nodemcu esp8266 1.8 tft lcd made in china

ILI9341 is a 262,144-color single-chip SOC driver for a-TFT liquid crystal display with resolution of 240RGBx320 dots, comprising a 720-channel source driver, a 320-channel gate driver, 172,800 bytes GRAM for graphic display data of 240RGBx320 dots, and power supply circuit. ILI9341 supports parallel 8-/9-/16-/18-bit data bus MCU interface, 6-/16-/18-bit data bus RGB interface and 3-/4-line serial peripheral interface (SPI). The moving picture area can be specified in internal GRAM by window address function. The specified window area can be updated selectively, so that moving picture can be displayed simultaneously independent of still picture area.

You can find ILI9341-based TFT displays in various sizes on eBay and Aliexpress. The one I chose for this tutorial is 2.2″ length along the diagonal, 240×320 pixels resolution, supports SPI interface, and can be purchased for less than $10.

Note that we will be using the hardware SPI module of the ESP8266 to drive the TFT LCD. The SPI communication pins are multiplexed with I/O pins D5 (SCK), D6 (MISO), and D7 (MOSI). The chip select (CS) and Data/Command (DC) signal lines are configurable through software.

For ILI9341-based TFT displays, there are some options for choosing the library for your application. The most common one is using Bodmer. We will use this library in this tutorial. So go ahead and download the

The library contains proportional fonts, different sizes can be enabled/disabled at compile time to optimise the use of FLASH memory. The library has been tested with the NodeMCU (ESP8266 based).

The library is based on the Adafruit GFX and Adafruit ILI9341 libraries and the aim is to retain compatibility. Significant additions have been made to the library to boost the speed for ESP8266 processors (it is typically 3 to 10 times faster) and to add new features. The new graphics functions include different size proportional fonts and formatting features. There are a significant number of example sketches to demonstrate the different features.

Configuration of the library font selections, pins used to interface with the TFT and other features is made by editting the User_Setup.h file in the library folder. Fonts and features can easily be disabled by commenting out lines.

Now you are all set to try out tons of really cool built-in examples that come with the library. The following output corresponds to the TFT_Pie_Chart example.

My favorite example is TFT terminal, which implements a simple “Arduino IDE Serial Monitor” like serial receive terminal for monitoring debugging messages from another Arduino or ESP8266 board.

nodemcu esp8266 1.8 tft lcd made in china

Pins D5 (GPIO14) and D7 (GPIO13) are hardware SPI module pins of the ESP8266EX microcontroller respectively for SCK (serial clock) and MOSI (master-out slave-in).

The first library is a driver for the ST7735 TFT display which can be installed from Arduino IDE library manager (Sketch —> Include Library —> Manage Libraries …, in the search box write “st7735” and install the one from Adafruit).

Project hardware circuit should give the same result as the one shown in the following video where Arduino UNO board is used (NodeMCU is much faster than Arduino UNO):

nodemcu esp8266 1.8 tft lcd made in china

The reason I posted was because the project is now at the stage where the LCD display really needs to be added and I intended to get advice before making another purchase. In the meantime I have been working on the project using a 20x4 display.

Thank you for that information. Since I am using an ESP8266, it sounds like I need to look for a board that uses SPI for the display. From what I can tell, it seems that some of the cheap ones from china only use SPI only for the SD card which further confuses things.

The LT7381 board referenced earlier was meant to work over SPI and that is how I tried to use it. I will make sure that whatever I get as its replacement can also be driven via SPI. I expect that the ESP8266 has insufficient pins for parallel?

nodemcu esp8266 1.8 tft lcd made in china

It wasn’t necessary for the ESP8266, installing that into the Arduino IDE was just a case of entering an address into the additional boards manager URLs box under the preferences tab and it all happened.

“The ESP32 is currently being integrated with the Arduino IDE just like it was done for the ESP8266, but not everything is working at the moment (see here).”

I agree with you Stefan, the ESP32 is not as easy as the ESP8266 to integrate with the Arduino IDE, but if you follow this exact tutorial you should be able to prepare your Arduino IDE with the ESP32 boards.

