tft lcd esp32 manufacturer

The Makerfabs 3.5 inch TFT Touch is great but the refresh rate is always a problem, some customers feedback they want a higher speed display. But as the ESP32 has limited pins, we do not have a good way for that, until we find the ESP32-S2, which do not have BLE(compares to ESP32), but more pins, right for such a parallel TFT.

This 3.5" 320x480 TFT LCD driver is ILI9488, it uses 16bits parallel line for communication with ESP32-S2, the main clock could be up to 20MHz, making the display smooth enough for video displays. With this display, you can freely to create more IoT display projects, check the demo project in the video:

Besides, there 2 onboard Mabee pins(A I2c and an IOs) with the breakout connectors, to connect the ESP32-S2 display with sensors/ actuators, suitable for IoT applications.

tft lcd esp32 manufacturer

A beautiful 3.5” touchscreen display, based on ESP32-WROVER, with a built-in 2M pixel OV2640 camera, which makes it an ever perfect platform for your ESP32 projects.

Makerfabs ESP32 3.5” Touch with camera is absolutely open for makers, and besides, Makerfabs provide plenty of Demos to help the users on the usage. Have a try at this fantastic display in your next ESP32 project!~

tft lcd esp32 manufacturer

Makerfabs has launched a 3.5-inch TFT touchscreen display with built-in WiFi and Bluetooth connectivity through an ESP32-S3 dual-core Tensilica LX7 microcontroller clocked at 240 MHz with vector instructions for AI acceleration.

This display offers a 320×480 resolution through the ILI9488 LCD driver, uses a 16-bit parallel interface for communication with ESP32-S3 clocked at up to 20 Mhz making it suitable for smooth graphics user interface, and the company also claims it is smooth enough for video displays, but more on that later.

Espressif Systems ESP32-S3 dual-core Tensilica LX7 @ up to 240 MHz with vector instructions for AI acceleration, 512KB RAM, 2.4 GHz WiFi 4 and Bluetooth 5.0 LE with support for long-range, up to 2Mbps data rate, mesh networking

Display – 3.5-inch color TFT LCD with 480×320 resolution, 16-bit parallel interface (ILI94988 driver), and capacitive touch panel (FT6263); backlight controller

The display can be programmed with the Arduino IDE. Sample code using the LovyanGFX library and EAGLE schematics and PCB layout can be found on Github. Makerfabs also designed an ESP32-S2 model that lacks Bluetooth connectivity, and the ESP32-S3 touchscreen display comes with more RAM and eMMC flash.

I was tipped about this display by Jon, a regular reader and commenter on CNX Software, who bought it, and said it works as advertised. The ESP32-S3 can really drive a high-speed display with a parallel LCD interface. However, it can’t stream video because there is no H.264 decoder, but it is great if you want a responsive GUI.

Makerfabs ESP32-S3 16-bit parallel capacitive touchscreen display is sold for $39.80 plus shipping, and the ESP32-S2 model is the same price with a resistive display, and there’s a capacitive display option for $4 more. As a side note, we previously wrote about another, smaller ESP32-S3 display, namely the LilyGO T-Display-S3, with a 1.9-inch display connected over a slower 8-bit parallel interface, and no touchscreen function that sells for around $17.

tft lcd esp32 manufacturer

//#define ILI9488_DRIVER // WARNING: Do not connect ILI9488 display SDO to MISO if other devices share the SPI bus (TFT SDO does NOT tristate when CS is high)

tft lcd esp32 manufacturer

"Upper layer" main development board contains ESP32-PICO-D4 SiP, battery connector & charger circuit with LiPo charge status LEDs, Reset & pull-up IO0 buttons, and a green LED on GPIO4.

Clone of the SparkFun ESP32 Thing board. Compact ESP32 based development board with battery connector, and the typical development board component accoutrements.

The ESP32-LyraTD-MSC Audio-Mic HDK (hardware development kit) combines the ESP32-LyraTD-MSC ("audio-mic development board") with a secondary "top" board.

The ESP32 touch sensor development kit, ESP32-Sense Kit, is used for evaluating and developing ESP32 touch sensor system. ESP32-Sense Kit consists of one motherboard and multiple daughterboards. The motherboard contains a display unit, a main control unit and a debug unit. The daughterboards have touch electrodes in different combinations or shapes, such as linear slider, wheel slider, matrix buttons and spring buttons, depending on the application scenarios. Users can design and add their own daughterboards for special usage cases.

