 1 I²C, 1 SPI, 1 PWM, and a trigger. The first UART is usually used by the GNSS software to output NMEA 0183 data, although this can be disabled. This UART communicates over USB through a PL2303 serial converter and the transmit output is also made available on a pin. A 1 pulse per second signal is produced on a dedicated pin when a valid fix has been made.

An Arduino-compatible board that includes a battery backed up real-time clock and a four channel DAC. Most Arduino-compatible boards require an additional shield for these resources.

An Arduino Duemilanove compacted down to a breadboardable device (36 mm x 18 mm) that can be inserted into a standard 600 mil 28-pin socket, with USB capability, ATmega328P, and 6 onboard LEDs.

An Arduino-compatible board designed specifically for driving LEDs. It is generally used to drive an 8x8 RGB LED matrix using row scanning, but it can be used for other things.

A miniature Arduino compatible board with all of the digital and analog I/O pins brought out into a single line of pins (SIP). Available as a kit, intended for use with a solderless breadboard.

SODAQ, an Arduino Compatible Solar Powered sensor board The Raspberry Pi-sized SODAQ board is built for Solar Powered Data Acquisition. It is fitted with a Lipo charge controller and 12 Grove sockets for plug and play prototyping. It runs at 3.3 V and 8 MHz. It also comes with a DS3231 Real Time Clock and 16 Mbit serial flash for data logging. Its "bee" socket can use a range of different modules, like Xbee, RFbee, Bluetoothbee and GPRSbee to make the board communicate. The latest version has the powerful ATmega1284P microcontroller with 128 KB program space and 16 KB RAM and is still Arduino IDE compatible.

Arduino compatible board designed specifically for RF mesh network experiments. It features 10 I/Os, a 10-pin ISP programming connector, a connector for a standard LCD display (in 4 bit mode) and a connector for a 2.4 GHz RF module.

Arduino Mega compatible board designed specifically for robots requiring large numbers of servos. A built in 3 A switchmode power supply allows servos to plug directly into the board. Pin spacing allows making custom shields from standard prototype board.

Requires updates to Arduino IDE (or download special version) and driver under Windows. Includes regulator for battery power away from PC. Very low cost.

A compact (35 mm x 70 mm), low voltage, battery powered Arduino-compatible board with onboard wireless capable of ranges up to 120 m. The Wireless Widget was designed for both portable and low cost Wireless sensor network applications.

An Arduino-compatible board that includes a Zigbee radio (XBee). The ZB1 can be powered by USB, a wall adapter or an external battery source. It is designed for low-cost Wireless sensor network applications.

An open source enhanced Arduino-compatible board that uses an ATmega16/32/324/644 instead of an ATmega168. This provides 16/32/64 KB of flash, and 32 general I/O pins in a 40-pin DIP device.

uChip mounted on a breadboard Arduino Zero compatible, with narrow (0.3" row spacing) 16-pin DIP footprint (breadboard compatible). It features built-in buck (to power external circuitry) and boost (to power USB devices when operating as a USB host) converters and software selectable output voltage.

The following non-ATmega boards accept Arduino shield daughter boards. The microcontrollers are not compatible with the official Arduino IDE, but they do provide a version of the Arduino IDE and compatible software libraries.

Pin compatible with Arduino but uses the ethernet enabled PIC microcontroller to connect to the Internet. Allows sending of email, display of javascript enabled webpages, and remote web based access and control from around the world.

32-bit MIPS-M4K PIC32MX processor boards (40-80 MHz). The Arduino libraries have been implemented natively for the PIC32MX and these kits run in a fork of the standard Arduino IDE, MPIDE

32-bit MIPS-M4K PIC32MZ processor boards (200 MHz). The Arduino libraries have been implemented natively for the PIC32MZ and these kits run in a fork of the standard Arduino IDE, MPIDE

up to 200 MHz dual core ARM Cortex-M4F, ARM Cortex-M3 and ARM7TDMI-based shield-compatible boards, programmable in BASIC or C with sketch support with open source MakeItC utilities. All boards have 5 V tolerant I/Os.

HiFive1 boardUno form factor, 5 V and 3.3 V, 19 digital I/O (9 PWM), 0 analogue in. 16 MB QSPI flash (execute in place, with 16 KB icache), 16 KB SRAM. Arduino IDE support with 16/256/320 MHz presets and port of Arduino library. Also works with standard C/C++, stdio, GDB from the shell. Hardware multiply (4 cycles) and divide (32 cycles).

The EVAL-ADICUP3029 is an Arduino Uno form factor compatible platform based on the ultra low power ADuCM3029 32-bit ARM Cortex™-M3 microcontroller. The platform is designed to be a development and prototyping vehicle to get design ideas from concept to production with a minimal risk and faster time to market. The EVAL-ADICUP3029 is designed for IOT (Internet of Things) applications in mind, and therefore comes with on board Wi-Fi and Bluetooth 5.0 capabilities. A free version of CrossCore Embedded Studios (an Eclipse-based Analog Devices Interactive Development Environment) is supplied to the designer for debugging and application development. Add-on hardware modules, MCU drivers and software application examples help form a complete ecosystem that designers can leverage into their final product.