You d’man, unless of course you are a girl, then you d’girl! I have had two of these in my parts box now since they came out, and never could get them running. I have been to dozens of sites with step-by-step instructions and although I can build a computer from scratch, and have done so, on a dare, and I have beat lawayers in court when acting as a paralegal, I could not get the blasted things to work. This one has guided me, and works great. The first unit I tried, both brand new, failed to work at all, and I thought, well just like the rest of the instructions, but just for shits and giggles, I grabbed my second unit, and IT WORKS!!!! Thanks a billion now I can have fun with my ESP32 as well as my ESP8266’s (I have about a dozen doing chores around my house and reporting back) and my Arduinos that are serving several devices I made for our RV to use when on the road, such as my home built GPS, my leveling device since the built in one only works once in awhile, and other little toys that make my wife of 48 years giggle when I press the buttons on my remotes.

\packages\esp8266\tools\xtensa-lx106-elf-gcc\1.20.0-26-gb404fb9-2\xtensa-lx106-elf\include\c++\4.8.2\xtensa-lx106-elf\bits to C:\Documents and Settings

I ran into the same issue and couldn’t resolve for the life of me. Turns out I have been shipped (twice, now) an ESP8266 in an ESP32 packaging. Configuring for the ESP8266 solved my issue, naturally. Throwing this out there in case this same thing happened to others.

Qualquer sketch feito para a plataforma Arduino, é possível usá-lo com o esp32 ou esp8266? Se não, o que deve ser mudado e/ou acrescentado no código para tal? Muito obrigado

Installing 1.8.9 resolved the problem. Make sure you put the new library source under your preferences, Additional Boards Manager box (shown above in blue, if you have a 8266 one already there separate by commas). So it should read “https://dl.espressif.com/dl/package_esp32_index.json, http://arduino.esp8266.com/stable/package_esp8266com_index.json” – without the double quotes.

I am using the latest Arduino IDE version 1.8.9. and I am using a Node MCU ESP 32. I am using I2C the serial protocol and have wired correctly to the CLK and SDI pins. I am using a MacBook Pro.

Arduino: 1.8.12 (Windows 10), Board: “ESP32 Dev Module, Disabled, Default 4MB with spiffs (1.2MB APP/1.5MB SPIFFS), 240MHz (WiFi/BT), QIO, 80MHz, 4MB (32Mb), 921600, None”

I try to install esp32 and esp8266 in arduino ide, i follow your instuctions, my laptop is a lenovo g580 with ubuntu 18.04 but i have a problem with esp32 when i try to run the wifi scan sketch from the examples. The esp8266 is running whithout any problem.

Arduino: 1.8.12 (Linux), Board: “ESP32 Dev Module, Disabled, Default 4MB with spiffs (1.2MB APP/1.5MB SPIFFS), 240MHz (WiFi/BT), QIO, 80MHz, 4MB (32Mb), 921600, None”

I was tried all these thinks but nothing was happen. The most odd fact is that before 3 months i set up two ESP8266 (WEMOS D1 & NODE MSU) and an ESP32 (i don’t know witch board) and all of them works until now with my wifi settings, but i cant change anything after the blocking of arduino IDE.

Not sure if this helps, but I’m programming an ESP32 through the arduino IDE and I don’t see the option for “ESP32 by Espressif Systems”. Mine is the ESP32 NodeMCU. And I select the board “Node32s”. Works fine for me.

I followed above mentioned link but still facing same error, the exact error is: “Arduino: 1.8.15 (Windows 7), Board: “DOIT ESP32 DEVKIT V1, 80MHz, 921600, None”

Hi i am getting error, what am I doing wrong. Could not find boards.txt in C:\Users\14168\Documents\Arduino\hardware\espressif\cores. Is it pre-1.5?

I tried it on a new iMac and get the same issue. So I must be installing the ESP32 support wrong. The IDE works file with Arduino and Adafruit boards. I also have a ESP8266 working fine through the IDE.

nodemcu esp8266 1.8 tft lcd made in china

This library enables you to use ISR-based PWM channels on AVR ATmega164, ATmega324, ATmega644, ATmega1284 with MCUdude MightyCore, to create and output PWM any GPIO pin

(ESP8266 + LwIP W5500 / W5100(S) / ENC28J60) Connection and Credentials Manager using AsyncWebServer, with enhanced GUI and fallback Web ConfigPortal.