ESP32 development board with ePaper display, TI PCM5102A DAC, ICS43434 MEMS Microphone, CP2102N USB-to-UART bridge, microSD card slot, and LiPo charger.

tft lcd esp32 manufacturer

ESP32-DevKitM-1 is a ESP32-MINI-1-based development board produced by Espressif. Most of the I/O pins are broken out to the pin headers on both sides for easy interfacing. Developers can either connect peripherals with jumper wires or mount ESP32-DevKitM-1 on a breadboard.

The ESP-WROVER-KIT comes with an ESP32-WROVER-E module by default. This board features support for an LCD and MicroSD card. The I/O pins have been broken out from the ESP32-WROVER-E for easy extension. The board carries an advanced multi-protocol USB bridge (the FTDI FT2232HL), enabling developers to use JTAG directly to debug the ESP32 module through the USB interface. The development board makes secondary development easy and cost-effective.

ESP32-PICO-KIT is Espressif"s smallest development board, as it fits into a mini breadboard. It is fully functional with the minimum number of discrete components, while it has all the ESP32 pins exposed.

ESP32-PICO-V3-ZERO-DevKit is a development board based on ESP32-PICO-V3-ZERO (ACK) module. Its pin layout is compatible with that of Arduino Zero development board, therefore, this ESP32-PICO-V3-ZERO-DevKit can directly plug in Arduino Zero board, or connect with other host boards and peripherals via jumper.

ESP32-PICO-DevKitM-2 is a ESP32-PICO-MINI-02-based development board produced by Espressif. Most of the I/O pins are broken out to the pin headers on both sides for easy interfacing. Developers can either connect peripherals with jumper wires or mount ESP32-DevKitM-1 on a breadboard.

ESP-EYE is a development board for image recognition and audio processing, which can be used in various AIoT applications. It features an ESP32 chip, a 2-Megapixel camera and a microphone. ESP-EYE offers plenty of storage, with an 8 MB PSRAM and a 4 MB flash. It also supports image transmission via Wi-Fi and debugging through a Micro-USB port.

The ESP32-LyraT development board is designed for the speech and voice recognition market. It integrates the ESP32-WROVER-E module, which includes a dual-core processor and 4.5 MB of operating memory. With this development board, only few peripheral devices are required for implementing a highly-integrated audio solution.

ESP32-LyraT-Mini is a lightweight audio development board based on ESP32-WROVER-E, which implements AEC, AGC, NS WWE (wake word engine) and other audio signal processing technologies.

ESP32-LyraTD-MSC, one of Espressif’s Audio Development Boards, is an Acoustic Echo Cancelation (AEC) solution supporting voice recognition, near-field and far-field voice wake-up. Audio files in the format of AAC, FLAC, OPUS and OGG can be decoded and output without quality loss. It also supports connection to Baidu"s DuerOS and Amazon"s Alexa Voice Service (AVS).

ESP32-LyraTD-SYNA is one of Espressif’s Audio Development Board based on ESP32 MCU and Synaptics DSP. It is an Acoustic Echo Cancelation (AEC) solution, supporting voice recognition and voice wake-up. It also supports connection to Amazon’s AVS (Alexa Voice Service), Google"s Dialogflow and Google"s GVA (Google Voice Assistant).

ESP32-LyraTD-DSPG is based on ESP32-WROVER-B, a BT/Wi-Fi combo module, and a digital signal processor (DSP) that features a three-microphone array for noise reduction, echo cancellation, beamforming and wake-word detection. ESP32-LyraTD-DSPG is integrated with peripheral devices and consists of two development boards. The sub board mainly consists of the microphone array, function keys and LEDs. The main board is integrated with power management, Wi-Fi and audio modules like dsp, codec and power amplifier. The two boards can be connected with FPC.

ESP32-Vaquita-DSPG is Espressif’s new Alexa built-in solution powered by ESP32 and DSP Group’s DBMD5P audio SoC. With a 2-Mic array which allows for a 360-degree pick-up, the solution provides a superior far-field voice recognition performance. The new ESP32-Vaquita-DSPG development kit is a turnkey solution for easily creating Alexa built-in connected devices that provide out-of-the-box voice enablement and AWS-IoT cloud connectivity.

