stm32f103 tft lcd library free sample
The LCD I am using is a 2.8″ TFT LCD with SPI communication. I also have another 16-bit Parallel TFT LCD but it will be another story for another time. For this post, let’s focus on how to display what you want on the 2.8″ LCD. You can find all details about this LCD from this page:http://www.lcdwiki.com/2.8inch_SPI_Module_ILI9341_SKU:MSP2807
First thing first, this LCD use SPI as the main communication protocol with your MCU. For STM32 users, HAL Library has already implemented this protocol which makes this project easier for us. But, a little knowledge about this protocol does not hurt anyone. SPI is short for Serial Peripheral Interface which, aside from two data lines, also has a clock line and select lines to choose between devices you want to communicate with.
This LCD uses ILI9341 as a single-chip SOC driver for a display with a resolution of 240×320. More details can be found in the official document of ILI9341. But the most important thing is that we have to establish astart sequencein order for this LCD to work. The “start sequence” includes many other sequences which are also defined in the datasheet. Each sequence starts when you send a command to ILI9341 and then some parameters to follow up. This sequence is applied for all communication between MCU and ILI9341.
For this project, I recommend using theSystem Workbench for STM32for coding and building the code. After installing and open the program, go to the source code you have just downloaded and double click the.cprojectfile. It will automatically be open in your IDE. Then build the program by right click on the folder you just open (TFTLCD) and chooseBuild Project. Wait for it to finish and upload it to the board by right clicking the folder, choose Run As and then clickAc6 STM32C/C++ Application. And that’s it for running the example.
The most important library for this project is obviously the ILI9341_Driver. This driver is built from the provided source code in the lcdwiki.com page. I only choose the part that we need to use the most in many applications like writing string, displaying image and drawing symbols. Another library from the wiki page is the TOUCH library. Most of the libraries I got from the Internet were not working properly due to some adjustments to the original one.
To draw symbols or even display images, we need a “byte array” of that image or symbol. As an illustration, to display an image from a game called Transistor, I have a “byte array” of that image stored in a file named transistor.h. You can find this file in the link below. Then, I draw each pixel from the image to the LCD by adding the code in the Display_Picture() function in the Display folder.void Display_Picture()
I"m not new to Arduino or LCDs, but have little experience with all 3 of the things I"m trying to make work here: a 3.5" TFT LCD with 8-bit parallel interface, "blue pill" STM32F103 board, and the "mcufriend_kbv" library.
Specifically, I"m trying to make this display: (TFT LCD from Amazon) work with this board: ("blue pill" clone from Amazon). I"m also using a clone STLink though I suspect that doesn"t matter.
First, just to make sure the display worked and "get the lay of the land" as I"d never used the "mcufriend" library before, I plugged the display into an Uno, installed the library, and loaded and ran all the examples for the library... all worked. The only issue I encountered was the display flickering a little when updated, which I suspect may have had to do with the Uno"s 5V logic driving the 3.3v display, as it was the backlight flickering, not the display itself.
Having succeeded at that, I then removed the display from the Uno and wired it to the STM32 board, using a wiring scheme I think came from the library"s author:
3. Some controller chips can operate in more than one mode eg spi/8bit/16bit or external/internal framebuffer. The lcd module you buy will usually be hardwired to operate in a particular mode with no ability to change it. Make sure you get not only the controller you want but also that controller configured in the way you want to use it. Often the choice of the lcd module is what drives all the other decisions.
The above discussion is of course very generic. Knowing more about what you are trying to achieve and what your budget is, or a list of lcd modules you are thinking of, could help us give more specific advice.
LCDs… I think LEDs and LCDs are probably the most common wet dream of people who like playing with embedded. I mean, who doesn’t like blinking LEDs and furthermore who doesn’t like to draw graphics with a microcontroller on an LCD? If you don’t press Alt+F4 now please.
LEDs are easy. Toggling a pin or flashing a LED is the first breath of every project. There you know that your microcontroller’s heart is beating properly and it doesn’t have arrhythmia. Then, driving a character LCD is a bit more harder, but still easy; but driving a graphic LCD is definitely more harder, especially if you’re starting from the scratch. Do you have to start from the scratch, though? Nah… There are many projects out there and also this is another one.
On the other hand, overclocking is more interesting. The stm32f103 can be easily overclocked by just changing the PLL value. Then you can increase the main clock from 72MHz to 128MHz. Not bad, right? Especially if you think that a project which drives a graphic LCD will benefit a lot from this speed increase. I assume that you’re not crazy enough to do that on a commercial project, but if you do then you’re my hero.
I’m using an stm32f103c8t6 board (bluepill). These modules cost less than €2 in ebay and you may have already seen me using them also in other stupid projects.
There is a very standard LCD module that you find in ebay and it costs around $7. It’s 2.8” TFT, supports 240x320 resolution, it has a touch interface and an sd card holder. The part name is TJCTM24028-SPI and is the following one:
As the LCD is not wireless you need to connect it somehow to your stm32. We’re lucky in this case, because both LCD and the stm32 have conductive pins that if they’re connected with each other in the proper way then it may work. The connections you need to do are:
The SPI speed of the stm32f103 by using DMA can achieve an SPI clock up to 36MHz when the mcu is running on the default highest frequency which is 76MHz. That’s really fast already compared to other Cortex-M3 mcus with the same frequency (even faster mcus). To use the default 72MHz clock you need to comment out line 47 in main.c here, otherwise the clock will set to 128MHz.
