20 lcd display free sample
An import function allows additionally to use Windows fonts. With the FontEditor it is easy to generate for example Cyrillic, Greek and Arabic fonts. The preview function shows immediately the size and style in simulation window. When the testboard EA 9780-2USB is connected to the USB port, you can see the character (or any predefined text) live on the display which is plugged-in!
An import function allows additionally to use Windows fonts. With the FontEditor it is easy to generate for example Cyrillic, Greek and Arabic fonts. The preview function shows immediately the size and style in simulation window. When the testboard EA 9780-2USB is connected to the USB port, you can see the character (or any predefined text) live on the display which is plugged-in!
The Arduino family of devices is features rich and offers many capabilities. The ability to interface to external devices readily is very enticing, although the Arduino has a limited number of input/output options. Adding an external display would typically require several of the limited I/O pins. Using an I2C interface, only two connections for an LCD character display are possible with stunning professional results. We offer both a 4 x 20 LCD.
The character LCD is ideal for displaying text and numbers and special characters. LCDs incorporate a small add-on circuit (backpack) mounted on the back of the LCD module. The module features a controller chip handling I2C communications and an adjustable potentiometer for changing the intensity of the LED backlight. An I2C LCD advantage is that wiring is straightforward, requiring only two data pins to control the LCD.
A standard LCD requires over ten connections, which can be a problem if your Arduino does not have many GPIO pins available. If you happen to have an LCD without an I2C interface incorporated into the design, these can be easily
The LCD displays each character through a matrix grid of 5×8 pixels. These pixels can display standard text, numbers, or special characters and can also be programmed to display custom characters easily.
Connecting the Arduino UNO to the I2C interface of the LCD requires only four connections. The connections include two for power and two for data. The chart below shows the connections needed.
The I2C LCD interface is compatible across much of the Arduino family. The pin functions remain the same, but the labeling of those pins might be different.
Located on the back of the LCD screen is the I2C interface board, and on the interface is an adjustable potentiometer. This adjustment is made with a small screwdriver. You will adjust the potentiometer until a series of rectangles appear – this will allow you to see your programming results.
The Arduino module and editor do not know how to communicate with the I2C interface on the LCD. The parameter to enable the Arduino to send commands to the LCD are in separately downloaded LiquidCrystal_I2C library.
Several examples and code are included in the Library installation, which can provide some reference and programming examples. You can use these example sketches as a basis for developing your own code for the LCD display module.
The I2c address can be changed by shorting the address solder pads on the I2C module. You will need to know the actual address of the LCD before you can start using it.
Once you have the LCD connected and have determined the I2C address, you can proceed to write code to display on the screen. The code segment below is a complete sketch ready for downloading to your Arduino.
The code assumes the I2C address of the LCD screen is at 0x27 and can be adjusted on the LiquidCrystal_I2C lcd = LiquidCrystal_I2C(0x27,16,2); as required.
Similar to the cursor() function, this will create a block-style cursor. Displayed at the position of the next character to be printed and displays as a blinking rectangle.
This function turns off any characters displayed to the LCD. The text will not be cleared from the LCD memory; rather, it is turned off. The LCD will show the screen again when display() is executed.
Scrolling text if you want to print more than 16 or 20 characters in one line then the scrolling text function is convenient. First, the substring with the maximum of characters per line is printed, moving the start column from right to left on the LCD screen. Then the first character is dropped, and the next character is displayed to the substring. This process repeats until the full string has been displayed on the screen.
The LCD driver backpack has an exciting additional feature allowing you to create custom characters (glyph) for use on the screen. Your custom characters work with both the 16×2 and 20×4 LCD units.
A custom character allows you to display any pattern of dots on a 5×8 matrix which makes up each character. You have full control of the design to be displayed.
To aid in creating your custom characters, there are a number of useful tools available on Internet. Here is a LCD Custom Character Generator which we have used.
Text LCD displays are among the simplest. They are popular for their ease of operation and programming thanks to the HD44780 LCD controller and their analogs with the built-in set of characters including ASCII characters. Text displays consist of a matrix of dots combined into rows and columns. Formats of rows and columns are standardized by manufacturers and can be 8x1, 8x2, 10x1, 10x2, 16x1, 16x2, 16x4, 20x1, 20x2, 20x4, 24x1, 24x2. Each LCD controller is capable of operating up to 80 characters so the text LCD display with the 20x4 format is the largest. There are even larger text LCD displays such as 40x4 using several LCD controllers but they are too rare.
Initially, text LCD displays communicate with microcontrollers such as Arduino using parallel 4 or 8-bit interfaces. Some manufacturers add shift registers and port expanders to the display, making it possible to control via I2C or SPI bus. It is done for connecting convenience and reducing the number of mounting wires.
These nodes contain everything you need to start working with displays. You only have to connect your display to the microcontroller and set up proper connection parameters.
