can a arduino nano run a tft display manufacturer
Is there a difference between the NANO and MEGA that would account for ST7735 displays working on NANO and not working on MEGA? I"m using the same pins on both....
This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.
This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.
testdrawtext("Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur adipiscing ante sed nibh tincidunt feugiat. Maecenas enim massa, fringilla sed malesuada et, malesuada sit amet turpis. Sed porttitor neque ut ante pretium vitae malesuada nunc bibendum. Nullam aliquet ultrices massa eu hendrerit. Ut sed nisi lorem. In vestibulum purus a tortor imperdiet posuere. ", ST77XX_WHITE);
In this guide we’re going to show you how you can use the 1.8 TFT display with the Arduino. You’ll learn how to wire the display, write text, draw shapes and display images on the screen.
The 1.8 TFT is a colorful display with 128 x 160 color pixels. The display can load images from an SD card – it has an SD card slot at the back. The following figure shows the screen front and back view.
This module uses SPI communication – see the wiring below . To control the display we’ll use the TFT library, which is already included with Arduino IDE 1.0.5 and later.
The TFT display communicates with the Arduino via SPI communication, so you need to include the SPI library on your code. We also use the TFT library to write and draw on the display.
In which “Hello, World!” is the text you want to display and the (x, y) coordinate is the location where you want to start display text on the screen.
The 1.8 TFT display can load images from the SD card. To read from the SD card you use the SD library, already included in the Arduino IDE software. Follow the next steps to display an image on the display:
Note: some people find issues with this display when trying to read from the SD card. We don’t know why that happens. In fact, we tested a couple of times and it worked well, and then, when we were about to record to show you the final result, the display didn’t recognized the SD card anymore – we’re not sure if it’s a problem with the SD card holder that doesn’t establish a proper connection with the SD card. However, we are sure these instructions work, because we’ve tested them.
In this guide we’ve shown you how to use the 1.8 TFT display with the Arduino: display text, draw shapes and display images. You can easily add a nice visual interface to your projects using this display.
In this article, you will learn how to use TFT LCDs by Arduino boards. From basic commands to professional designs and technics are all explained here.
In electronic’s projects, creating an interface between user and system is very important. This interface could be created by displaying useful data, a menu, and ease of access. A beautiful design is also very important.
There are several components to achieve this. LEDs, 7-segments, Character and Graphic displays, and full-color TFT LCDs. The right component for your projects depends on the amount of data to be displayed, type of user interaction, and processor capacity.
TFT LCD is a variant of a liquid-crystal display (LCD) that uses thin-film-transistor (TFT) technology to improve image qualities such as addressability and contrast. A TFT LCD is an active matrix LCD, in contrast to passive matrix LCDs or simple, direct-driven LCDs with a few segments.
In Arduino-based projects, the processor frequency is low. So it is not possible to display complex, high definition images and high-speed motions. Therefore, full-color TFT LCDs can only be used to display simple data and commands.
In this article, we have used libraries and advanced technics to display data, charts, menu, etc. with a professional design. This can move your project presentation to a higher level.
In electronic’s projects, creating an interface between user and system is very important. This interface could be created by displaying useful data, a menu, and ease of access. A beautiful design is also very important.
There are several components to achieve this. LEDs, 7-segments, Character and Graphic displays, and full-color TFT LCDs. The right component for your projects depends on the amount of data to be displayed, type of user interaction, and processor capacity.
TFT LCD is a variant of a liquid-crystal display (LCD) that uses thin-film-transistor (TFT) technology to improve image qualities such as addressability and contrast. A TFT LCD is an active matrix LCD, in contrast to passive matrix LCDs or simple, direct-driven LCDs with a few segments.
In Arduino-based projects, the processor frequency is low. So it is not possible to display complex, high definition images and high-speed motions. Therefore, full-color TFT LCDs can only be used to display simple data and commands.
In this article, we have used libraries and advanced technics to display data, charts, menu, etc. with a professional design. This can move your project presentation to a higher level.
Size of displays affects your project parameters. Bigger Display is not always better. if you want to display high-resolution images and signs, you should choose a big size display with higher resolution. But it decreases the speed of your processing, needs more space and also needs more current to run.
After choosing the right display, It’s time to choose the right controller. If you want to display characters, tests, numbers and static images and the speed of display is not important, the Atmega328 Arduino boards (such as Arduino UNO) are a proper choice. If the size of your code is big, The UNO board may not be enough. You can use Arduino Mega2560 instead. And if you want to show high resolution images and motions with high speed, you should use the ARM core Arduino boards such as Arduino DUE.
In electronics/computer hardware a display driver is usually a semiconductor integrated circuit (but may alternatively comprise a state machine made of discrete logic and other components) which provides an interface function between a microprocessor, microcontroller, ASIC or general-purpose peripheral interface and a particular type of display device, e.g. LCD, LED, OLED, ePaper, CRT, Vacuum fluorescent or Nixie.
The display driver will typically accept commands and data using an industry-standard general-purpose serial or parallel interface, such as TTL, CMOS, RS232, SPI, I2C, etc. and generate signals with suitable voltage, current, timing and demultiplexing to make the display show the desired text or image.
The LCDs manufacturers use different drivers in their products. Some of them are more popular and some of them are very unknown. To run your display easily, you should use Arduino LCDs libraries and add them to your code. Otherwise running the display may be very difficult. There are many free libraries you can find on the internet but the important point about the libraries is their compatibility with the LCD’s driver. The driver of your LCD must be known by your library. In this article, we use the Adafruit GFX library and MCUFRIEND KBV library and example codes. You can download them from the following links.
You must add the library and then upload the code. If it is the first time you run an Arduino board, don’t worry. Just follow these steps:Go to www.arduino.cc/en/Main/Software and download the software of your OS. Install the IDE software as instructed.
By these two functions, You can find out the resolution of the display. Just add them to the code and put the outputs in a uint16_t variable. Then read it from the Serial port by Serial.println(); . First add Serial.begin(9600); in setup().
First you should convert your image to hex code. Download the software from the following link. if you don’t want to change the settings of the software, you must invert the color of the image and make the image horizontally mirrored and rotate it 90 degrees counterclockwise. Now add it to the software and convert it. Open the exported file and copy the hex code to Arduino IDE. x and y are locations of the image. sx and sy are sizes of image. you can change the color of the image in the last input.
Upload your image and download the converted file that the UTFT libraries can process. Now copy the hex code to Arduino IDE. x and y are locations of the image. sx and sy are size of the image.
In this template, We just used a string and 8 filled circles that change their colors in order. To draw circles around a static point ,You can use sin(); and cos(); functions. you should define the PI number . To change colors, you can use color565(); function and replace your RGB code.
In this template, We converted a .jpg image to .c file and added to the code, wrote a string and used the fade code to display. Then we used scroll code to move the screen left. Download the .h file and add it to the folder of the Arduino sketch.
In this template, We used sin(); and cos(); functions to draw Arcs with our desired thickness and displayed number by text printing function. Then we converted an image to hex code and added them to the code and displayed the image by bitmap function. Then we used draw lines function to change the style of the image. Download the .h file and add it to the folder of the Arduino sketch.
In this template, We created a function which accepts numbers as input and displays them as a pie chart. We just use draw arc and filled circle functions.
In this template, We added a converted image to code and then used two black and white arcs to create the pointer of volumes. Download the .h file and add it to the folder of the Arduino sketch.
In this template, We added a converted image and use the arc and print function to create this gauge. Download the .h file and add it to folder of the Arduino sketch.
while (a < b) { Serial.println(a); j = 80 * (sin(PI * a / 2000)); i = 80 * (cos(PI * a / 2000)); j2 = 50 * (sin(PI * a / 2000)); i2 = 50 * (cos(PI * a / 2000)); tft.drawLine(i2 + 235, j2 + 169, i + 235, j + 169, tft.color565(0, 255, 255)); tft.fillRect(200, 153, 75, 33, 0x0000); tft.setTextSize(3); tft.setTextColor(0xffff); if ((a/20)>99)
while (b < a) { j = 80 * (sin(PI * a / 2000)); i = 80 * (cos(PI * a / 2000)); j2 = 50 * (sin(PI * a / 2000)); i2 = 50 * (cos(PI * a / 2000)); tft.drawLine(i2 + 235, j2 + 169, i + 235, j + 169, tft.color565(0, 0, 0)); tft.fillRect(200, 153, 75, 33, 0x0000); tft.setTextSize(3); tft.setTextColor(0xffff); if ((a/20)>99)
In this template, We display simple images one after each other very fast by bitmap function. So you can make your animation by this trick. Download the .h file and add it to folder of the Arduino sketch.
In this template, We just display some images by RGBbitmap and bitmap functions. Just make a code for touchscreen and use this template. Download the .h file and add it to folder of the Arduino sketch.
The speed of playing all the GIF files are edited and we made them faster or slower for better understanding. The speed of motions depends on the speed of your processor or type of code or size and thickness of elements in the code.
3. What if Adafruit libraries are not displaying with the desired colors. This is a little hard to solve. Our suggestion, create a small function that display each color and note the number. Affordable electronics require a little more hacking, that"s all, it"s part of the fun. Check the following colors first, and adjust accordingly.
In this Arduino touch screen tutorial we will learn how to use TFT LCD Touch Screen with Arduino. You can watch the following video or read the written tutorial below.
For this tutorial I composed three examples. The first example is distance measurement using ultrasonic sensor. The output from the sensor, or the distance is printed on the screen and using the touch screen we can select the units, either centimeters or inches.
The next example is controlling an RGB LED using these three RGB sliders. For example if we start to slide the blue slider, the LED will light up in blue and increase the light as we would go to the maximum value. So the sliders can move from 0 to 255 and with their combination we can set any color to the RGB LED, but just keep in mind that the LED cannot represent the colors that much accurate.
The third example is a game. Actually it’s a replica of the popular Flappy Bird game for smartphones. We can play the game using the push button or even using the touch screen itself.
As an example I am using a 3.2” TFT Touch Screen in a combination with a TFT LCD Arduino Mega Shield. We need a shield because the TFT Touch screen works at 3.3V and the Arduino Mega outputs are 5 V. For the first example I have the HC-SR04 ultrasonic sensor, then for the second example an RGB LED with three resistors and a push button for the game example. Also I had to make a custom made pin header like this, by soldering pin headers and bend on of them so I could insert them in between the Arduino Board and the TFT Shield.
Here’s the circuit schematic. We will use the GND pin, the digital pins from 8 to 13, as well as the pin number 14. As the 5V pins are already used by the TFT Screen I will use the pin number 13 as VCC, by setting it right away high in the setup section of code.
As the code is a bit longer and for better understanding I will post the source code of the program in sections with description for each section. And at the end of this article I will post the complete source code.
I will use the UTFT and URTouch libraries made by Henning Karlsen. Here I would like to say thanks to him for the incredible work he has done. The libraries enable really easy use of the TFT Screens, and they work with many different TFT screens sizes, shields and controllers. You can download these libraries from his website, RinkyDinkElectronics.com and also find a lot of demo examples and detailed documentation of how to use them.
After we include the libraries we need to create UTFT and URTouch objects. The parameters of these objects depends on the model of the TFT Screen and Shield and these details can be also found in the documentation of the libraries.
Next we need to define the fonts that are coming with the libraries and also define some variables needed for the program. In the setup section we need to initiate the screen and the touch, define the pin modes for the connected sensor, the led and the button, and initially call the drawHomeSreen() custom function, which will draw the home screen of the program.
So now I will explain how we can make the home screen of the program. With the setBackColor() function we need to set the background color of the text, black one in our case. Then we need to set the color to white, set the big font and using the print() function, we will print the string “Arduino TFT Tutorial” at the center of the screen and 10 pixels down the Y – Axis of the screen. Next we will set the color to red and draw the red line below the text. After that we need to set the color back to white, and print the two other strings, “by HowToMechatronics.com” using the small font and “Select Example” using the big font.
Next is the distance sensor button. First we need to set the color and then using the fillRoundRect() function we will draw the rounded rectangle. Then we will set the color back to white and using the drawRoundRect() function we will draw another rounded rectangle on top of the previous one, but this one will be without a fill so the overall appearance of the button looks like it has a frame. On top of the button we will print the text using the big font and the same background color as the fill of the button. The same procedure goes for the two other buttons.
Now we need to make the buttons functional so that when we press them they would send us to the appropriate example. In the setup section we set the character ‘0’ to the currentPage variable, which will indicate that we are at the home screen. So if that’s true, and if we press on the screen this if statement would become true and using these lines here we will get the X and Y coordinates where the screen has been pressed. If that’s the area that covers the first button we will call the drawDistanceSensor() custom function which will activate the distance sensor example. Also we will set the character ‘1’ to the variable currentPage which will indicate that we are at the first example. The drawFrame() custom function is used for highlighting the button when it’s pressed. The same procedure goes for the two other buttons.
drawDistanceSensor(); // It is called only once, because in the next iteration of the loop, this above if statement will be false so this funtion won"t be called. This function will draw the graphics of the first example.
getDistance(); // Gets distance from the sensor and this function is repeatedly called while we are at the first example in order to print the lasest results from the distance sensor
So the drawDistanceSensor() custom function needs to be called only once when the button is pressed in order to draw all the graphics of this example in similar way as we described for the home screen. However, the getDistance() custom function needs to be called repeatedly in order to print the latest results of the distance measured by the sensor.
Here’s that function which uses the ultrasonic sensor to calculate the distance and print the values with SevenSegNum font in green color, either in centimeters or inches. If you need more details how the ultrasonic sensor works you can check my particular tutorialfor that. Back in the loop section we can see what happens when we press the select unit buttons as well as the back button.
Ok next is the RGB LED Control example. If we press the second button, the drawLedControl() custom function will be called only once for drawing the graphic of that example and the setLedColor() custom function will be repeatedly called. In this function we use the touch screen to set the values of the 3 sliders from 0 to 255. With the if statements we confine the area of each slider and get the X value of the slider. So the values of the X coordinate of each slider are from 38 to 310 pixels and we need to map these values into values from 0 to 255 which will be used as a PWM signal for lighting up the LED. If you need more details how the RGB LED works you can check my particular tutorialfor that. The rest of the code in this custom function is for drawing the sliders. Back in the loop section we only have the back button which also turns off the LED when pressed.
In order the code to work and compile you will have to include an addition “.c” file in the same directory with the Arduino sketch. This file is for the third game example and it’s a bitmap of the bird. For more details how this part of the code work you can check my particular tutorial. Here you can download that file:
drawDistanceSensor(); // It is called only once, because in the next iteration of the loop, this above if statement will be false so this funtion won"t be called. This function will draw the graphics of the first example.
getDistance(); // Gets distance from the sensor and this function is repeatedly called while we are at the first example in order to print the lasest results from the distance sensor
We have used Liquid Crystal Displays in the DroneBot Workshop many times before, but the one we are working with today has a bit of a twist – it’s a circle! Perfect for creating electronic gauges and special effects.