By overclocking the mcu to 128MHz the SPI/DMA speed is much higher. To enable the oveclocking you need to un-comment line 47 here (SystemCoreClock = overclock_stm32f103();), which by default is already enabled.
Then you need to press the center of the cross. Behind the scenes, this code is in the ili9341_touch_calib.c file, inside the ili9341_touch_calib_start() function, which at the state STATE_DRAW_P1 draws the screen and then waits in STATE_WAIT_FOR_P1 for the user to press the cross. I’ve added bouncing control in thexpt2046_polling() function, but generally the xpt2046 library doesn’t have. So the xpt2046_update() function which updates the static X/Y variables of the lib doesn’t have de-bouncing. The reason for this is that this provides a generic solution and some times de-bouncing is not always wanted, so if it does it can be implemented easily.
Anyway after pressing the point on the screen then other 2 points will be appear and after that the code will calculate the calibration data. The calibration is needed if you want to get the touch presses expressed in pixels that correspond to the screen pixels. Otherwise, the touch sensor only returns 12-bit ADC values, which are not very useful if you need to retrieve the pixel location. Therefore, by calibrating the touch sensor surface to the LCD, you can get the corresponding pixels of the pixels that are just under the pressure point.
stm32f103, rocks. That’s the conclusion. Of course, getting there is not as easy as using an arduino or a teensy board, but the result pays off the difficulty of getting there. And also when you get there is not difficult anymore.
Again, this is a really stupid and completely useless project. You won’t see any fancy graphics with this code, but nevertheless is a very nice template to create your own graphics by using an optimized SPI/DMA code for the stm32f103 and also with the overclocking included. That’s a good deal.
Of course, I didn’t wrote the whole code from the scratch, I’ve ported some code from herewhich is a port from the Adafruit library from the arduino. So it’s a port of a port. FOSS is a beautiful thing, right?
I"m not new to Arduino or LCDs, but have little experience with all 3 of the things I"m trying to make work here: a 3.5" TFT LCD with 8-bit parallel interface, "blue pill" STM32F103 board, and the "mcufriend_kbv" library.
Specifically, I"m trying to make this display: (TFT LCD from Amazon) work with this board: ("blue pill" clone from Amazon). I"m also using a clone STLink though I suspect that doesn"t matter.
First, just to make sure the display worked and "get the lay of the land" as I"d never used the "mcufriend" library before, I plugged the display into an Uno, installed the library, and loaded and ran all the examples for the library... all worked. The only issue I encountered was the display flickering a little when updated, which I suspect may have had to do with the Uno"s 5V logic driving the 3.3v display, as it was the backlight flickering, not the display itself.
Having succeeded at that, I then removed the display from the Uno and wired it to the STM32 board, using a wiring scheme I think came from the library"s author:
LCDs… I think LEDs and LCDs are probably the most common wet dream of people who like playing with embedded. I mean, who doesn’t like blinking LEDs and furthermore who doesn’t like to draw graphics with a microcontroller on an LCD? If you don’t press Alt+F4 now please.
LEDs are easy. Toggling a pin or flashing a LED is the first breath of every project. There you know that your microcontroller’s heart is beating properly and it doesn’t have arrhythmia. Then, driving a character LCD is a bit more harder, but still easy; but driving a graphic LCD is definitely more harder, especially if you’re starting from the scratch. Do you have to start from the scratch, though? Nah… There are many projects out there and also this is another one.
On the other hand, overclocking is more interesting. The stm32f103 can be easily overclocked by just changing the PLL value. Then you can increase the main clock from 72MHz to 128MHz. Not bad, right? Especially if you think that a project which drives a graphic LCD will benefit a lot from this speed increase. I assume that you’re not crazy enough to do that on a commercial project, but if you do then you’re my hero.
I’m using an stm32f103c8t6 board (bluepill). These modules cost less than €2 in ebay and you may have already seen me using them also in other stupid projects.
There is a very standard LCD module that you find in ebay and it costs around $7. It’s 2.8” TFT, supports 240x320 resolution, it has a touch interface and an sd card holder. The part name is TJCTM24028-SPI and is the following one:
As the LCD is not wireless you need to connect it somehow to your stm32. We’re lucky in this case, because both LCD and the stm32 have conductive pins that if they’re connected with each other in the proper way then it may work. The connections you need to do are:
The SPI speed of the stm32f103 by using DMA can achieve an SPI clock up to 36MHz when the mcu is running on the default highest frequency which is 76MHz. That’s really fast already compared to other Cortex-M3 mcus with the same frequency (even faster mcus). To use the default 72MHz clock you need to comment out line 47 in main.c here, otherwise the clock will set to 128MHz.
By overclocking the mcu to 128MHz the SPI/DMA speed is much higher. To enable the oveclocking you need to un-comment line 47 here (SystemCoreClock = overclock_stm32f103();), which by default is already enabled.