Simple Async HTTP Request library, supporting GET, POST, PUT, PATCH, DELETE and HEAD, on top of AsyncTCP libraries, such as AsyncTCP, ESPAsyncTCP, AsyncTCP_STM32, etc.. for ESP32 (including ESP32_S2, ESP32_S3 and ESP32_C3), WT32_ETH01 (ESP32 + LAN8720), ESP32 with LwIP ENC28J60, ESP8266 (WiFi, W5x00 or ENC28J60) and currently STM32 with LAN8720 or built-in LAN8742A Ethernet.

Fully Asynchronous UDP Library for ESP8266 using W5x00 or ENC28J60 Ethernet. The library is easy to use and includes support for Unicast, Broadcast and Multicast environments.

Simple Ethernet Manager for MultiBlynk for Teensy, SAM DUE, SAMD21, SAMD51, nRF52, ESP32, ESP8266, RP2040-based (Nano_RP2040_Connect, RASPBERRY_PI_PICO) boards, etc. with or without SSL, configuration data saved in ESP8266/ESP32 LittleFS, SPIFFS, nRF52/RP2040 LittleFS/InternalFS, EEPROM, DueFlashStorage or SAMD FlashStorage.

Simple GSM shield Credentials Manager for Blynk and ESP32 / ESP8266 boards, with or without SSL, configuration data saved in LittleFS / SPIFFS / EEPROM.

Simple GSM shield Credentials Manager for Blynk and ESP32 / ESP8266 boards, with or without SSL, configuration data saved in LittleFS / SPIFFS / EEPROM.

Simple Async WiFiManager for Blynk and ESP32 (including ESP32-S2, ESP32-C3), ESP8266 with or without SSL, configuration data saved in either LittleFS, SPIFFS or EEPROM. Now working with new ESP8266 core v3.0.1 and ESP32 core v1.0.6

Simple WiFiManager for Blynk with MultiWiFi Credentials, for Mega, SAM DUE, SAMD21, SAMD51, nRF52, STM32F/L/H/G/WB/MP1, Teensy, RP2040-based RASPBERRY_PI_PICO, etc. boards running ESP8266/ESP32-AT shields. Configuration data saved in EEPROM, EEPROM-emulated FlashStorage_STM32 or FlashStorage_SAMD, SAM-DUE DueFlashStorage or nRF52/TP2040 LittleFS.

Simple WiFiManager for Blynk and ESP32 (including ESP32-S2, ESP32-C3), ESP8266 with or without SSL, configuration data saved in either LittleFS, SPIFFS or EEPROM. Now working with new ESP8266 core v3.0.0 and ESP32 core v1.0.6

CRMui3 WebFramework build a web app (Web UI) for ESP8266 and ESP32 in your project in minutes! / CRMui3 WebFramework для esp8266 и esp32. Позволяет быстро и просто создать веб интерфейс для настройки и управления устройством.

DDNS Update Client Library for SAM DUE, nRF52, SAMD21/SAMD51, STM32F/L/H/G/WB/MP1, AVR Mega, megaAVR, Teensy, RP2040-based RASPBERRY_PI_PICO, WT32_ETH01, Portenta_H7, etc. besides ESP8266/ESP32, using ESP8266-AT/ESP32-AT WiFi, WiFiNINA, Ethernet W5x00, ENC28J60, LAN8742A or Teensy NativeEthernet

Directly interface Arduino, esp8266, and esp32 to DSC PowerSeries and Classic security systems for integration with home automation, remote control apps, notifications on alarm events, and emulating DSC panels to connect DSC keypads.

This library enables you to use Hardware-based PWM channels on Arduino AVRDx-based boards (AVR128Dx, AVR64Dx, AVR32Dx, etc.), using DxCore, to create and output PWM.

This library enables you to use ISR-based PWM channels on Arduino AVRDx-based boards (AVR128Dx, AVR64Dx, AVR32Dx, etc.), using DxCore, to create and output PWM any GPIO pin.

OpenTherm Library to control Central Heating (CH), HVAC (Heating, Ventilation, Air Conditioning) or Solar systems by creating a thermostat using Arduino IDE and ESP32 / ESP8266 hardware.