LCD, or Liquid Crystal Displays, are great choices for many applications. They aren’t that power-hungry, they are available in monochrome or full-color models, and they are available in all shapes and sizes.
Today we will see how to use this display with both an Arduino and an ESP32. We will also use a pair of them to make some rather spooky animated eyeballs!
Waveshare actually has several round LCD modules, I chose the 1.28-inch model as it was readily available on Amazon. You could probably perform the same experiments using a different module, although you may require a different driver.
There are also some additional connections to the display. One of them, DC, sets the display into either Data or Command mode. Another, BL, is a control for the display’s backlight.
The above illustration shows the connections to the display. The Waveshare display can be used with either 3.3 or 5-volt logic, the power supply voltage should match the logic level (although you CAN use a 5-volt supply with 3.3-volt logic).
Another difference is simply with the labeling on the display. There are two pins, one labeled SDA and the other labeled SCL. At a glance, you would assume that this is an I2C device, but it isn’t, it’s SPI just like the Waveshare device.
This display can be used for the experiments we will be doing with the ESP32, as that is a 3.3-volt logic microcontroller. You would need to use a voltage level converter if you wanted to use one of these with an Arduino Uno.
The Arduino Uno is arguably the most common microcontroller on the planet, certainly for experiments it is. However, it is also quite old and compared to more modern devices its 16-MHz clock is pretty slow.
The Waveshare device comes with a cable for use with the display. Unfortunately, it only has female ends, which would be excellent for a Raspberry Pi (which is also supported) but not too handy for an Arduino Uno. I used short breadboard jumper wires to convert the ends into male ones suitable for the Arduino.
Once you have everything hooked up, you can start coding for the display. There are a few ways to do this, one of them is to grab the sample code thatWaveshare provides on their Wiki.
The Waveshare Wiki does provide some information about the display and a bit of sample code for a few common controllers. It’s a reasonable support page, unfortunately, it is the only support that Waveshare provides(I would have liked to see more examples and a tutorial, but I guess I’m spoiled by Adafruit and Sparkfun LOL).
Open the Arduino folder. Inside you’ll find quite a few folders, one for each display size that Waveshare supports. As I’m using the 1.28-inch model, I selected theLCD_1inch28folder.
Once you do that, you can open your Arduino IDE and then navigate to that folder. Inside the folder, there is a sketch file namedLCD_1inch28.inowhich you will want to open.
When you open the sketch, you’ll be greeted by an error message in your Arduino IDE. The error is that two of the files included in the sketch contain unrecognized characters. The IDE offers the suggestion of fixing these with the “Fix Encoder & Reload” function (in the Tools menu), but that won’t work.
The error just seems to be with a couple of the Chinese characters used in the comments of the sketch. You can just ignore the error, the sketch will compile correctly in spite of it.
The code is pretty basic, I’m not repeating all of it here, as it consists of several files. But we can gather quite a bit of knowledge from the main file, as shown here.
You can see from the code that after loading some libraries we initialize the display, set its backlight level (you can use PWM on the BL pin to set the level), and paint a new image. We then proceed to draw lines and strings onto the display.
Unfortunately, Waveshare doesn’t offer documentation for this, but you can gather quite a bit of information by reading theLCD_Driver.cppfile, where the functions are somewhat documented.
After uploading the code, you will see the display show a fake “clock”. It’s a static display, but it does illustrate how you can use this with the Waveshare code.
This library is an extension of the Adafruit GFX library, which itself is one of the most popular display libraries around. Because of this, there isextensive documentation for this libraryavailable from Adafruit. This makes the library an excellent choice for those who want to write their own applications.
As with the Waveshare sample, this file just prints shapes and text to the display. It is quite an easy sketch to understand, especially with the Adafruit documentation.
The sketch finishes by printing some bizarre text on the display. The text is an excerpt from The Hitchhiker’s Guide to the Galaxy by Douglas Adams, and it’s a sample of Vogon poetry, which is considered to be the third-worst in the Galaxy!
Here is the hookup for the ESP32 and the GC9A01 display. As with most ESP32 hookup diagrams, it is important to use the correct GPIO numbers instead of physical pins. The diagram shows the WROVER, so if you are using a different module you’ll need to consult its documentation to ensure that you hook it up properly.
The TFT_eSPI library is ideal for this, and several other, displays. You can install it through your Arduino IDE Library Manager, just search for “TFT_eSPI”.
There is a lot of demo code included with the library. Some of it is intended for other display sizes, but there are a few that you can use with your circular display.
To test out the display, you can use theColour_Test sketch, found inside the Test and Diagnostic menu item inside the library samples. While this sketch was not made for this display, it is a good way to confirm that you have everything hooked up and configured properly.