Arduino form factor compatible ARM Cortex-M3 Development Platform: 24-bit data acquisition system that incorporates dual high performance, multichannel sigma-delta (Σ-Δ) analog-to-digital converters (ADCs), a 32-bit ARM Cortex™-M3 processor, and flash/EEPROM memory on a single chip. The platform has an Arduino-Due compatible form factor and has two additional PMOD connectors. It is accompanied by an Eclipse-based development environment.

DAQduino is iCP12 usbStick that built in Arduino form of external ports connection. With these I/O ports, user can easily plug in different type of 3rd party Arduino extension boards with direct connection to USB port and SmartDAQ software. Great tool for parallel USB I/O control, signals monitoring (6 ch. oscilloscope) and data acquisition.

Chipino is an electronics prototyping platform based on a Microchip PIC microcontroller. It was designed to use the same footprint and connection scheme as the official Arduino boards to allow Arduino shields to be used with Chipino.

Dual core ARM Cortex-M4/M0, 264 KB SRAM, 4 MB flash, mbed HDK, Arduino-compatible headers. The Bambino 210E has the same features as the 210, but adds a 10/100 Ethernet port, 8 MB flash, microSD socket, and Xbee Socket

Based on the Parallax Propeller; interfaces with standard Arduino shields. The Propeller comes with a free IDE called "propeller tool", and an alternative IDE tool is available.

Board based on a PIC microcontroller, with native USB support and compatibility with the Arduino programming language plus an IDE built with Python and sdcc as compiler.

168 MHz Cortex-M4 (STM32F4) with up to 1,408 KB of code storage and 164 KB of RAM. On-board USB, Ethernet, Wi-Fi, SD card slot. Support for the .NET Micro Framework. Development environment is MS Visual Studio and C#. Pin compatible with Arduino shields although drivers are required for some shields.

72 MHz 32-bit ARM (GHI Electronics USBizi chips) micro-controller boards with support for the .NET Micro Framework. Pin compatible with Arduino shields, although drivers are required for some shields.

Freescale 32-bit Coldfire MCF51JM128 based Arduino Shield Compatible development board. Programmable in StickOS BASIC, and C or assembly language using Flexisframework or CodeWarrior with a step-by-step debugger. The Firebird32 is also available in a special model based on the 8-bit MC9S08JM60.

"Firmware Update 1.2.1 - available now, with BLE mode". forum.arduino.cc. 13 November 2018. Archived from the original on 2018-12-18. Retrieved 2018-12-17.

"Arduino Blog- Arduino Nano: all-in-one design for breadboard use". Arduino.cc. 2008-05-15. Archived from the original on 2013-06-01. Retrieved 2013-01-18.

"Arduino Blog- Arduino Mega: bigger, more powerful, still blue". Arduino.cc. 2009-03-26. Archived from the original on 2014-01-16. Retrieved 2013-01-18.

tft lcd shield arduino nano manufacturer

In this Arduino touch screen tutorial we will learn how to use TFT LCD Touch Screen with Arduino. You can watch the following video or read the written tutorial below.

As an example I am using a 3.2” TFT Touch Screen in a combination with a TFT LCD Arduino Mega Shield. We need a shield because the TFT Touch screen works at 3.3V and the Arduino Mega outputs are 5 V. For the first example I have the HC-SR04 ultrasonic sensor, then for the second example an RGB LED with three resistors and a push button for the game example. Also I had to make a custom made pin header like this, by soldering pin headers and bend on of them so I could insert them in between the Arduino Board and the TFT Shield.

Here’s the circuit schematic. We will use the GND pin, the digital pins from 8 to 13, as well as the pin number 14. As the 5V pins are already used by the TFT Screen I will use the pin number 13 as VCC, by setting it right away high in the setup section of code.

I will use the UTFT and URTouch libraries made by Henning Karlsen. Here I would like to say thanks to him for the incredible work he has done. The libraries enable really easy use of the TFT Screens, and they work with many different TFT screens sizes, shields and controllers. You can download these libraries from his website, RinkyDinkElectronics.com and also find a lot of demo examples and detailed documentation of how to use them.

After we include the libraries we need to create UTFT and URTouch objects. The parameters of these objects depends on the model of the TFT Screen and Shield and these details can be also found in the documentation of the libraries.

So now I will explain how we can make the home screen of the program. With the setBackColor() function we need to set the background color of the text, black one in our case. Then we need to set the color to white, set the big font and using the print() function, we will print the string “Arduino TFT Tutorial” at the center of the screen and 10 pixels  down the Y – Axis of the screen. Next we will set the color to red and draw the red line below the text. After that we need to set the color back to white, and print the two other strings, “by HowToMechatronics.com” using the small font and “Select Example” using the big font.

In order the code to work and compile you will have to include an addition “.c” file in the same directory with the Arduino sketch. This file is for the third game example and it’s a bitmap of the bird. For more details how this part of the code work  you can check my particular tutorial. Here you can download that file: