led v lcd screen price

This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.

led v lcd screen price

So, you’re thinking about investing in digital signage solutions for your business. There’s a reason why digital signage is popping up everywhere. It’s dynamic, eye catching and can have a direct impact on the bottom line. One study showed that advertised products marketed with digital signage see a 26% increase in dollar sales on average.

But how do you know which technology is right for your project? As we look at digital signage solutions, there’s one question that always seems to pop up. What’s the difference between Direct View LED and LCD displays?

LED and LCD displays are both good technologies, and which is better depends on your application. LCD is a liquid crystal display. Commercial LED displays are a grid or group of Light-Emitting Diodes or LEDs that make up the image itself. To make things even more confusing commercial, or Direct-View LEDs, are actually very different than their consumer LED cousins. Here are the basics to help you understand what’s the difference between LED and LCD displays and which is better for your project.

LCD displays are an option for either indoor or outdoor signage. The LCD screen is a series of layers, like an onion. LCD displays have lighting on the base layer. Then comes the LCD sheet, which is a liquid housed between two plates. On top is a protective glass layer. If the display is meant for the outdoors, a final coating is added to protect against the elements- whether they’re natural, like weather, or human-caused, like vandalism.

Here’s where the difference starts to get muddy. LCD screens can be back-lit by LEDs. Meaning the lighting layer consists of many little LEDs that light the LCD sheet from behind. In the consumer world, these are marketed as LED screens. While accurate, it’s not the same as a commercial LED screen. When we talk about commercial LED’s we’re talking about Direct View LEDs, but we’ll get into that more later.

LCD displays come in Full-HD (1080p) or Ultra-HD (4K) resolution. 4K resolution has four times the pixels as 1080p. What does this mean in the real world? At about thirteen feet away from a 98 inch 1080p display, you can begin to see pixels. With 4K resolution, this decreases to seven feet before seeing pixels.

You can stand closer to the display because the pixel density is higher. Usually when the pixel density goes up, so does the price. So, if you have something like a digital menu behind the order counter, you may save money by going with a 1080p display without hindering the customer experience. Alternatively, if you have a display next to elevators in a hotel 4K may enhance the customer experience since they’ll be closer to the display when they look at it.

Direct View LED use LEDs as the individual pixels that make up the image itself. Pixel pitch is an important concept with Direct View LED displays. Pixel pitch is the distance from the center of one pixel cluster to the center of the next pixel cluster in a LED screen. This can range from .7 mm- 18 mm plus depending on the viewing distance.

A Direct View LED display is made up of different panels. These panels can be grouped into various shapes providing flexibility and scalability. Unlike LCD displays, Direct View LED video walls don’t have bezel lines between each panel. Various Direct View LEDs feature bezel-less panels which are placed together like building blocks. This LED technology creates a seamless viewing experience even for large-scale video walls.

Direct View LEDs can be curved, convex or concave. They can even wrap entirely around a pillar, the full 360 degrees. Since they’re panels, they can be configured in almost limit-less sizes and aren’t confined to the 16x9 aspect ratio.

Sizes:LCD Displays come in sizes provided by the manufacturer and aren’t that easy to customize. Some manufacturers have stretch sizes, but most of the options are at a 16x9 aspect ratio.

Resolution: LCD Displays typically have a higher resolution than LED screens. So, a customer can view the screen at a closer distance without seeing the pixels.

Bezels:If you’re looking for a video wall option, LCD displays do have bezels around each display. Conversely, some Direct View LEDs don’t have any visible bezels, so there will be no line breaks in your content.

Brightness:Direct View LEDs can range from 800–8,500 nits, which exceeds the brightness of most LCDs. Brightness may or may not be an issue, depending on if the display will be indoors or outdoors.

These basic features outline the difference between commercial LED vs. LCD displays. Which is better? It’s a question that can’t be answered without context. The specifics around your project and what you’re trying to achieve will define which technology should be used. Work with an integrator that understands both technologies and can make a recommendation based upon your project. There’s no one-size-fits all solution, but developing a better understanding of commercial LED vs. LCD displays will help you formulate the right questions to ask an integration partner.

led v lcd screen price

This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.

led v lcd screen price

This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.

led v lcd screen price

This isn"t the same technology they use for the giant screens at football games; in fact, the LED screens you see in shops are actually LCDs, and the term "LED" is the invention of Samsung"s marketing department.

How do they get away with this? Samsung"s televisions use a series of Light Emitting Diodes (LEDs) — like the ones used in LED torches and alarm clocks — to "backlight" the LCD panel, and it"s not the only company that does this. But what is backlighting, anyway?