A great demo code sample is theAnimated_dialsketch, which is found inside theSpritesmenu item. This demonstration code will produce a “dial” indicator on the display, along with some simulated “data” (really just a random number generator).
In order to run this sketch, you’ll need to install another library. Install theTjpeg_DecoderLibrary from Library Manager. Once you do, the sketch will compile, and you can upload it to your ESP32.
One of my favorite sketches is the Animated Eyes sketch, which displays a pair of very convincing eyeballs that move. Although it will work on a single display, it is more effective if you use two.
The first thing we need to do is to hook up a second display. To do this, you connect every wire in parallel with the first display, except for the CS (chip select) line.
You can also hook up some optional components to manually control the two “eyeballs”. You’ll need an analog joystick and a couple of momentary contact, normally open pushbutton switches.
The Animated Eyes sketch can be found within the sample files for the TFT_eSPI library, under the “generic” folder. Assuming that you have wired up the second GC9A01 display, you’ll want to use theAnimated_Eyes_2sketch.
The GC9A01 LCD module is a 1.28-inch round display that is useful for instrumentation and other similar projects. Today we will learn how to use this display with an Arduino Uno and an ESP32.
Adding a display to your Arduino can serve many purposes. Since a common use for microcontrollers is reading data from sensors, a display allows you to see this data in real-time without needing to use the serial monitor within the Arduino IDE. It also allows you to give your projects a personal touch with text, images, or even interactivity through a touch screen.
Transparent Organic Light Emitting Diode (TOLED) is a type of LED that, as you can guess, has a transparent screen. It builds on the now common OLED screens found in smartphones and TVs, but with a transparent display, offers up some new possibilities for Arduino screens.
Take for example this brilliant project that makes use of TOLED displays. By stacking 10 transparent OLED screens in parallel, creator Sean Hodgins has converted a handful of 2D screens into a solid-state volumetric display. This kind of display creates an image that has 3-dimensional depth, taking us one step closer to the neon, holographic screens we imagine in the future.
Crystalfontz has a tiny monochrome (light blue) 1.51" TOLED that has 128x56 pixels. As the technology is more recent than the following displays in this list, the cost is higher too. One of these screens can be purchased for around $26, but for certain applications, it might just be worth it.
The liquid crystal display (LCD) is the most common display to find in DIY projects and home appliances alike. This is no surprise as they are simple to operate, low-powered, and incredibly cheap.
This type of display can vary in design. Some are larger, with more character spaces and rows; some come with a backlight. Most attach directly to the board through 8 or 12 connections to the Arduino pins, making them incompatible with boards with fewer pins available. In this instance, buy a screen with an I2C adapter, allowing control using only four pins.
Available for only a few dollars (or as little as a couple of dollars on AliExpress with included I2C adapter), these simple displays can be used to give real-time feedback to any project.
The screens are capable of a large variety of preset characters which cover most use cases in a variety of languages. You can control your LCD using the Liquid Crystal Library provided by Arduino. The display() and noDisplay() methods write to the LCD, as shown in the official tutorial on the Arduino website.
Are you looking for something simple to display numbers and a few basic characters? Maybe you are looking for something with that old-school arcade feel? A seven-segment display might suit your needs.
These simple boards are made up of 7 LEDs (8 if you include the dot), and work much like normal LEDs with a common Anode or Cathode connection. This allows them to take one connection to V+ (or GND for common cathode) and be controlled from the pins of your Arduino. By combining these pins in code, you can create numbers and several letters, along with more abstract designs—anything you can dream up using the segments available!
Next on our list is the 5110 display, also affectionately known as the Nokia display due to its wide use in the beloved and nigh indestructible Nokia 3310.
These tiny LCD screens are monochrome and have a screen size of 84 x 48 pixels, but don"t let that fool you. Coming in at around $2 on AliExpress, these displays are incredibly cheap and usually come with a backlight as standard.
Depending on which library you use, the screen can display multiple lines of text in various fonts. It"s also capable of displaying images, and there is free software designed to help get your creations on screen. While the refresh rate is too slow for detailed animations, these screens are hardy enough to be included in long-term, always-on projects.
For a step up in resolution and functionality, an OLED display might be what you are looking for. At first glance, these screens look similar to the 5110 screens, but they are a significant upgrade. The standard 0.96" screens are 128 x 64 monochrome, and come with a backlight as standard.
They connect to your Arduino using I2C, meaning that alongside the V+ and GND pins, only two further pins are required to communicate with the screen. With various sizes and full color options available, these displays are incredibly versatile.
For a project to get you started with OLED displays, our Electronic D20 build will teach you everything you need to know -- and you"ll end up with the ultimate geeky digital dice for your gaming sessions!
These displays can be used in the same way as the others we have mentioned so far, but their refresh rate allows for much more ambitious projects. The basic monochrome screen is available on Amazon.
Thin-film-transistor liquid-crystal displays (TFT LCDs) are in many ways another step up in quality when it comes to options for adding a screen to your Arduino. Available with or without touchscreen functionality, they also add the ability to load bitmap files from an on-board microSD card slot.
