tft lcd displays rgb color factory
Each pixel of a TFT LCD is made up of three subpixels. One each for red, green, and blue. Each of these subpixels has an individual transistor from the thin film transistor layer that controls the amount of current at the subpixel. The liquid crystals for each subpixel are affected by the voltage level at the transistor, which causes their structure to change relative to the voltage level. Different liquid crystal structures allow different amounts of light from the backlight through the subpixel. Then the color filter makes that light either red, green, or blue. The colors from the three subpixels combine to create the desired color.
Color depth refers to the number of different possible displayable colors. The LCD controller chip in the tail of our RGB TFTs dictates that display’s color depth. The chips accept and control a certain number of steps for each color. This will be described in our datasheet as well as the LCD controller datasheet. The color depth may not be directly stated, but instead be referred to as ___-bit RGB. For example:
The below images show three different color depths. The color depth drops off quickly in this example, giving a clear example of how color depth affects image quality.
When combined with a higher resolution, some display controllers do not support full color on different interfaces. Usually, I2C is the first one out followed by SPI, then parallel, then RGB
Confusingly, RGB can refer both to a display using RGB color and to the display using an RGB interface. The RGB interface typically writes image data directly from the 16 to 24-bit RGB databus to the display without storing it. This differs from MCU Interfaces such as 6800 or 8080 parallel, which use read/write/enable signals to write data to device memory, and typically uses 8 to 18 bit data transfers.
Some RGB interface displays require a SPI initialization to ensure the display settings are correct, while others have no way to send commands to the controller.
Due to the large number of GPIOs required to control an RGB interface display, we use the EVE chip to bring up our RGB displays in-house. The EVE family of displays allows interfacing to be done in SPI while still achieving the quick data transfer possible with the RGB interface.
Industrial displays are a very important device for marketing in any given environment. Its quality and reliability are hinged on the design employed. Despite the fact that both are used for display, the criteria for industrial displays are higher than those for consumer displays.
Get rich colors, detailed images, and bright graphics from an LCD with a TFT screen. Our standard Displaytech TFT screens start at 1” through 7” in diagonal size and have a variety of display resolutions to select from. Displaytech TFT displays meet the needs for products within industrial, medical, and consumer applications.
TFT displays are LCD modules with thin-film transistor technology. The TFT display technology offers full color RGB showcasing a range of colors and hues. These liquid crystal display panels are available with touchscreen capabilities, wide viewing angles, and bright luminance for high contrast.
Our TFT displays have LVDS, RGB, SPI, and MCU interfaces. All Displaytech TFT LCD modules include an LED backlight, FPC, driver ICs, and the LCD panel.
We offer resistive and capacitive touch screens for our 2.8” and larger TFT modules. Our TFT panels have a wide operating temperature range to suit a variety of environments. All Displaytech LCDs are RoHS compliant.
We also offer semi-customization to our standard TFT screens. This is a cost-optimized solution to make a standard product better suit your application’s needs compared to selecting a fully custom TFT LCD. Customizations can focus on cover glass, mounting / enclosures, and more - contact us to discuss your semi-custom TFT solution.
TFT displays are full color LCDs providing bright, vivid colors with the ability to show quick animations, complex graphics, and custom fonts with different touchscreen options. Available in industry standard sizes and resolutions. These displays come as standard, premium MVA, sunlight readable, or IPS display types with a variety of interface options including HDMI, SPI and LVDS. Our line of TFT modules include a custom PCB that support HDMI interface, audio support or HMI solutions with on-board FTDI Embedded Video Engine (EVE2).
TFT (Thin-Film Transistor) Displays are active-matrix LCDs with full RGB color screens. These screens feature bright, vivid colors and have the ability to show fast animations, complex graphics and crisp custom fonts. TFTs are perfect displays for providing a rich user interface for all types of products. While typically used in consumer devices like personal DVD players and handheld devices, TFTs are also well suited for industrial application.
TFTs are Active-Matrix LCDs that have tiny switching transistors and capacitors. These tiny transistors control each pixel on the display and require very little energy to actively change the orientation of the liquid crystal in the display. This allows for faster control of each Red, Green and Blue sub-pixel cell thus producing clear fast-moving color graphics.