As a consumer technology, LCD has been in widespread use since the early "70s where it first appeared in digital watches. As its name suggests, Liquid Crystal Display is a liquid that has been sandwiched between two plates, and it changes when a current is applied to it.

While we"ve had black-and-white LCDs for years, colour LCDs are a lot more recent, but the technology is the same. As we all know, you need to press a button to read a watch in the dark, and an LCD TV is no different. It needs a light behind it because it emits no light of its own.

It"s helpful to think of an LCD panel as a sandwich, consisting of different layers. On a typical TV you have a polarised filter, followed by a protective glass layer, followed by the LCD sheet, and then a light source at the back.

At present, there are two main methods of backlighting in LCD flat-panels: Cold-Cathode Fluorescent Lamp (CCFL) and LED (light-emitting diode). There are several others, and this includes Sony"s Hot Cathode Fluorescent Lamp (HCFL), but only

CCFL backlighting consists of a series of tubes laid horizontally behind the screen. It used to be the most common method of backlighting for LCD televisions, but it is quickly being superseded by LED.

LED backlighting has been in use in televisions since 2004 when it first appeared on Sony WEGA models. Though there are several different ways of backlighting using LEDs (as we"ll explain shortly), the idea is the same: a series of LED bulbs throw light from behind to illuminate the LCD panel.

There are two different methods of LED backlighting: direct and edge. The main advantage of direct lighting is that it can be used to increase contrast levels by turning some LEDs off — thus increasing the amount of black in parts of the picture. LG is one of the champions of direct lighting.

In comparison, edge lighting"s main advantage is that it can be used to make screens that are incredibly thin — the LEDs are at the side and not behind the screen. Of course, you lose the ability to switch off parts of the backlighting for better contrast, and picture quality could also suffer if light isn"t sufficiently well dispersed.

White LED is very similar to CCFL, and is meant to simulate the white light of the sun for a more "natural" result. But the LEDs aren"t actually white; this approach uses a blue light source that is made to look white by the presence of a sulphur coating on the bulb. CCFLs work in the same way.

As a result, the television could potentially be stronger in the green portion of the spectrum, but some CCFL technologies enable better red and blue response, so better white LEDs could also be possible. The

RGB LEDs, on the other hand, are potentially capable of a broader colour range because they use three LEDs coloured red, blue and green, which is a broadcast standard. RGB"s proponents argue that there is less of a green "push" as a result, and the colour spectrum is more evenly distributed. The Sony Bravia KDL-46XBR45 is an example of a television that used RGB LEDs in its backlight.

Here we have Samsung"s edge-lit LED unit, which comprises of two major components: a long LED module of tiny white diodes and a thin screen-sized plastic sheet known as a light guide plate. Four of these LED modules are deployed along the left, right, top and bottom of the television. The combined light output is then funnelled and redistributed evenly across the screen by the light guide.

We find it interesting that TV manufacturers are still asking for a higher price for LED-backlighting when many cheap devices — particularly mobile phones and netbooks — use LEDs as backlights. As of 2009, Samsung said that LED backlights cost three times more in large sizes than the equivalent CCFL arrangement, and this is mostly due to a lower number of manufacturers. Presumably, as the technology continues to take a firmer hold, the price will keep coming down.

In 2011, only the budget LCD televisions use CCFL backlighting, and all of the major manufacturers use LED lighting in their mid-range and premium models. It won"t be too long before it will become the default method of backlighting. While some people still prefer the look of a plasma, the LED"s combination of thin design and sharp picture quality will soon find favour with many people. If you"re looking for a further explanation of how LCD screens work, then you can try this video on the 3M site.

led v lcd screen price

LED stands for Light Emitting Diode. SMD refers to Surface Mounted Diode, a technology that utilizes a process of mounting each LED chip (pixel) directly to a printed circuit board (PCB). Mounting the diodes in this fashion allows displays to be thinner and sleeker than older LED technology. SMD also allows for finer pixel pitch. Simply put, pixel pitch refers to the distance between the diodes and is responsible for resolution. Fine pixel pitch translates into high resolution. Fine pixel pitch is what makes HD and UHD LED possible.

LCD panels are made of a layer of liquid crystal between two pieces of polarized glass. Liquid crystal can not emit light. Backlights are therefore used to illuminate the display. LCD panels are sleek in design, but typically limited to specific sets of dimensions.

LEDs are their own light source. This means that LED video walls are glare free and not subject to many of the problems ambient lighting creates for other video display types.

LED technology is modular in nature. This means that LED panels fit together seamlessly and can be used to make displays to fit any space. Custom cabinets can even be built to accommodate unusual shapes or dimensions.