Arduino have an official guide for setting up their non-touchscreen TFT LCD screen. For a video tutorial teaching you the basics of setting up the touchscreen version, YouTuber educ8s.tv has you covered:
https://www.anrdoezrs.net/links/7251228/type/dlg/sid/UUmuoUeUpU43826/https://www.youtube.com/supported_browsers?next_url=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DIcIY2pWursc
With the touchscreen editions of these screens costing less than $10 on AliExpress, these displays are another great choice for when you need a nice-looking display for your project.
Looking for something a little different? An E-paper (or E-ink depending on who you ask) display might be right for you. These screens differ from the others giving a much more natural reading experience, it is no surprise that this technology is the cornerstone of almost every e-reader available.
The reason these displays look so good is down to the way they function. Each "pixel" contains charged particles between two electrodes. By switching the charge of each electrode, you can influence the negatively charged black particles to swap places with the positively charged white particles.
This is what gives e-paper such a natural feel. As a bonus, once the ink is moved to its location, it uses no power to keep it there. This makes these displays naturally low-power to operate.
This article has covered most options available for Arduino displays, though there are definitely more weird and wonderful ways to add feedback to your DIY devices.
Now that you have an idea of what is out there, why not incorporate a screen into your DIY smart home setup? If retro gaming is more your thing, why not create some retro games on Arduino?
In this part of my series on the Arduino Nano Every, I take a look at a couple of common displays to see how they work with the Nano Every. In short – pretty well. Read on for how I hooked up I2C OLED and an SPI TFT displays.
I thought I’d try an OLED display first. There are some very common ones using the SSD1306 as the interface chip that hook up to the I2C bus. The Nano Every maintains the original Nano’s I2C pins:
You have to watch out when wiring up your OLED display as there are a number of different combinations of pinout! In my own collection I have displays with different arrangements for VCC and GND for example.
The basic circuit is as shown on the left. It needs just four connections: VCC (5V), GND, SCL (A5), SDA (A4). Also above you can see how you could wire it up for two displays, but one of them will need to have the I2C address changed, before you can do this, but more on that in a moment.
I’m using the Adafruit graphics library for the SSD1306 range of displays. The default is to use hardware I2C so all that is required is to set the I2C address to match the display you have. My displays come with a default address of 0x3C (although it is marked as 0x78 on the actual display if it is marked at all – the this is due to the least significant bit not be part of the address itself, but it is often included – so 0x3C is the address, but “on the wire” it has to be shifted one bit to the left, which then “looks” like 0x78… but anyway…).
The datasheet referred to is for Adafruit’s own displays where the 128×64 is on 0x3D and the 128×32 is on 0x3C. For most other displays the default is probably like mine – 0x3C.
I’ve attempted to run two displays before, but an Arduino Uno or Nano just doesn’t have enough memory to support two complete frame buffers for two 128×64 displays. I’ve managed to configure them as 128×32 displays and got two of them running, but that is all. So I was keen to try with the Nano Every as it has more memory!
Some displays have a jumper on the back to let you change the address, but on mine they are a fiddly surface mount resistor which needs desoldering from one link and moving to another. Some displays aren’t configurable at all. I have some of both, as shown below.
You can perhaps spot how my dodgy soldering has just about managed to move the jumper from the 0x78 position to the 0x7A position! Mind you, it took a couple of goes!
In terms of showing it working, I replicated a couple of lines of the Adafruit demo code to get as far as showing the logo on the second screen. I didn’t change anything else. At the top of the file, the following lines need to be added.
This means that if a second display (on address 0x3D) is found then it will show the initial logo and then nothing else for that display, whilst the code goes on the run through the full demo on the other display (on address 0x3C).
Note the display in the Fritzing diagram below is just for illustration as I don’t have an exact match (the observant among you might notice I have one extra pin on mine!). Be sure to check and double check the required pins and expected voltage level for your display module.
One of the differences between the Nano Every and the original Nano is that the SPI SS pin is on pin 8, not pin 10. This means the required pin connections for my display are as follows:
I was anticipating some issues with the displays, but actually they worked pretty well. Most of this is down to the fact that the Wire (I2C) and SPI Libraries are part of the “built-in” library support provided by the Arduino environment and the low-level drivers for the displays provided by Adafruit are written well with minimal reliance on hardware specific features of any single microcontroller.
This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.
Hi guys, welcome to today’s tutorial. Today, we will look on how to use the 1.8″ ST7735 colored TFT display with Arduino. The past few tutorials have been focused on how to use the Nokia 5110 LCD display extensively but there will be a time when we will need to use a colored display or something bigger with additional features, that’s where the 1.8″ ST7735 TFT display comes in.
The ST7735 TFT display is a 1.8″ display with a resolution of 128×160 pixels and can display a wide range of colors ( full 18-bit color, 262,144 shades!). The display uses the SPI protocol for communication and has its own pixel-addressable frame buffer which means it can be used with all kinds of microcontroller and you only need 4 i/o pins. To complement the display, it also comes with an SD card slot on which colored bitmaps can be loaded and easily displayed on the screen.