The transistors in the TFT are arranged in a matrix on the glass substrate. Each pixel on the display remains off until addressed by applying a charge to the transistor. Unlike conventional Passive-Matrix displays, in order to activate a specific pixel, the corresponding row is turned on and a charge is sent down the proper column. This is where only the capacitor at the designated pixel receives a charge and is held until the next refresh cycle. Essentially, each transistor acts as an active switch. By incorporating an active switch, this limits the number of scan lines and eliminates cross-talk issues.
MVA (Multi-domain Vertical Alignment) displays can offer wide viewing angles, good black depth, fast response times, and good color reproduction and depth. Each pixel within a MVA type TFT consists of three sub-pixels (Red, Green and Blue). Each of these sub-pixels is divided further into two or more sub-pixels, where the liquid crystals are randomly lined up due to the ridged polarized glass. When a charge is applied to the transistor, the crystals twist. With these crystals being randomly placed, it allows the backlight to shine through in all different directions keeping the intended color saturation retained while giving the display a 150deg. viewing angle.
In-Plane Switching (IPS) TFTs were developed to improve on the poor viewing angle and the poor color reproduction of TN TFT panels at that time. The crystal molecules move parallel to the panel plane instead of perpendicular to it. This change reduces the amount of light scattering in the matrix, which gives IPS its characteristic wide viewing angles and good color reproduction. Because of its wide viewing angle and accurate color reproduction (with almost no off-angle color shift), IPS is widely employed in high-end monitors aimed at professional graphic artists.
IPS (In-Plane Switching) displays provide consistent, accurate color from all viewing angles without blur or grayscale inversion. IPS displays show clear images with fast response time, and no halo effect is produced when touched. Each pixel within an IPS type TFT consists of three sub-pixels (Red, Green and Blue). Each sub-pixel has a pair of electrodes to control the twisting of the Liquid Crystals. Unlike TN type TFTs where the electrodes are on opposing plates, the electrodes in an IPS TFT are on only one of the glass plates (i.e. in the same plane). When voltage is applied to the electrodes, all the Liquid Crystal molecules align in parallel with that plane and allow light to pass through to the polarizers and RGB color filters. In effect, TN displays force the Liquid Crystal molecules perpendicular to the glass which blocks some light from coming out at wide angles, while IPS displays keep the Liquid Crystal molecules in line to allow light through at all angles.
Low-temperature polycrystalline silicon (LTPS) is polycrystalline silicon that has been synthesized at relatively low temperatures (~650 °C and lower) compared to in traditional methods (above 900 °C). LTPS is important for display industries, since the use of large glass panels prohibits exposure to deformative high temperatures. More specifically, the use of polycrystalline silicon in thin-film transistors (LTPS-TFT) has high potential for large-scale production of electronic devices like flat panel LCD displays or image sensors.
Transflective LCDs combine elements of both transmissive and reflective characteristics. Ambient light passes through the LCD and hits the semi-reflective layer. Most of the light is then reflected back through the LCD. However some of the light will not be reflected and will be lost. Alternately a backlight can be used to provide the light needed to illuminate the LCD if ambient light is low. Light from the backlight passes through a semi-reflective layer and illuminates the LCD. However as with ambient lighting some of the light does not penetrate the semi-reflective layer and is lost.
Transflective LCDs are used in devices that will operate in a wide variety of lighting conditions (from complete darkness to full sunlight). Under dim lighting conditions transflective LCDs offer visual performance similar to transmissive LCDs, whilst under bright lighting conditions they offer visual performance similar to reflective LCDs. However this performance is a tradeoff because the transflective mode is less efficient due to some light loss.
A simple transflective display is shown as below, in which there are two regions, T and R respectively. The cell gap in two regions are different, dT = 2*dR. This is to maintain the reflection and transmission from two regions are the same intensity, and give same color reproduction, because in the T region, light only goes through the LC layer once, while in the R region, light passes through twice.