LCD video walls on the other hand take on a tiled approach. This means that screens are jutted against one another. This approach creates bezels or seams and the final dimensions of the wall is directly dependent on the dimensions of the individual screens.

LED is a versatile display option. Thanks to various IP options, LED video walls can be displayed indoors or outdoors. LED video walls can be built with a variety of internal mechanisms as well. Quick refresh rates and dual power backup can ensure that LED video walls look great on camera. Various pixel pitches can ensure the proper resolution for the right context.

LCD is a more straightforward product and consumers are generally more familiar with LCD. LCD is used for cell phones, computer screens, and most TVs, but is it the best choice for video walls? Ultimately that choice is up to the consumer. LCD is cheaper, but generally less customizable. LCD does not work well for outdoor uses and is generally very limited in terms of size and shape.

LED technology has improved drastically in recent years improving quality while driving costs down. LED is a bigger investment up front but generally has a lifespan of about 100,000 hours.

Just like anything else, the best video wall product is largely dependant on context. If you like LED technology but are unsure of the process associated in obtaining a LED video wall read: How to Purchase a LED Video Wall Display.

led v lcd screen price

Vasai Virar, Dist. Thane C-2, G-18, Floor- Dewan Apt No. 3, Navghar East, Palghar, Maharashtra, 401202, Vasai Virar - 401202, Dist. Thane, Maharashtra

led v lcd screen price

For companies interested in jumping into the world of video walls, or even upgrading your existing technology, the biggest question you’ll have to deal with is whether LED or LCD is right for your video wall.

Figuring out which type of display is right for you doesn’t need to be arduous. We’ve rounded up a number of considerations to help you make the most informed decision.

Technically, LED displays are just LCD displays. Both use Liquid Crystal Display (LCD) technology and a series of lamps placed at the back of the screen to produce the images we see on our screens.

The main difference between the two technologies is that for LCD displays, the lamps at the back of the screen are fluorescent, whereas LED displays use Light Emitting Diodes.

There are two types of LED backlighting technologies; edge lighting and full array lighting. In edge lighting – as the name suggests – the LEDs are placed along the edge of the screen whereas in full-array lighting, an array of LEDs spans the back of the LED screen. In both cases, local dimming may or may not be used. The majority of LED displays are edge-lit without local dimming.

Image quality is one of the most contentious issues when it comes to the LED vs. LCD video wall debate. LED displays generally have better picture quality compared to their LCD counterparts. From black levels to contrast and even colour accuracy, LED displays usually come out on top. Among LED screens, full-array back-lit displays with local dimming provide the best picture quality. There is usually no difference in terms of viewing angle. This instead depends on the quality of glass panel used.

The question of viewing distance may crop up in LED vs. LCD discussions. In general there is not a huge distance between the two technologies. If viewers will be watching from up close the screen needs a high pixel density regardless of whether your video wall uses LED or LCD technology.

It’s generally accepted that LED displays have the lowest energy consumption levels of all displays. LCD displays commonly consume more energy than plasma and CRT displays, neither of which are in production.

In their research, CNET found that “No question, LED LCDs have the lowest energy consumption” in a comparative test between plasma, LCD and LED displays.

LED displays also win in terms of thickness, or lack thereof The reason, once again, being the advanced lighting technology. To start with, light emitting diodes are much smaller compared to the fluorescent lamps used in LCD displays.

Secondly, when the LEDs are placed at the edges as opposed to the back end of the display, the resulting screen will obviously be thinner. This explains why edge-lit LED screens are the slimmest displays available.

If your main concern is budget, then LCD is the obvious choice. As this article points out, you can usually buy a much bigger LCD display for vastly less money than an LED. LCD video walls are generally much cheaper compared to similar sized LED displays.

LCD software allows you to select the right amount of output for a video wall. You can plug a media player into a video wall processor or a daisy chain of displays. With LED displays, however, all cabinets have to plug directly from the video encoder or player. Either that or all cabinets have to be daisy chained together.

Having considered all of these factors, you should now be excellently equipped to pick a display for your video wall. Be sure to take good care of your screen for maximum longevity.

led v lcd screen price

Even though some say the picture quality of an LED TV is better, there is no straight answer for which has better picture quality since both TVs use the same kind of screen. For instance, a higher-end LCD TV can have a better quality than a low-end LED TV, but if you look at high-end models of either TV, the picture quality will be comparable.