The schematics for this project is fairly easy as the only thing we will be connecting to the Arduino is the display. Connect the display to the Arduino as shown in the schematics below.
Due to variation in display pin out from different manufacturers and for clarity, the pin connection between the Arduino and the TFT display is mapped out below:
We will use two libraries from Adafruit to help us easily communicate with the LCD. The libraries include the Adafruit GFX library which can be downloaded here and the Adafruit ST7735 Library which can be downloaded here.
We will use two example sketches to demonstrate the use of the ST7735 TFT display. The first example is the lightweight TFT Display text example sketch from the Adafruit TFT examples. It can be accessed by going to examples -> TFT -> Arduino -> TFTDisplaytext. This example displays the analog value of pin A0 on the display. It is one of the easiest examples that can be used to demonstrate the ability of this display.
The second example is the graphics test example from the more capable and heavier Adafruit ST7735 Arduino library. I will explain this particular example as it features the use of the display for diverse purposes including the display of text and “animated” graphics. With the Adafruit ST7735 library installed, this example can be accessed by going to examples -> Adafruit ST7735 library -> graphics test.
The first thing, as usual, is to include the libraries to be used after which we declare the pins on the Arduino to which our LCD pins are connected to. We also make a slight change to the code setting reset pin as pin 8 and DC pin as pin 9 to match our schematics.
Next, we create an object of the library with the pins to which the LCD is connected on the Arduino as parameters. There are two options for this, feel free to choose the most preferred.
Next, we move to the void setup function where we initialize the screen and call different test functions to display certain texts or images. These functions can be edited to display what you want based on your project needs.
testdrawtext("Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur adipiscing ante sed nibh tincidunt feugiat. Maecenas enim massa, fringilla sed malesuada et, malesuada sit amet turpis. Sed porttitor neque ut ante pretium vitae malesuada nunc bibendum. Nullam aliquet ultrices massa eu hendrerit. Ut sed nisi lorem. In vestibulum purus a tortor imperdiet posuere. ", ST7735_WHITE);
All the functions called under the void setup function, perform different functions, some draw lines, some, boxes and text with different font, color and size and they can all be edited to do what your project needs.
The complete code for this is available under the libraries example on the Arduino IDE. Don’t forget to change the DC and the RESET pin configuration in the code to match the schematics.
Uploading the code to the Arduino board brings a flash of different shapes and text with different colors on the display. I captured one and its shown in the image below.
That’s it for this tutorial guys, what interesting thing are you going to build with this display? Let’s get the conversation started. Feel free to reach me via the comment section if you have any questions as regards this project.
In this tutorial we shall see how to interface Maker Nano RP2040 with HC-SR04P and TFT 1.44″. Ultimately to measure the distance and display it on the tft display.
The circuit for this tutorial is constructed on a breadboard with jumper wires. The connection between the Maker Nano RP2040 and Ultrasonic Sensor HC-SR04P and Maker Nano RP2040 with 1.44′ TFT display is as shown in below figure
The code for this tutorial is as shown below. Make sure to download the necessary library from the library manager. The “Ultrasonic.h” library can be downloaded from the Cytron GitHub page.
This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.
The first Arduino board based on an ARM processor. Features 2 channel 12-bit DAC, 84 MHz clock frequency, 32-bit architecture, 512 KB flash and 96 KB SRAM. Unlike most Arduino boards, it operates on 3.3 V and is not 5 V tolerant.
Arduino Yún is the combination of a classic Arduino Leonardo (based on the ATmega32U4 processor) with a Wi-Fi system on a chip (SoC) running Linino, a MIPS Linux based on OpenWrt.
This uses the same ATmega328 as late-model Duemilanove, but whereas the Duemilanove used an FTDI chip for USB, the Uno uses an ATmega16U2 (ATmega8U2 before rev3) programmed as a serial converter.
Total memory of 256 KB. Uses the ATmega16U2 (ATmega8U2 before Rev3) USB chip. Most shields that were designed for the Duemilanove, Diecimila, or Uno will fit, but a few shields will not fit because of interference with the extra pins.
Although the hardware and software designs are freely available under copyleft licenses, the developers have requested that the name "Arduino" be exclusive to the official product and not be used for derivative works without permission. The official policy document on the use of the Arduino name emphasizes that the project is open to incorporating work by others into the official product.
As a result of the protected naming conventions of the Arduino, a group of Arduino users forked the Arduino Diecimila, releasing an equivalent board called Freeduino. The name "Freeduino" is not trademarked and is free to use for any purpose.
The following boards are fully or almost fully compatible with both the Arduino hardware and software, including being able to accept "shield" daughterboards.
Seeeduino V4.2 is an Arduino-compatible board, which is based on ATmega328P MCU, Arduino UNO bootloader, and with an ATmega16U2 as a UART-to-USB converter. The three on-board Grove interface can make your board connect to over 300 Grove modules.