ESP32 (including ESP32-S2, ESP32-S3 and ESP32-C3), ESP8266 WiFi Connection Manager using AsyncWebServer, with enhanced GUI and fallback Web ConfigPortal.

Light-Weight MultiWiFi/Credentials Async WiFiManager for ESP32 (including ESP32-S2, ESP32-S3 and ESP32-C3) and ESP8266 boards. Powerful-yet-simple-to-use feature to enable adding dynamic custom parameters.

Simple WebServer library for AVR, Teensy, SAM DUE, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, nRF52, SIPEED_MAIX_DUINO and RP2040-based (RASPBERRY_PI_PICO) boards using ESP8266/ESP32 AT-command shields with functions similar to those of ESP8266/ESP32 WebServer libraries

An ESP8266/ESP32-AT library for Arduino providing an easy-to-use way to control ESP8266-AT/ESP32-AT WiFi shields using AT-commands. For AVR, Teensy, SAM DUE, SAMD21, SAMD51, STM32, nRF52, SIPEED_MAIX_DUINO and RP2040-based (Nano_RP2040_Connect, RASPBERRY_PI_PICO, etc.) boards using ESP8266/ESP32 AT-command shields.

WiFi/Credentials Manager for nRF52, SAM DUE, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, RP2040-based Nano_RP2040_Connect, RASPBERRY_PI_PICO, etc. boards using ESP8266/ESP32-AT-command shields with fallback web configuration portal. Credentials are saved in EEPROM, SAMD FlashStorage, DueFlashStorage or nRF52/RP2040 LittleFS.

Light-Weight WiFi/Credentials Manager for AVR Mega, SAM DUE, SAMD, nRF52, STM32, RP2040-based Nano_RP2040_connect, RASPBERRY_PI_PICO boards, etc. using ESP8266/ESP32-AT-command shields. Powerful-yet-simple-to-use feature to enable adding dynamic custom parameters.

Library to detect a multi reset within a predetermined time, using RTC Memory, EEPROM, LittleFS or SPIFFS for ESP8266 and ESP32, ESP32_C3, ESP32_S2, ESP32_S3

Library to configure MultiWiFi/Credentials at runtime for ESP32 (including ESP32-S2, ESP32-S3 and ESP32-C3) and ESP8266 boards. With enhanced GUI and fallback web ConfigPortal.

Light-Weight MultiWiFi/Credentials Manager for ESP32 (including ESP32-S2, ESP32-S3 and ESP32-C3) and ESP8266 boards. Powerful-yet-simple-to-use feature to enable adding dynamic custom parameters.

Simple Ethernet Manager for Teensy, SAM DUE, SAMD, nRF52, ESP32 (including ESP32-S2/C3), ESP8266, RP2040-based Nano_RP2040_Connect, RASPBERRY_PI_PICO, etc. boards. Config data saved in ESP LittleFS, SPIFFS or EEPROM, nRF52 LittleFS, EEPROM, DueFlashStorage or SAMD FlashStorage.

FTP Client for Generic boards such as AVR Mega, megaAVR, Portenta_H7, Teensy, SAM DUE, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, nRF52, RP2040-based (Nano-RP2040-Connect, RASPBERRY_PI_PICO, ESP32/ESP8266, etc.)

Enables GSM/GRPS network connection using the Generic GSM shields/modules. Supporting ESP32 (including ESP32-S2, ESP32-C3), ESP8266, Teensy, SAM DUE, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, nRF52, RP2040-based boards, etc.

mDNS Library for ESP32, ESP8266, nRF52, SAMD21, SAMD51, SAM DUE, STM32F/L/H/G/WB/MP1, Portenta_H7, AVR Mega, RP2040-based boards, etc. using Ethernet W5x00, ESP WiFi, WiFiNINA or ESP8266-AT shields

Connects to MySQL or MariaDB using ESP8266/ESP32, WT32_ETH01 (ESP32 + LAN8720A), nRF52, SAMD21/SAMD51, STM32F/L/H/G/WB/MP1, Teensy, SAM DUE, Mega, RP2040-based boards, Portenta_H7, etc. with W5x00, ENC28J60 Ethernet, Teensy 4.1 NativeEthernet/QNEthernet, WiFiNINA modules/shields or Portenta_H7 WiFi/Ethernet. W5x00 can use Ethernet_Generic library. ENC28J60 can use either EthernetENC or UIPEthernet Library.