RGB Dynamic LEDs show truer blacks and whites and thus get higher dynamic contrast ratio (which is desirable in a TV), at the cost of less detail in small bright objects on a dark background (such as star fields)

LED TVs use energy-efficient light emitting diodes (LED) for backlighting. These consume less power than cold cathode fluorescent lamps (CCFL) used in traditional LCD televisions. Power savings are typically 20-30%.

Edge-LEDs (the most common) are positioned around the rim of the screen and use a special diffusion panel to spread the light evenly behind the screen.

Flat Screen LCDs, about an inch or two thick are more expensive, but also more popular because of their sleek look and the flexible options of standing on a surface or mounting on a wall.

Front projection LCDs or projectors, which project an image onto the front of the screen. The TV itself is just a box installed anywhere in a room, which projects the image onto a flat screen hung on the wall as large as 300 inches.

Rear projection LCDs, where the image is sent from the rear of the TV to the screen in front. Rear projection LCDs are wide, heavy and only available in large sizes (60" and up).

led v lcd screen price

In the world of digital signage, there are two prominent display technologies: LCD and LED. There’s also a considerable amount of misconception about these technologies and how they relate to each other or work together. The blame for much of this confusion can be attributed to the advent of LCD TVs with LED-backlighting technology, so let’s clear that difference up before we move on.

With any digital display, you must have a well working light source so that you can see the picture brightly. Until very recently, TVs have always been backlit—that is, illuminated from behind the display monitor. For a long period of time after television sets were invented, this was done by firing electrons through a “gun” to the screen (tube and projector TVs). In the early 2000s, LCD TVs were backlit by fluorescent bulbs. More recently, however, TV manufacturers began using LED technology as the light source for flat-screen LCD TVs, as this method provided more versatility and uniform picture lighting, therein lies some of the confusion.

As picture displays, there are many differences between LED display features and LCDs. Given advances in LED display technology—and drastically lower cost—both display types can be viable options for a variety of interior spaces. And of course, each has benefits, and each has limitations. To determine the best display for a digital signage project, it’s critical to understand exactly how each display type will perform and why one is better than the other in a given situation. It’s important to compare, not only cost, but also factors such as brightness, durability, size, resolution, vibrancy, and many more features that are on the market.

LED stands for light-emitting diode. By definition, LEDs provide their own light. Once reserved for large-scale, exterior digital displays, direct-view LED signage has emerged as a greatly improved, widely applicable medium, now suitable for virtually all display installations, both indoor or outdoor. In the digital signage industry, direct-view LED displays have now become the norm and work well together.

LCD stands for liquid crystal display. This type of display uses light-modulating properties of liquid crystals. As referenced above, liquid crystals don’t produce light directly; instead, they use a backlight to produce images on the screen. LCDs are used most often in interior applications, where users are in proximity to the screen. With this display technology, ambient light is usually limited and controlled.

Typically, LED displays have a higher up-front cost than LCDs; however, unlike LCDs, LED displays are rugged and durable, even in the most inhospitable environments. Additionally, they can be upgraded and retrofitted relatively easily. For total cost of ownership and longevity, the better option is the LED.

Brightness is typically measured in NITs. One NIT is equivalent to one candela per square meter. The brightness for LED displays ranges from hundreds to thousands of NITs. LCDs have a much lower brightness range feature. LED displays are able to compete in well-lit areas, both inside and outside. In contrast, competing light will severely impact an LCD; many times, this renders the picture unviewable.

While LED and LCD displays can both render most types of content, there are some drawbacks to LCDs. They can sometimes hold the “memory” of an image, and leave behind a residual imprint referred to as “image persistence.” It’s caused when a still image remains on the screen for too long. The colors become “stuck” in place. When the display tries to shift to another color, the crystals don’t want to budge. The result is a color that is slightly skewed from the intended one. LED displays do not encounter this issue.

Video walls are one of the most popular ways to use digital displays in interior spaces. From entertainment venues to other various retail spaces on the market, video walls have wide appeal. This makes the setup more complex than single screens, so it’s essential to have the right screens. LEDs are typically the preferred display for video walls. They are seamless, tiling together with no bezels. In a well-installed application, video walls have excellent uniformity and the widest viewing angles. LCDs can be tiled, but their bezels cause gaps and visual barriers. While there are LCDs with narrow bezels, small seams are still visible, unfortunately.

An LED display can be any size. There are no inherent limitations. They can also be curved, concave, or convex. They can even wrap completely around a pillar for a 360-degree effect. LCDs are typically only available in the standard sizing set by the manufacturer.

SNA Displays is a global manufacturing leader in LED video displays. We offer fully customizable LED products, thereby providing you with the most impact on your messaging. To learn more about how LED signage can power your digital display project, view our portfolio.