ESP32-Korvo is an ESP32-based audio development board with microphone array, together with Espressif"s speech recognition SDK ESP-Skainet, ESP32-Korvo is suitable for far-field speech recognition applications with low power consumption. ESP32-Korvo is composed of two boards connected by an FPC cable: the main board contains ESP32-WROVER-E module, power port, micro SD card slot, earphone and speaker connectors; the sub board contains microphone array, function buttons and LEDs.

ESP32-Korvo-DU1906 is an Espressif audio development board with an ESP32-DU1906 module as its core. This board is designed not only to provide advanced end-to-end audio solutions with highly efficient integrated AI capabilities as well as a Cloud + End integrated device-level AIoT platform, significantly lowering the barrier to entry for IoT devices to AI capability.

ESP32-LCD-Kit is an HMI (Human Machine Interface) development board based on ESP32-DevKitC (need to purchase if you didn’t have one). ESP32-LCDKit is integrated with such peripherals as SD-Card, DAC-Audio, and can be connected an external display. The board is mainly used for HMI-related development and evaluation. Development board reserved screen interface type: SPI serial interface, 8-bit parallel interface, 16-bit parallel interface.

ESP32-Ethernet-Kit is an ESP32-based development board produced by Espressif. It consists of two development boards, the Ethernet board A and the PoE board B, The Ethernet board contains Bluetooth / Wi-Fi dual-mode ESP32-WROVER-E module and IP101GRI, a Single Port 10/100 Fast Ethernet Transceiver (PHY). The PoE board (B) provides power over Ethernet functionality. The A board can work independently, without the board B installed.

tft lcd esp32 manufacturer

ESP-LCD is a multimedia smart-control solution built around ESP32-S2-HMI-DevKit-1 and an LCD capacitive touch screen. With ESP-LCD, users can easily realize a hardware network, and achieve remote or smart-touch control, data visualization, music playback, recording, etc. ESP-LCD is suitable for several smart-control scenarios involving smart clocks, air-quality detectors, smart audio control, and various other applications based on touch screens.

ESP32-S2-HMI-DevKit-1 is a development board based on the ESP32-S2-WROVER module. It has a 4.3-inch TFT-LCD, and a capacitive touch panel with a resolution of up to 480×800 and an initial start-up time that is less than 200 ms. ESP32-S2-HMI-DevKit-1 has various components, including a light sensor, a temperature and humidity sensor, a MEMS sensor, a micro-SD card connector, a TWAI® interface (compatible with CAN 2.0) etc. On top of that, it also supports functions, such as LVGL GUI development, music playback, and recording.

tft lcd esp32 manufacturer

STONE Tech is a manufacturer of HMI display modules (Intelligent TFT LCD). We provide LCD modules/LCD Display, Graphic LCM, smart Display LCD, TFT LCM, Custom LCD Module Display…

tft lcd esp32 manufacturer

We"ve got a new machine here at Adafruit, it can uncover your deepest desires. Don"t believe me? I"ll turn it on right now to prove it to you! What, you want your very own soft serve ice cream machine? OK well, that"s not something we can provide. But we can provide your second-deepest desire: an ESP32-S3 Feather board with a built in IPS TFT color display. It"s got all the delicious creamy goodness features of a Feather main board, the comforting warmth of an ESP32-S3 WiFi+BLE microcontroller, and the crispness of a 240x135 pixel color TFT display. All that and it will even plug in nicely into a breadboard, terminal block wing, or Feather Doubler or even just stack on top of another wing.

The ESP32-S3 is a highly-integrated, low-power, 2.4 GHz Wi-Fi/BLE System-on-Chip (SoC) solution that has built-in native USB as well as some other interesting new technologies like Time of Flight distance measurements and AI acceleration. With its state-of-the-art power and RF performance, this SoC is an ideal choice for a wide variety of application scenarios relating to the Internet of Things (IoT), wearable electronics, and smart homes.