Then you need to press the center of the cross. Behind the scenes, this code is in the ili9341_touch_calib.c file, inside the ili9341_touch_calib_start() function, which at the state STATE_DRAW_P1 draws the screen and then waits in STATE_WAIT_FOR_P1 for the user to press the cross. I’ve added bouncing control in thexpt2046_polling() function, but generally the xpt2046 library doesn’t have. So the xpt2046_update() function which updates the static X/Y variables of the lib doesn’t have de-bouncing. The reason for this is that this provides a generic solution and some times de-bouncing is not always wanted, so if it does it can be implemented easily.
Anyway after pressing the point on the screen then other 2 points will be appear and after that the code will calculate the calibration data. The calibration is needed if you want to get the touch presses expressed in pixels that correspond to the screen pixels. Otherwise, the touch sensor only returns 12-bit ADC values, which are not very useful if you need to retrieve the pixel location. Therefore, by calibrating the touch sensor surface to the LCD, you can get the corresponding pixels of the pixels that are just under the pressure point.
stm32f103, rocks. That’s the conclusion. Of course, getting there is not as easy as using an arduino or a teensy board, but the result pays off the difficulty of getting there. And also when you get there is not difficult anymore.
Again, this is a really stupid and completely useless project. You won’t see any fancy graphics with this code, but nevertheless is a very nice template to create your own graphics by using an optimized SPI/DMA code for the stm32f103 and also with the overclocking included. That’s a good deal.
Of course, I didn’t wrote the whole code from the scratch, I’ve ported some code from herewhich is a port from the Adafruit library from the arduino. So it’s a port of a port. FOSS is a beautiful thing, right?
3. Some controller chips can operate in more than one mode eg spi/8bit/16bit or external/internal framebuffer. The lcd module you buy will usually be hardwired to operate in a particular mode with no ability to change it. Make sure you get not only the controller you want but also that controller configured in the way you want to use it. Often the choice of the lcd module is what drives all the other decisions.
The above discussion is of course very generic. Knowing more about what you are trying to achieve and what your budget is, or a list of lcd modules you are thinking of, could help us give more specific advice.
Since it’s inception the Arduino IDE has demonstrated the desire to support all kind of platforms, from Arduino clones and variations of different manufacturers to third party boards like the ESP32 and ESp8266. As more people get familiar with the IDE, they are beginning to support more boards that are not based on ATMEL chips and for today’s tutorial we will look on one of such boards. We will examine how to program the STM32 based, STM32F103C8T6 development board with the Arduino IDE.
The STM32 board to be used for this tutorial is none other than the STM32F103C8T6 chip based STM32F1 development board commonly referred to as “Blue Pill” in line with the blue color of its PCB. Blue Pill is powered by the powerful 32-bit STM32F103C8T6 ARM processor, clocked at 72MHz. The board operates on 3.3v logic levels but its GPIO pins have been tested to be 5v tolerant. While it does not come with WiFi or Bluetooth like the ESP32 and Arduino variants, it offers 20KB of RAM and 64KB of flash memory which makes it adequate for large projects. It also possesses 37 GPIO pins, 10 of which can be used for Analog sensors since they have ADC enabled, along with others which are enabled for SPI, I2C, CAN, UART, and DMA. For a board which costs around $3, you will agree with me that these are impressive specs. A summarized version of these specifications compared with that of an Arduino Uno is shown in the image below.
Based on the specs above, the frequency at which Blue pill operates is about 4.5 times higher than an Arduino UNO, for today’s tutorial, as an example on how to use the STM32F1 board, we will connect it to a 1.44″ TFT display and program it to calculate the “Pi” constant. We will note how long it took the board to obtain the value an compare it with the time it takes an Arduino Uno to perform the same task.
As mentioned earlier, we will connect the STM32F1 board to the1.8″ ST7735 based colored TFT Display along with a push button. The push button will be used to instruct the board to start the calculation.
With this done, we create an object of the ST7735 library which will be used to reference the display all through the entire project. We also indicate the pin of the STM32 to which the pushbutton is connected and create a variable to hold its state.
This library enables you to use ISR-based PWM channels on AVR ATmega164, ATmega324, ATmega644, ATmega1284 with MCUdude MightyCore, to create and output PWM any GPIO pin
This library enables you to use Hardware-based PWM channels on Arduino AVR ATtiny-based boards (ATtiny3217, etc.), using megaTinyCore, to create and output PWM to pins.
This library enables you to use ISR-based PWM channels on Arduino AVR ATtiny-based boards (ATtiny3217, etc.), using megaTinyCore, to create and output PWM any GPIO pin.
Write decimal numbers, hex numbers, temperature, clock digits, characters, and strings to the seven segment LED modules supported by the AceSegment library.
This library allows to read a value from an analog input like an potentiometer, or from a digital input like an encoder. Moreover, allows to write it on digital output, exactly on PWM pin.
Simple Async HTTP Request library, supporting GET, POST, PUT, PATCH, DELETE and HEAD, on top of AsyncTCP library for ESP32/S2/S3/C3, WT32_ETH01 (ESP32 + LAN8720), ESP32 using LwIP ENC28J60, W5500 or LAN8720.