The TFT display module supports up to 24-bit pixel format (RGB: 888), allowing a true-color palette of 16,7 million colors. It features an excellent contrast ratio and uniform brightness. This module is composed of a TFT‐LCD panel, driver IC, FPC, a backlight unit.
Phoenix Display International PDI013A2402HS is a small-size round 1.3” color TFT liquid crystal display (LCD) with a module size of 35.5 x 8.23 x 1.4 mm and active area of 32.34 x 32.34 mm.This product is IPS TFT, negative, Transmissive glass with a 262K color 240 RGB x 240 resolution. Its brightness is 220 nits with a contrast ratio of 600. Using an ST7789V driver with an SPI interface and a board to board interconnect. This product offers improved contrast, color saturation and response time. Similar product(s): None. All our color displays products can be modified to be sunlight-readable, and touch panels can added or removed upon request (there may or may not be tooling associated with sunlight readability or touch-panel changes).
Phoenix Display International PDI050YVHR01 is a small-size 5.0” color TFT liquid crystal display (LCD) with a module size of 80.41 x 140.6 x 5.78 mm and active area of 64.8 x 108.00 mm. This product is Transflective glass TFT, Normally White, with a 262K color 480 x 800 resolution. Its brightness is 150 nits with a contrast ratio of 40:1. Using an ILI9806 driver with an MCU interface and a zero insertion force (ZIF) type flex interconnect. This product offers improved contrast, color saturation and response time. Similar product(s): None.All our color displays products can be modified to be sunlight-readable, and touch panels can added or removed upon request (there may or may not be tooling associated with sunlight readability or touch-panel changes).
Raystar is a global leading LCD panel supplier and specialized in producing TFT LCD Panel, including Color TFT, Monochrome TFT Display and bar type TFT Display. Raystar Color TFT displays are available in various resolutions and offers a wide product range of small to medium-sized TFT-LCD modules from 0.96” to 12.3". The interface options are in MCU / RGB / SPI / UART / 8080 / LVDS. TFT Panel with control board or TFT LCD Panel with micro controller are also available.
Orient Display sunlight readable TFT displays can be categorized into high brightness TFT displays, high contrast IPS displays, transflective TFT displays, Blanview TFT displays etc.
The brightness of our standard high brightness TFT displays can be from 700 to 1000 nits. With proper adding brightness enhancement film (BEF) and double brightness enhancement film (DBEF) and adjustment of the LED chips, Orient Display high brightness TFT products can achieve 1,500 to 2,000 nits or even higher luminance. Orient Display have special thermal management design to reduce the heat release and largely extend LED life time and reduce energy consumption.
Our high contrast and wide viewing angle IPS displays can achieve contrast ratio higher than 1000:1 which can make readability under strong sunlight with lower backlight luminance. High brightness IPS displays have been widely accepted by our customers with its superb display quality and it has become one of the best sellers in all our display category.Transflective display is an old monochrome display technology but it has been utilized in our color TFT line for sunlight readable application. Orient Display has 2.4” and 3.5” to choose from.
Blanview TFT displays are the new technology developed by Ortustech in Japan. It can provide around 40% of energy consumption for TFT panels which can use smaller rechargeable or disposable batteries and generate less heat. The price is also lower than traditional transflective TFT displays. Orient Display is partnering with the technology inventor to provide 4.3” and 5.0”.
Of course, Orient Display can also offer traditional RTP (Resistive Touch Panel) of 4-wire, 5-wire, 8-wire through our partners, which Orient Display can do integration to resistive touch screen displays.
Genetic Interfaces: Those are the interfaces which display or touch controller manufacturers provide, including parallel, MCU, SPI(,Serial Peripheral Interface), I2C, RGB (Red Green Blue), MIPI (Mobile Industry Processor Interface), LVDS (Low-Voltage Differential Signaling), eDP ( Embedded DisplayPort) etc. Orient Display has technologies to make the above interface exchangeable.
High Level Interfaces: Orient Display has technologies to make more advanced interfaces which are more convenient to non-display engineers, such as RS232, RS485, USB, VGA, HDMI etc. more information can be found in our serious products. TFT modules, Arduino TFT display, Raspberry Pi TFT display, Control Board.