The Feather ESP32-S3 has a dual-core 240 MHz chip, so it is comparable to ESP32"s dual-core. However, there is no Bluetooth Classic support, only Bluetooth LE. This chip is a great step up from the earlier ESP32-S2! This ESP32-S3 mini-module we are using on the Feather comes with 4 MB flash and 2 MB PSRAM, as well as lots of 512KB of SRAM so it"s perfect for use with CircuitPython support or any time massive buffers are needed: for fast memory access use SRAM, for slower-but-roomier access use PSRAM. It"s also great for use in ESP-IDF or with Arduino support.

The color TFT is connected to the SPI pins and uses additional pins for control that are not exposed to the breakout pads. It"s the same display as you see here, with 240x135 pixels and is IPS so you get bright color at any angle. The backlight is also connected to a separate pin so you can PWM the backlight up and down as desired.

For low power usages, the Feather has a second low-dropout 3.3V regulator. The regulator is controlled with a GPIO pin on the enable line and can shut off power to the Stemma QT port and TFT. There is also a separate power pin for the NeoPixel that can be used to disable it for even lower quiescent power. With everything off and in deep sleep mode, the TFT feather uses about 100uA of current.

tft lcd esp32 manufacturer

My previous instructables, ESP32 Photo Clock is am example, it download a current minute photo from the Internet, decode the JPEG photo and display it.

ESP32 have changed the game! It have much faster processing power (16 MHz vs 240 MHz dual core), much more RAM (2 KB vs over 200 KB) and much more flash (32 KB vs 4 MB), so it is capable to utilize more color and higher resolution image for displaying. At the same time it is capable to do some RAM hungry process such as Animated GIF, JPEG or PNG file decoding, it is a very important feature for displaying information gathered from the internet.

There are various color display for hobby electronics: LCD, IPS LCD, OLED with different resolutions and different driver chips. LCD can have higher image density but OLED have better viewable angle, IPS LCD can have both. OLED have more power efficient for each light up pixel but may have burn-in problems. Color OLED operate in 14 V, it means you need a dedicate step-up circuit, but it is not a problem if you simply use with a break-out board. LCD in most case can direct operate in 3.3 V, the same operating voltage as ESP32, so you can consider not use break out board to make a slimmer product.

Software support on the other side also influence your selection. You can develop ESP32 program with Arduino IDE or direct use ESP-IDF. But since ESP-IDF did not have too much display library and not much display hardware supported, so I will concentrate on Arduino display libraries only.

For the beginner, I think buying adafruit, or similar supportive vendor, hardware and using its Arduino library can have good seamless experience (though I have no budget to try it all). TFT_eSPI library have better performance but configuration require make changes in the library folder. Ucglib and UTFT-ESP run a little bit slow but it support many hardware and it is a popular library, you can find many Arduino projects using it. LovyanGFX library start appear at 2019, it support many dev device such as M5Stack, M5StickC, TTGO T-Watch, ODROID-GO, ESP-WROVER-KIT, WioTerminal and more. I am also writing a new library called Arduino_GFX since 2019.

OLED have a big advantage, the pixel only draw power if it lights up. On the other hand, LCD back light always draw full power even you are displaying a black screen. So OLED can help save some power for the project powered by a battery.

This is a 1.5" 128 x 128 color OLED, this form factor is very fit for smart-watch-like wearable project. The most barrier of select this should be the price tag is around 4 times of a normal LCD.

ST7735 is a very popular LCD driver model for the resolution 128x128 and 128x160. It may cause by its popularity, there are many manufacturer produce compatible product. However, they are not fully compatible.

Thanks for the popularity of wearable gadget, I can find more small size IPS LCD in the market this year(2018). The above picture is an 0.96" 80x160 IPS color LCD using ST7735 driver chip. As you can see in the 3rd picture, you can treat it as a 128x160 color display in code but only the middle part is actually displaying. The 4th picture is the display without breakout board, it is thin, tiny and very fit for a wearable project!

It is a 2.2" 176x220 color LCD. It is relatively fewer projects using this chips and resolution. It may caused by the success of its chip family brother, ILI9341 (0.2" larger in size but have near double resolution).

I think ILI9341 is the most popular LCD driver chip in the hobby electronics market. In most case it is 240x320 resolution and have many screen size from 1.7" to 3.5". Some breakout board also built-in touch screen feature.