Simple Async HTTP Request library, supporting GET, POST, PUT, PATCH, DELETE and HEAD, on top of AsyncTCP libraries, such as AsyncTCP, ESPAsyncTCP, AsyncTCP_STM32, etc.. for ESP32 (including ESP32_S2, ESP32_S3 and ESP32_C3), WT32_ETH01 (ESP32 + LAN8720), ESP32 with LwIP ENC28J60, ESP8266 (WiFi, W5x00 or ENC28J60) and currently STM32 with LAN8720 or built-in LAN8742A Ethernet.
Simple Async HTTP Request library, supporting GET, POST, PUT, PATCH, DELETE and HEAD, on top of AsyncTCP_RP2040W library for RASPBERRY_PI_PICO_W with CYW43439 WiFi.
Simple Async HTTPS Request library, supporting GET, POST, PUT, PATCH, DELETE and HEAD, on top of AsyncTCP_SSL library for ESP32/S2/S3/C3, WT32_ETH01 (ESP32 + LAN8720), ESP32 using LwIP ENC28J60, W5500 or LAN8720.
Simple Async HTTPS Request library, supporting GET, POST, PUT, PATCH, DELETE and HEAD, on top of AsyncTCP_SSL library for ESP32 (including ESP32_S2, ESP32_S3 and ESP32_C3), WT32_ETH01 (ESP32 + LAN8720) and ESP32 with LwIP ENC28J60.
Fully Asynchronous UDP Library for ESP8266 using W5x00 or ENC28J60 Ethernet. The library is easy to use and includes support for Unicast, Broadcast and Multicast environments.
Fully Asynchronous UDP Library for RASPBERRY_PI_PICO_W using CYW43439 WiFi with arduino-pico core. The library is easy to use and includes support for Unicast, Broadcast and Multicast environments.
Fully Asynchronous UDP Library for Teensy 4.1 using QNEthernet. The library is easy to use and includes support for Unicast, Broadcast and Multicast environments.
This library provides a low-level facility for context switching between multiple threads of execution and contains an implementation of asymmetric stackful coroutines on an AVR micro-controller.
The last hope for the desperate AVR programmer. A small (344 bytes) Arduino library to have real program traces and to find the place where your program hangs.
This library enables you to use Hardware-based PWM channels on AVR-based boards, such as Nano, UNO, Mega, Leonardo, 32u4, etc., to create and output PWM.
This library enables you to use ISR-based PWM channels on AVR-based boards, such as Mega-2560, UNO,Nano, Leonardo, etc., to create and output PWM any GPIO pin.
An Arduino library that takes input in degrees and output a string or integer for the 4, 8, 16, or 32 compass headings (like North, South, East, and West).
DDNS Update Client Library for SAM DUE, nRF52, SAMD21/SAMD51, STM32F/L/H/G/WB/MP1, AVR Mega, megaAVR, Teensy, RP2040-based RASPBERRY_PI_PICO, WT32_ETH01, Portenta_H7, etc. besides ESP8266/ESP32, using ESP8266-AT/ESP32-AT WiFi, WiFiNINA, Ethernet W5x00, ENC28J60, LAN8742A or Teensy NativeEthernet
Library to detect a double reset, using EEPROM, DueFlashStorage, FlashStorage_SAMD, FlashStorage_RTL8720, FlashStorage_STM32 or LittleFS/InternalFS. For AVR, Teensy, SAM DUE, SAMD, STM32F/L/H/G/WB/MP1, nRF52, RP2040-based Nano_RP2040_Connect, RASPBERRY_PI_PICO, RTL8720DN, MBED nRF52840-based Nano_33_BLE, Portenta_H7, etc. boards. Now using efficient FlashStorage_STM32 library and supporting new RP2040-based Nano_RP2040_Connect, Portenta_H7, RASPBERRY_PI_PICO and STM32 core v2.0.0
This library enables you to use Hardware-based PWM channels on Arduino AVRDx-based boards (AVR128Dx, AVR64Dx, AVR32Dx, etc.), using DxCore, to create and output PWM.
This library enables you to use ISR-based PWM channels on Arduino AVRDx-based boards (AVR128Dx, AVR64Dx, AVR32Dx, etc.), using DxCore, to create and output PWM any GPIO pin.
Small and easy to use Arduino library for using push buttons at INT0/pin2 and / or any PinChangeInterrupt pin.Functions for long and double press detection are included.Just connect buttons between ground and any pin of your Arduino - that"s itNo call of begin() or polling function like update() required. No blocking debouncing delay.
Arduino library for controlling standard LEDs in an easy way. EasyLed provides simple logical methods like led.on(), led.toggle(), led.flash(), led.isOff() and more.
OpenTherm Library to control Central Heating (CH), HVAC (Heating, Ventilation, Air Conditioning) or Solar systems by creating a thermostat using Arduino IDE and ESP32 / ESP8266 hardware.