If the display communicates via an I2C bus the input parameter is the device address. Put the I2C address value of the byte type to the ADDR pin field.
If the display is controlled using a parallel interface fill in the pin values RS, EN, D4, D5, D6, D7 according to the microcontroller ports through which the display is connected.
The L input pins of the string type have indexes from 1 to 4 and correspond to the lines on your text display. The boolean value at the ACT pin is responsible for updating the display screen if the incoming string values change. Versions controlled by the I2C bus have an additional BL pin which turns on and off the display backlight.
Here is a simple example of using quick start nodes. For the example we use a 16x2 format display controlled by I2C. Connect the display to the microcontroller. Create an empty patch and put the text-lcd-i2c-16x2 quick start node onto it. The LCD screen from this example has the 38 I2C address so we put the 38h value to the ADDR pin.
Let’s print the “HELLO” word on the first line of the text display. Add a constant-string node onto the patch, fill it with the "HELLO" string value, and then link it with the L1 input pin of the quickstart node denoting the first line of the display.
A text can be entered directly into a value field of the input pin. To demonstrate it, let’s print the “WORLD” word on the second line of the display. Put the "WORLD" string value into the L2 pin of the text-lcd-i2c-16x2 quick start node.
Try a more dynamic example. Let’s display the system time, it is the time that has passed since the start of the program. To obtain the time value use the system-time node from the core library.
Remove the "WORLD" value from the L2 pin of the quickstart node and change the text inside of the constant string node to "Time: ". In XOD you can add different strings together or combine a string with a value of another data type using concat or join nodes. Put the concat node onto the patch to unite the static "Time: " text with a value received from the system-time node. To display the combined string on the first line of the display link the output pin of the concat node with the L1 pin of the quickstart node.
If the quickstart node doesn’t suit your task or the display is of a non-common format try to operate some developer nodes from the library xod-dev/text-lcd library.
Define the display you want to use to start working with it in XOD. Find out how your display communicates and place the appropriate device node from the xod-dev/text-lcd library. These nodes construct and output an lcd-device custom type value which is necessary for further work.
Use the text-lcd-parallel-device node if the display is controlled using a parallel interface. This node allows the display connection only through a 4-bit parallel interface. Here enter the pin values RS, EN, D4, D5, D6, D7. These values correspond to the microcontroller ports through which the display is connected.
Use the text-lcd-i2c-device node if the display communicates via an I2C bus. For this node, the input parameter is the device address. Enter the I2C address of your display to the ADDR pin value.
When the device is initialized, you can display text on it. To output text, use the print-at node. It fits any type of LCD device because it is generic.
The input values of the print-at nodes determine what text to display and where it should be on the display screen. Text to display is set at the VAL pin value. The ROW and POS field values set the cell coordinates on the display for the first character. That’s the place where your text begins. The LEN pin value sets the number of character cells for the text to reserve. The text can’t go beyond the boundaries you specify. It is useful, for example, when the length of your text changes during the program or you want to organize free space between several text parts. Printing is performed when the DO pin receives a pulse.
At first, let’s make a patch to print the "HELLO" text. Put the text-lcd-i2c-device node onto the patch and fill it with parameters. According to the format of the display, the number of columns is 20 and the number of rows is 4. The I2C address of the used display is 0x39 so put the 39h byte to the ADDR pin. Add the print-at node and link it with the device node. Put the HELLO to the VAL input pin.
Add one more print-at node and link with the LCD device bus. Put the "WORLD" word into the VAL field. The new text is on the same line as the previous one so set the ROW value to 1. The POS value now should be calculated. The “HELLO” word begins from the cell with index 4 and occupies 5 cells. By adding one empty cell for space and the “HELLO” word length to the previous text position you can get the POS for the new text: it is 10. Link the input DO pin of the new node with output DONE pin of the previous to execute printing sequentially.
Text displays contain a table of images for each character in their memory. These tables are used to generate letters, numbers and other symbols. Almost always a full list of all available characters can be found in the manufacturer’s datasheet. To display a specific symbol, it is necessary to transfer its hexadecimal number from the sign generator table. Use the \x## sequence to embed the character code in the string.
For example, the display that is used for this example contains five symbols which can indicate a battery capacity level. Hexadecimal codes for these symbols are 9B,9C,9D,9E, and 9F. Let’s try to display these symbols on the 3rd line of the display. Let’s change the previous example patch. Leave one print-at node and set up new printing coordinates. Put the 2 value into the ROW pin and let the POS be 7. Then, put the "\x9B\x9C\x9D\x9E\x9F" sequence of the character codes into the VAL pin…
Make your project or device more attractive and informative with a text display. Get started with quickstart nodes from the xod-dev/text-lcd library. Combine strings using concat. For non-standard cases, dive deeper into the library. Use a device node together with various action nodes, such as set-backlight and clear.