ST7789 also a common driver chip in ESP32 community. One of the reason is ESP32 official development kit using it. As same as ILI9341, ST7789 also can drive 240x320 resolution.

This also the highest pixel density color display in my drawer. As same as normal LCD, it can direct operate in 3.3 V, so it is very good for making slim wearable device.

The display speed is one of the most important thing we consider to select which library. I have chosen TFT_eSPI PDQ test for this comparison. I have made some effort to rewrite the PDQ test that can run in 4 libraries. All test will run with the same 2.8" ILI9341 LCD.

As I found TFT_eSPI is the most potential display library for ESP32 in this instructables, I have paid some effort to add support for all my display in hand. The newly added display support marked letter M in red at the above picture, here is my enhanced version:

Adafruit sell various display module in hobby electronics market and they also have very good support in software level. Their display libraries all built on a parent class called Adafruit_GFX, so I call it Adafruit GFX Family. This library generally support most Arduino hardware (also ESP32).

This library method signature is very similar to Adafruit GFX, but it is tailor-made for ESP8266 or ESP32. I think the source code is optimised for ESP32, so the PDQ result is much faster than other libraries.

Note: The most difficult part using this library is you are required to configure this library before you can use it. The configuration file is located at the library folder, it should be "Arduino/libraries/TFT_eSPI/User_setup.h" under you own documents folder. It have many comments help you to do that, please follow the comments step by step to finish the configuration. Here is my User_setup.h for ILI9341:

#define LOAD_GLCD // Font 1. Original Adafruit 8 pixel font needs ~1820 bytes in FLASH
#define LOAD_FONT2 // Font 2. Small 16 pixel high font, needs ~3534 bytes in FLASH, 96 characters

ESP32 + ILI9341 can run at SPI speed 40 MHz, it require some code change at library folder. The above pictures are the fine tuned result. Here are the code change summary:

ST7735 and ILI9341 are the most popular display, this 2 are better option for the beginner. You may notice LCD have a big weakness, the viewable angle, some color lost outside the viewable angle and the screen become unreadable. If you have enough budget, OLED or IPS LCD have much better viewable angle.

In most case, we study how to use a code library by searching sample on the web. I have tried search four libraries keyword in Github, Adafruit is most popular and UTFT the second.

ILI9341 should be most valuable display for the beginner. Adafruit GFX Library should be most easy to use for the beginner, and since TFT_eSPI have very similar method signature, it is very easy to switch to a faster library later on.

OLED require 14 V to light up the pixel so it is not easy to decouple the breakout board. On the other hand, LCD (also IPS LCD) usually operate in 3.3 V, as same as the ESP32. In most case, there are only the LED control circuit required between LCD and ESP32, i.e. a transistor and few resistors. So it relatively easy to make it.

It is very important to read the data sheet first before you decide not using breakout board. The pins layout, pin pitch size, the sample circuit connection and maximum rating all you can find in data sheet. The maximum voltage is especially important, you should sticky follow the rating or you will blow your LCD. The chip can operate in 3.3 V but LED may be 2.8 - 3.0 V so it require some electronics in the middle, most data sheet have the sample circuit. You may ask your seller send a soft copy of data sheet to you or simply Google it by the model number.

My special hint: I like to soldering a FPC cable with the same pin pitch size as the LCD to help the connection with the MCU. I have used this technique in these instructables:

Hello! Yes, I purchased this display from keyestudio, connected it to esp32 using this library from dfrobot. It is only necessary to consider that the pinout of the display connectors differs from dfrobot and keyestudio.

So, basically I make a reset in the beggining (read datasheet) then next I use only SPI_DAT and SPLI_CLK. If I destroy the sequence touching with an oscilloscope, the LCD stops to understand the sequence DAT/CLK and I have to make another reset.

Those 2 pins must be dedicated to the display, otherwise the display will get confused without the CS pin. One DAT/CLK to LCD and another DAT/CLK to I2C.

Hello! Thank"s for your instruction. I want to use your 8pin ili9486 320x480 spi display with one of your presented libraries and esp32. 1.) Could you please tell me the connections between the display and the esp32 and 2.) which numbers do I have to write into the line utft myglcd (ili9486,?,?,?,?)?