This library providing the possibility to call a function at specific ESP32 Control module.This library support all version of ESP32 Control module,ERS ,E1.0
This library providing the possibility to call a function at specific ESP32 Control module.This library support all version of ESP32 Control module,ERS ,E1.0
A library for driving self-timed digital RGB/RGBW LEDs (WS2812, SK6812, NeoPixel, WS2813, etc.) using the Espressif ESP32 microcontroller"s RMT output peripheral.
ESP32LitePack, M5Lite, A lightweight compatibility library. Support Devices:M5StickC, M5StickC Plus, M5Stack BASIC, M5Stack GRAY, M5Stack FIRE, M5Stack Core2, M5Stack ATOM Lite, M5Stack ATOM Matrix, M5Stack ATOM ECHO
Simple library for sending and recieving booleans, bytes, integers, and float variables over UDP. The esp32 can be connected to a wifi network or create its own hotspot.
This library enables you to use Interrupt from Hardware Timers on an ESP32, ESP32_S2, ESP32_S3 or ESP32_C3-based board to create and output PWM to pins.
Simple WebServer library for AVR, Teensy, SAM DUE, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, nRF52, SIPEED_MAIX_DUINO and RP2040-based (RASPBERRY_PI_PICO) boards using ESP8266/ESP32 AT-command shields with functions similar to those of ESP8266/ESP32 WebServer libraries
An ESP8266/ESP32-AT library for Arduino providing an easy-to-use way to control ESP8266-AT/ESP32-AT WiFi shields using AT-commands. For AVR, Teensy, SAM DUE, SAMD21, SAMD51, STM32, nRF52, SIPEED_MAIX_DUINO and RP2040-based (Nano_RP2040_Connect, RASPBERRY_PI_PICO, etc.) boards using ESP8266/ESP32 AT-command shields.
Library to detect a multi reset within a predetermined time, using RTC Memory, EEPROM, LittleFS or SPIFFS for ESP8266 and ESP32, ESP32_C3, ESP32_S2, ESP32_S3
Library to configure MultiWiFi/Credentials at runtime for ESP32 (including ESP32-S2, ESP32-S3 and ESP32-C3) and ESP8266 boards. With enhanced GUI and fallback web ConfigPortal.
Simple Ethernet WebServer, HTTP Client and WebSocket Client library for AVR, AVR Dx, Portenta_H7, Teensy, SAM DUE, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, nRF52 and RASPBERRY_PI_PICO boards using Ethernet shields W5100, W5200, W5500, ENC28J60 or Teensy 4.1 NativeEthernet/QNEthernet
Simple TLS/SSL Ethernet WebServer, HTTP Client and WebSocket Client library for for AVR, Portenta_H7, Teensy, SAM DUE, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, nRF52 and RASPBERRY_PI_PICO boards using Ethernet shields W5100, W5200, W5500, ENC28J60 or Teensy 4.1 NativeEthernet/QNEthernet. It now supports Ethernet TLS/SSL Client.
Simple TLS/SSL Ethernet WebServer, HTTP Client and WebSocket Client library for STM32F/L/H/G/WB/MP1 boards running WebServer using built-in Ethernet LAN8742A, Ethernet LAN8720, W5x00 or ENC28J60 shields. It now supports Ethernet TLS/SSL Client.
EthernetWebServer_STM32 is a simple Ethernet WebServer, HTTP Client and WebSocket Client library for STM32F/L/H/G/WB/MP1 boards using built-in Ethernet LAN8742A, LAN8720, Ethernet W5x00 or ENC28J60 shields
Simple Ethernet library for AVR, AVR Dx, Portenta_H7, Teensy, SAM DUE, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, nRF52 and RASPBERRY_PI_PICO boards using Ethernet shields W5100, W5200, W5500, W5100S
ezTime - pronounced "Easy Time" - is a very easy to use Arduino time and date library that provides NTP network time lookups, extensive timezone support, formatted time and date strings, user events, millisecond precision and more.
ESP32 VGA, PAL/NTSC Color Composite, SSD1306 ILI9341 ST7789 Controller, PS/2 Mouse and Keyboard Controller, Graphics Library, Graphical User Interface (GUI), Sound Engine, Game Engine and ANSI/VT Terminal
A library for implementing fixed-point in-place Fast Fourier Transform on Arduino. It sacrifices precision and instead it is way faster than floating-point implementations.
The FlashStorage_RTL8720 library aims to provide a convenient way to store and retrieve user data using the non-volatile flash memory of Realtek RTL8720DN, RTL8722DM, RTM8722CSM, etc.
The FlashStorage library aims to provide a convenient way to store and retrieve user"s data using the non-volatile flash memory of SAMD21/SAMD51. It"s using the buffered read and write to minimize the access to Flash. It now supports writing and reading the whole object, not just byte-and-byte.
The FlashStorage_STM32 library aims to provide a convenient way to store and retrieve user data using the non-volatile flash memory of STM32F/L/H/G/WB/MP1. It is using the buffered read and write to minimize the access to Flash. It now supports writing and reading the whole object, not just byte-and-byte. New STM32 core v2.0.0+ is also supported now.
The FlashStorage_STM32F1 library aims to provide a convenient way to store and retrieve user"s data using the non-volatile flash memory of STM32F1/F3. It"s using the buffered read and write to minimize the access to Flash. It now supports writing and reading the whole object, not just byte-and-byte. New STM32 core v2.0.0+ is supported now.
