nodemcu esp8266 1.8 tft lcd for sale

For an upcoming new project I wanted a colour (UK spelling) LCD screen (ideally OLED), 256×256 (or greater) resolution and nice and cheap. It was not an easy 2 minute task. There were no OLED screens offering what I wanted (that I could see at the time). So compromises were made, in the end I purchased a 128×128 pixel screen (none OLED) for around $3.50 (£3.20, 3.50 Euro). Not as cheap as I thought I might get one for but the cheapest I could find. There were a lot of sellers offering this screen and it’s shown below.

Due to the planned game being more advanced than Space Invaders I needed a processor with more memory and speed than the Arduino could offer. Enter the ESP8266 processors which offer faster speeds and lots and lots more memory. Wifi is also available but will not be required for this project unless we implemented a World High Score Table perhaps! There are newer versions, ESP32, available with even more power but are more expensive and we don’t need that level of performance for this project. I’m using a NodeMCU from Lolin, which is basically a breakout board for the ESP8266 so that you can use it easily on breadboards or small production runs using through hole.

Power is self explanatory. LED adds a little extra brightness to the screen but it does still work if not connected. I’ve seen resistors added in series here and even variable ones to vary the brightness but I’ve ran it directly connected on this screen with no issues and wouldn’t want it dimmer as its not ultra bright. It is actually on even when not connected giving adequate brightness in my opinion. SCL is the SPI clock and goes to the NodeMCU’s hardware SPI pin (pin D5). SDA is actually the SPI MOSI connection and goes to the NodeMCU’s SPI MOSI pin (D7). RS is a Regsiter Select pin for ST7735 driver chips, this maps to a variable called TFT_DC in the Adafruitcode (explained later) that I was using for testing. This controls whether we are sending a command to the ST7735 chip or actual data. I think that Adafruit call it DC meaning Data Control, but I’m not sure. On some boards it may even be referred to as A0. For our purposed we connect it to D4. RST is the screen reset and and is connected to pin D3. These last two can connect to any NodeMCU pins that are not used for other functions. CS is Chip Select (usually referred to as Slave Select in the SPI protocol) and again can connect to any pin but I use D2. If this is pulled low then this device can receive or send data on the SPI bus. If only one device in your design you could pull this low permanently and not use D2.

Load up the example code that should now be available at “Files->Examples->XTronical ST7735 Library->GraphicsTestESP8266”. This is basically the Adafruit example with just some tiny changes (It goes through all the tests for each rotational position of the screen) so that it uses the new driver file and slightly altered initialisation routine.

There is an issue with the line drawing routine within the Adafruit GFX library, so this part of the original demo was removed. Basically it forces the NodeMCU to reset. As I’m not going ot be using this I’ve decided for now to ignore this issue.

nodemcu esp8266 1.8 tft lcd for sale

As you all know the are a few variants of the 1.8" TFT on the internet. With the genuine Adafruit lcd-s there are usually no problems. But when using fake ones(usually from Aliexpress) you have to make some adjustments.

Bodmers TFT_eSPI library is very awsome and rich funcionality. And the best part is that he made it to handle the pixel offsets depending on wich kind of 1.8" TFT you are using.

Then uncomment the tft height an width. And then in my case(REDTAB) uncomment for eg: #define ST7735_REDTAB. After this save it for the moment and compile sketch and upload to board. To be sure i have defined the parameters in the sketch too.This is a bit long procedure, cause you have to compile and upload the sketch every time to board untill the offset is gone, but it is worth the experimenting. For editing the h. files i strongly suggest Wordpad. Images included.

nodemcu esp8266 1.8 tft lcd for sale

I am using the 1.8″ color ST7735 TFT display a lot. The reason for that is that this display is very easy to use, it costs less than $5 and it offers color! At the back, the display has an SD card slot.A brief summary of the pins (adapted from Adafruits thorough summary):

RST – this is the TFT reset pin. Connect to ground to reset the TFT! Its best to have this pin controlled by the library so the display is reset cleanly, but you can also connect it to the Arduino Reset pin, which works for most cases.CS – this is the TFT SPI chip select pinD / C – this is the TFT SPI data or command selector pinDIN – this is the SPI Master Out Slave In pin (MOSI), it is used to send data from the microcontroller to the SD card and / or TFTSCLK – this is the SPI clock input pinVcc – this is the power pin, connect to 5VDC – it has reverse polarity protection but try to wire it right!LED – this is the input for the backlight control. Connect to 5VDC to turn on the backlight.GND – this is the power and signal ground pinNow that we know what we’re dealing with it’s time to start wiring!