This library enables you to use Interrupt from Hardware Timers on supported Arduino boards such as AVR, Mega-AVR, ESP8266, ESP32, SAMD, SAM DUE, nRF52, STM32F/L/H/G/WB/MP1, Teensy, Nano-33-BLE, RP2040-based boards, etc.

Monochrome LCD, OLED and eInk Library. Display controller: SSD1305, SSD1306, SSD1309, SSD1312, SSD1316, SSD1318, SSD1320, SSD1322, SSD1325, SSD1327, SSD1329, SSD1606, SSD1607, SH1106, SH1107, SH1108, SH1122, T6963, RA8835, LC7981, PCD8544, PCF8812, HX1230, UC1601, UC1604, UC1608, UC1610, UC1611, UC1617, UC1638, UC1701, ST7511, ST7528, ST7565, ST7567, ST7571, ST7586, ST7588, ST75160, ST75256, ST75320, NT7534, ST7920, IST3020, IST3088, IST7920, LD7032, KS0108, KS0713, HD44102, T7932, SED1520, SBN1661, IL3820, MAX7219, GP1287, GP1247, GU800. Interfaces: I2C, SPI, Parallel.

True color TFT and OLED library, Up to 18 Bit color depth. Supported display controller: ST7735, ILI9163, ILI9325, ILI9341, ILI9486,LD50T6160, PCF8833, SEPS225, SSD1331, SSD1351, HX8352C.

RFC6455-based WebSockets Server and Client for Arduino boards, such as nRF52, Portenta_H7, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, Teensy, SAM DUE, RP2040-based boards, besides ESP8266/ESP32 (ESP32, ESP32_S2, ESP32_S3 and ESP32_C3) and WT32_ETH01. Ethernet shields W5100, W5200, W5500, ENC28J60, Teensy 4.1 NativeEthernet/QNEthernet or Portenta_H7 WiFi/Ethernet. Supporting websocket only mode for Socket.IO. Ethernet_Generic library is used as default for W5x00. Now supporting RP2040W

Light-Weight MultiWiFi/Credentials Manager for Teensy, SAM DUE, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, nRF52, RTL8720, etc. boards running Generic WiFi (WiFiNINA, WiFi101, ESP8266-AT, ESP32-AT, etc.) modules/shields. Powerful-yet-simple-to-use feature to enable adding dynamic custom parameters.

Simple WiFiWebServer, HTTP Client and WebSocket Client library for AVR Mega, megaAVR, Portenta_H7, Teensy, SAM DUE, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, nRF52, RP2040-based (Nano-RP2040-Connect, RASPBERRY_PI_PICO, RASPBERRY_PI_PICO_W, ESP32/ESP8266, etc.) boards using WiFi, such as WiFiNINA, WiFi101, CYW43439, U-Blox W101, W102, ESP8266/ESP32-AT modules/shields, with functions similar to those of ESP8266/ESP32 WebServer libraries.

nodemcu esp8266 1.8 tft lcd made in china

ESP32 is a series of low-cost, low-power system on a chip microcontrollers with integrated Wi-Fi and dual-mode Bluetooth. The ESP32 series employs either a Tensilica Xtensa LX6 microprocessor in both dual-core and single-core variations, Xtensa LX7 dual-core microprocessor or a single-core RISC-V microprocessor and includes built-in antenna switches, RF balun, power amplifier, low-noise receive amplifier, filters, and power-management modules. ESP32 is created and developed by Espressif Systems, a Shanghai-based Chinese company, and is manufactured by TSMC using their 40 nm process.ESP8266 microcontroller.

Revision of ESP32-WROVER module with 8 MiB pSRAM (instead of 4 MiB pSRAM) operating at 3.3V (instead of 1.8V in previous versions) and ESP32-D0WD (instead of ESP32-D0WDQ6). FCC part 15.247 tested (FCC ID 2AC7Z-ESP32WROVERB). Does not include U.FL connector. (Custom order option for flash capacity of 8 MiB or 16 MiB also available.)