The GCodeParser library is a lightweight G-Code parser for the Arduino using only a single character buffer to first collect a line of code (also called a "block") from a serial or file input and then parse that line into a code block and comments.
This library is for the Great Lunar Expedition for Everyone mission, which will provide accessible opportunities for students to directly participate in Lunar exploration.
Arduino library for the Flysky/Turnigy RC iBUS protocol - servo (receive) and sensors/telemetry (send) using hardware UART (AVR, ESP32 and STM32 architectures)
An Arduino library to control the Iowa Scaled Engineering I2C-IRSENSE ( https://www.iascaled.com/store/I2C-IRSENSE ) reflective infrared proximity sensor.
This library provides an interface to control a stepper motor through Infineon’s Stepper Motor Control Shield "KIT_XMC1300_IFX9201" with h-bridge IFX9201 and XMC1300 microcontroller.
This library uses polymorphism and defines common interfaces for reading encoders and controlling motors allowing for easy open or closed loop motor control.
Convinient way to map a push-button to a keyboard key. This library utilize the ability of 32u4-based Arduino-compatible boards to emulate USB-keyboard.
This library allows you to easily create light animations from an Arduino board or an ATtiny microcontroller (traffic lights, chaser, shopkeeper sign, etc.)
Light-weight implementation of LinkedList library, that is now stripped down to bare minimum, making it appropriate for use in memory-critical environments.
LiquidCrystal fork for displays based on HD44780. Uses the IOAbstraction library to work with i2c, PCF8574, MCP23017, Shift registers, Arduino pins and ports interchangably.
LittleFS for esp32 based on esp_littlefs IDF component. Use esp32 core-provided LITTLEFS library instead of this one when available in future core releases.
An all in one, easy to use, powerful, self contained button library so you can focus on your other code! Includes Debouncing, Avoids Delays, multiclicks and allows you to decide what happens at the beginning and end of Short, Long, Hold and Shifts so you can create a intuative and responsive experience.
This library enables you to use ISR-based PWM channels on RP2040-based boards, such as Nano_RP2040_Connect, RASPBERRY_PI_PICO, with Arduino-mbed (mbed_nano or mbed_rp2040) core to create and output PWM any GPIO pin.
Arduino library for MCP4728 quad channel, 12-bit voltage output Digital-to-Analog Convertor with non-volatile memory and I2C compatible Serial Interface
mDNS Library for ESP32, ESP8266, nRF52, SAMD21, SAMD51, SAM DUE, STM32F/L/H/G/WB/MP1, Portenta_H7, AVR Mega, RP2040-based boards, etc. using Ethernet W5x00, ESP WiFi, WiFiNINA or ESP8266-AT shields
This library enables you to use Hardware-based PWM channels on megaAVR-based boards, such as UNO WiFi Rev2, AVR_Nano_Every, etc., to create and output PWM.
This library enables you to use ISR-based PWM channels on an Arduino megaAVR board, such as UNO WiFi Rev2, AVR_Nano_Every, etc., to create and output PWM any GPIO pin.
A library package for ARDUINO acting as ModBus slave communicating through UART-to-RS485 converter. Originally written by Geabong github user. Improved by Łukasz Ślusarczyk.
Library to detect a multi reset, using EEPROM, DueFlashStorage, FlashStorage_SAMD, FlashStorage_RTL8720, FlashStorage_STM32 or LittleFS/InternalFS. For AVR, Teensy, SAM DUE, SAMD, STM32F/L/H/G/WB/MP1, nRF52, RP2040-based Nano_RP2040_Connect, RASPBERRY_PI_PICO, RTL8720DN, MBED nRF52840-based Nano_33_BLE, Portenta_H7, etc. boards. Now using efficient FlashStorage_STM32 library and supporting new RP2040-based Nano_RP2040_Connect, RASPBERRY_PI_PICO and STM32 core v2.0.0
Connects to MySQL or MariaDB using ESP8266/ESP32, WT32_ETH01 (ESP32 + LAN8720A), nRF52, SAMD21/SAMD51, STM32F/L/H/G/WB/MP1, Teensy, SAM DUE, Mega, RP2040-based boards, Portenta_H7, etc. with W5x00, ENC28J60 Ethernet, Teensy 4.1 NativeEthernet/QNEthernet, WiFiNINA modules/shields or Portenta_H7 WiFi/Ethernet. W5x00 can use Ethernet_Generic library. ENC28J60 can use either EthernetENC or UIPEthernet Library.
This library enables you to use ISR-based PWM channels on an nRF52-based board using Arduino-mbed mbed_nano core such as Nano-33-BLE to create and output PWM any GPIO pin.
This library enables you to use ISR-based PWM channels on an nRF52-based board using Adafruit_nRF52_Arduino core such as Itsy-Bitsy nRF52840 to create and output PWM any GPIO pin.
An Arduino library for the Nano 33 BLE Sense that leverages Mbed OS to automatically place sensor measurements in a ring buffer that can be integrated into programs in a simple manner.