nodemcu esp8266 1.8 tft lcd for sale

This is a single-chip controller/driver for 262K-color, graphic type TFT-LCD.  It consists of 396 source line and 162 gate line driving circuits. This chip is capable of connecting directly to an external microprocessor, and accepts Serial Peripheral Interface (SPI), 8-bit/9-bit/16-bit/18-bit parallel interface.

nodemcu esp8266 1.8 tft lcd for sale

The ESP8266 is a well performing microcontroller chip that is fully Arduino compatible. Its WiFi capability makes boards with this chip easy implementable as IOT devices. Here we wire two representative ESP8266 boards: NodeMCU and Wemos D1 mini to a single-row 14-pin header, 320*240 TFT display that uses the four-wire SPI interface.

Here we connect a 320240 ILI9341 TFT display that has a SPI pin-out. This breakout board has 3.3V controller logic while power supply and background illumination operate on either 3.3V and 5V. ESP8266 microcontroller boards support displays with up to 320480 pixels

The display shown in figure 1 has a touch screen. It has a single row of 14 pins (figure 1; see also figure 3). The pins supporting ‘touch’ as well as those associated with the SD card reader are not connected: we concentrate on displaying text, variables, graphics and fast sequences of memory-loaded bitmaps (‘image frames”). The ILI9341 controller is fast and, in combination with an ESP8266, performs excellently.

Figure 3 shows a Wemos D1 mini board mounted on a prototyping breadboard together with a 2.8 inch ILI9341 SPI TFT display according to the wiring diagram shown in Figure 2. The ESP8266 is running a demo adapted for the “Adafruit_GFX.h” and “Adafruit_ILI9341.h” libraries from Bodmer’s ‘Clock’ example for his TFT_eSPI library.

— ESP8266_ILI9341_Adafruit_Bodmers_clock.ino, a real time analog clock example adapted from Bodmer’s TFT_eSPi library examples (display visible in figure 3).

nodemcu esp8266 1.8 tft lcd for sale

In this guide we’re going to show you how you can use the 1.8 TFT display with the Arduino. You’ll learn how to wire the display, write text, draw shapes and display images on the screen.

The 1.8 TFT is a colorful display with 128 x 160 color pixels. The display can load images from an SD card – it has an SD card slot at the back. The following figure shows the screen front and back view.

This module uses SPI communication – see the wiring below . To control the display we’ll use the TFT library, which is already included with Arduino IDE 1.0.5 and later.

The TFT display communicates with the Arduino via SPI communication, so you need to include the SPI library on your code. We also use the TFT library to write and draw on the display.

The 1.8 TFT display can load images from the SD card. To read from the SD card you use the SD library, already included in the Arduino IDE software. Follow the next steps to display an image on the display:

In this guide we’ve shown you how to use the 1.8 TFT display with the Arduino: display text, draw shapes and display images. You can easily add a nice visual interface to your projects using this display.

nodemcu esp8266 1.8 tft lcd for sale

This set can be used to use the 1.8 "TFT display on the ESP32 DEV KIT C quickly and easily. For many projects, the display and microcontroller are essential for many projects, which is why we have put together this discounted bundle.

In the blog we explain the use of the 1.8 "display together with the ESP32 microcontroller. From the connection of the two modules, to the installation of the libraries and sketch.

This Spi TFT display is a luminous, anti-reflective display with a large 1.8 inch image diagonal and integrated SD card reader. The TFT display has a card slot. Reading and writing takes place via the controller. The controller is operated with 5V and the backlight with 3.3V.

nodemcu esp8266 1.8 tft lcd for sale

Few months ago I"ve ordered this 1.77" TFT LCD screen. Display is ST7735S compatible, but the issue I was having is how to correctly wire up the display to an ESP8266 board (NodeMCU ESP-12E), since the markings on the board were not consistent with other diagrams for using the SPI interface of ESP8266 on the internet.