The library for OpenBCI Ganglion board. Please use the DefaultGanglion.ino file in the examples to use the code that ships with every Ganglion board. Look through the skimmed down versions of the main firmware in the other examples.
A library written in C++ to encode/decode PDU data for GSM modems. Both GSM 7-bit and UCS-2 16 bit alphabets are supported which mean, in practice, you can send/receive SMS in any language (including emojis).
Simple Async HTTP Request library, supporting GET, POST, PUT, PATCH, DELETE and HEAD, on top of Portenta_H7_AsyncTCP library for Portenta_7, using Vision-shield thernet or Murata WiFi.
his library enables you to use Hardware-based PWM channels on RP2040-based boards, such as Nano_RP2040_Connect, RASPBERRY_PI_PICO, with either Arduino-mbed (mbed_nano or mbed_rp2040) or arduino-pico core to create and output PWM to any GPIO pin.
This library enables you to use SPI SD cards with RP2040-based boards such as Nano_RP2040_Connect, RASPBERRY_PI_PICO using either RP2040 Arduino-mbed or arduino-pico core.
This library enables you to use ISR-based PWM channels on RP2040-based boards, such as ADAFRUIT_FEATHER_RP2040, RASPBERRY_PI_PICO, etc., with arduino-pico core to create and output PWM any GPIO pin.
This library enables you to use Interrupt from Hardware Timers on SAMD-based boards such as SAMD21 Nano-33-IoT, Adafruit SAMD51 Itsy-Bitsy M4, SeeedStudio XIAO, Sparkfun SAMD51_MICROMOD, etc.
The most powerful and popular available library for using 7/14/16 segment display, supporting daisy chaining so you can control mass amounts from your Arduino!
Enables smooth servo movement. Linear as well as other (Cubic, Circular, Bounce, etc.) ease movements for servos are provided. The Arduino Servo library or PCA9685 servo expanders are supported.
Use the low-power high-resolution ICM 20948 9 DoF IMU from Invensense with I2C or SPI. Version 1.2 of the library includes support for the InvenSense Digital Motion Processor (DMP™).
Enables reading and writing on SD card using SD card slot connected to the SDIO/SDMMC-hardware of the STM32 MCU. For slots connected to SPI-hardware use the standard Arduino SD library.
Menu library for Arduino with IoT capabilities that supports many input and display devices with a designer UI, code generator, CLI, and strong remote control capability.
This library enables you to use Hardware-based PWM channels on Teensy boards, such as Teensy 2.x, Teensy LC, Teensy 3.x, Teensy 4.x, Teensy MicroMod, etc., to create and output PWM to pins. Using the same functions as other FastPWM libraries to enable you to port PWM code easily between platforms.
This library enables you to use ISR-based PWM channels on Teensy boards, such as Teensy 2.x, Teensy LC, Teensy 3.x, Teensy 4.x, Teensy MicroMod, etc., to create and output PWM any GPIO pin.
A library for creating Tickers which can call repeating functions. Replaces delay() with non-blocking functions. Recommanded for ESP and Arduino boards with mbed behind.
This library enables you to use Interrupt from Hardware Timers on an Arduino, Adafruit or Sparkfun AVR board, such as Nano, UNO, Mega, Leonardo, YUN, Teensy, Feather_32u4, Feather_328P, Pro Micro, etc.
This library enables you to use Interrupt from Hardware Timers on supported Arduino boards such as AVR, Mega-AVR, ESP8266, ESP32, SAMD, SAM DUE, nRF52, STM32F/L/H/G/WB/MP1, Teensy, Nano-33-BLE, RP2040-based boards, etc.
A simple library to display numbers, text and animation on 4 and 6 digit 7-segment TM1637 based display modules. Offers non-blocking animations and scrolling!
I2C EEPROM library. Split from uRTCLib https://github.com/Naguissa/uRTCLib - This library controls any I2C EEPROM, independent ones or incorporated on DS1307 or DS3231 RTCs.
Really tiny library to basic RTC functionality on Arduino. DS1307, DS3231 and DS3232 RTCs are supported. See https://github.com/Naguissa/uEEPROMLib for EEPROM support. Temperature, Alarms, SQWG, Power lost and RAM support.
Monochrome LCD, OLED and eInk Library. Display controller: SSD1305, SSD1306, SSD1309, SSD1312, SSD1316, SSD1318, SSD1320, SSD1322, SSD1325, SSD1327, SSD1329, SSD1606, SSD1607, SH1106, SH1107, SH1108, SH1122, T6963, RA8835, LC7981, PCD8544, PCF8812, HX1230, UC1601, UC1604, UC1608, UC1610, UC1611, UC1617, UC1638, UC1701, ST7511, ST7528, ST7565, ST7567, ST7571, ST7586, ST7588, ST75160, ST75256, ST75320, NT7534, ST7920, IST3020, IST3088, IST7920, LD7032, KS0108, KS0713, HD44102, T7932, SED1520, SBN1661, IL3820, MAX7219, GP1287, GP1247, GU800. Interfaces: I2C, SPI, Parallel.
True color TFT and OLED library, Up to 18 Bit color depth. Supported display controller: ST7735, ILI9163, ILI9325, ILI9341, ILI9486,LD50T6160, PCF8833, SEPS225, SSD1331, SSD1351, HX8352C.
A rotary encoder library that allows the callback of up to 9 different functions representing the same number of different encoder events. These different functions can be associated with events like press rotate and long press among many others.
RFC6455-based WebSockets Server and Client for Arduino boards, such as nRF52, Portenta_H7, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, Teensy, SAM DUE, RP2040-based boards, besides ESP8266/ESP32 (ESP32, ESP32_S2, ESP32_S3 and ESP32_C3) and WT32_ETH01. Ethernet shields W5100, W5200, W5500, ENC28J60, Teensy 4.1 NativeEthernet/QNEthernet or Portenta_H7 WiFi/Ethernet. Supporting websocket only mode for Socket.IO. Ethernet_Generic library is used as default for W5x00. Now supporting RP2040W
Enables network connection (local and Internet) and WiFiStorage for SAM DUE, SAMD21, SAMD51, Teensy, AVR (328P, 32u4, 16u4, etc.), Mega, STM32F/L/H/G/WB/MP1, nRF52, NINA_B302_ublox, NINA_B112_ublox, RP2040-based boards, etc. in addition to Arduino MKR WiFi 1010, Arduino MKR VIDOR 4000, Arduino UNO WiFi Rev.2, Nano 33 IoT, Nano RP2040 Connect. Now with fix of severe limitation to permit sending much larger data than total 4K and using new WiFi101_Generic library
Simple WiFiWebServer, HTTP Client and WebSocket Client library for AVR Mega, megaAVR, Portenta_H7, Teensy, SAM DUE, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, nRF52, RP2040-based (Nano-RP2040-Connect, RASPBERRY_PI_PICO, RASPBERRY_PI_PICO_W, ESP32/ESP8266, etc.) boards using WiFi, such as WiFiNINA, WiFi101, CYW43439, U-Blox W101, W102, ESP8266/ESP32-AT modules/shields, with functions similar to those of ESP8266/ESP32 WebServer libraries.
Simple WiFiWebServer, HTTP Client, MQTT and WebSocket Client library for Realtek RTL8720DN, RTL8722DM, RTM8722CSM boards using WiFi. Supporting WiFi at 2.4GHz and 5GHz
Seems interesting UGUI. However for example for the controller ST7586S have any examples of LCD functions to associate with UGUI? If you have made and canst send to me …
Thanks for the extensive library. I see you already used a ST7586S in one of your videos demonstrations. I have a similar display but it draws 2 pixel per byte and not 3 pixel as the datasheet . Can you help me with this ? below is the initialization code i used
I find this library somewhat intriging. Do you have any working Arduino examples, and if it is not asking too much – something for a SSD1322 based display?
AchimAs we"re already talking Microchip, what would be necessary to get a Pic32MZ2048ECH144 and HX8238-A based display to use µGUI?First of all you have to connect the TFT DPI Interface to the PIC. Then initialize the internal DPI Interface of the PIC. After that you only have to write a Pset-function to use uGUI. Hope this helps! By the way: which hardware platform do you use? BR Achim
At first i would like to congratulate you for this great library/project. I tested it in the STM32F429 Discovery and liked a lot. So, I would ask if you are interested in creating an adaptation layer for an event manager based on RTOS services. I beleive that through RTOS semaphores, queues and timers it is possible to better manage the CPU resources. I started myself a GUI event handler, as you can see here:
First, I want to thank you for this library. I"ve used 0.2 version successfully with an OLED with SSD1322 controller on PIC32. Are the window and button functions work on OLED? I haven"t had success with the example code.Hi Andre,
Starting with your example of uGFX 3.0 on Stm32f429-Discovery (embd LCD removed) i have changed only screen dimensions to the ltdc.h in order to make it all work and so on it"s a really good result.
Can I use ugui with STM32F4-Discovery + ssd1963 fsmc module? I have ssd1963 library. I can run the screen but do not know how I could combine seamlessly with ugui. Can you help with this?Hi Mehmet,
I was wondering if I can use this library to get SSD1322 work with xmegaA3AU ? Can you help with some sample code, that would be great! Looking forward to your reply.
We are using Tiny6410 stamp module. It is restricted to using only friendlyarm display. We need to interface resistive touchscreen display of 5 inch & 7 inch of our choice. Please give steps how we can use your library.
i really wonder about your gui. it is very simple to use. i want to draw a image on my lcd. i also done by using your library with given example image. now i want to convert image to header file. can you suggest any software to do that.Hi Arun, I think there is a conversion utility on the ST microelectronics page. I can’t remember the name, but I’m sure there is one. BR Achim
I tried, but I can not force to work my 240×128 display with T6963C controller . Could you please send me the code to this: 240×128 LCD | Driver: T6963C | Interface: 8080
Super nice library. It"s very well coded and easy to use. I"ve began developing on it a couple of days ago and will probably go with your library for the rest of my project.
I"ve set it up on an STM32L100RCT6 with an 128×64 glcd, and everything works like a charm, except the UG_DrawLine() function, which seems to always draw a falling line, no matter how the arguments are arranged