The Seeeduino Cortex-M0+ features an Atmel SAMD21 MCU which is based on a 32-bit ARM® Cortex®-M0+ processor. With the help of this powerful core, SAMD21 is much more powerful than AVR and can achieve many functions and more complex calculations that cannot be implemented on AVR chips.
SMART™ SAM D21 is a series of low-power microcontrollers using the 32-bit ARM® Cortex®-M0+ processor with 256 KB flash and 32 KB of SRAM. The Seeeduino Lotus Cortex-M0+ can be considered as a combination of Seeeduino and Base Shield.
LoRaWAN Class A/C Ultra long range communication Ultra low power consumption Arduino programming (based on Arduino Zero bootloader). Embedded with lithium battery management chip 4 Grove connectors onboard
LoRaWAN Class A/C Ultra long range of communication GPS communication Ultra low power consumption Arduino programming (based on Arduino Zero bootloader). Embedded with lithim battery management chip 4 Grove connectors onboard
Built around the ATmega32U4 chip Provide up to 20 Digital I/Os On board switch for 3. 3V and 5 V dual working mode 2 built-in Grove interface Built-in Micro USB for power supply and programming
Seeeduino Ethernet is a compact and multifunctional development platform, which merges data logging and processing, device control and Ethernet communication together into one
Built on Dragino Wi-Fi IoT module HE and ATmega32U4 Compatible with Arduino Yun Support 2.4 GHz Wi-Fi, 802.11 b/g/n Built-in Ethernet port and USB 2.0 Running OpenWrt system
Upgraded from Seeeduino Stalker V3.0 Lower power consumption (down to 100uA in sleep mode) Extra toggle switch for X-bee area 2 extra toggle switches for selecting the INT pin connected to RTC 3.3 V and 5 V dual mode
Serial communication on pin D0 (RX) and pin D1 (TX). used to receive (RX) and transmit (TX) TTL serial data. These pins are connected to the corresponding pins of the FTDI USB-to-TTL serial chip. By sliding the switch (S1), RX/TX pins can be re-routed to Bluetooth UART connector.
inviot U1 (arduino-compatible) all-in-one board with LCD, rotary encoder, RTC DS3231, EEPROM, buzzer, push buttons, RGB Led, NRF24 plug, and ESP8266 plug.Added features:
Japanese Arduino compatible kit using Uno board setting. Includes two mini-B USB sockets, 1602 LCD socket, 5 V or 3.3 V power selection, breadboard area.
Platino is an Arduino compatible board that supports 28-pin and 40-pin AVR devices. The board features multiple footprints for user interface elements like LCDs, pushbuttons, rotary encoders, LEDs and buzzer, supported by an extensive library. Bootloaders are available for all supported processors. On its backside are Arduino shield compatible connectors plus other extension connectors.
A low cost Arduino clone using the ATmega168/ATmega 328/ATmega 8 and designed for prototyping, it includes onboard peripherals such as an RGB LED, switches, IR LED, TSOP and LDR.
Minimalistic version of Arduino: small, without serial converter. Available as a kit, board only or assembled. Smaller than Arduino, with different footprint.
It has an improved automatic voltage selector, resolves problems during programming caused by shields that use the serial port, with an automatic serial port selector, and has the LM1117 voltage regulator.
Fully Arduino compatible board, that fits perfectly on a Raspberry Pi, and can be programmed through the Raspberry Pi"s serial interface. It also breaks out the Raspberry Pi"s SPI and I²C interfaces, or can be used as a stand-alone Arduino when powered with the external power header.
A low cost, high power, shield-compatible, complete Arduino-compatible board kit. Based on the Duemilanove, it comes with a 5 V / 1 A voltage regulator (optional 3.3 V regulator). Designed for low component count and for ease of assembly.
Includes 14 color-coded 3-pin connectors for direct cable connection of servos, electronic bricks, etc., and six color-coded3-pin connectors to analog inputs for electronic bricks, etc. Provides improved 3.3 V regulator supplying 500 mA, and optional 3.3 V operation. Switching regulator provides 5 V 2 A from up to 20 V external supply.
Includes 6 color-coded 3-pin connectors for direct cable connection of servos, electronic bricks, etc., and 6 3-pin connectors to analog inputs for electronic bricks, etc. Provides improved 3.3 V regulator supplying 500 mA, and optional 3.3 V operation.
A South African Arduino-compatible board derived from the Duemilanove, it features mostly through-hole construction except for the SMD FT232RL IC, power selection switches, option for a Phoenix power connector instead of DC jack, extra I/O pads for using Veroboard as shields. Designed for easy assembly in countries where exotic components are hard to find. PCB layout and board now available on Circuitmaker as Open Source Hardware
Can act as a host for an Android device and is compatible with the Android Open Accessory Development Kit, Micro SD card slot, D13 pin isolated with a MOSFET of which can also be used as an input.
Includes both 3.3 V and 5 V regulators for shields, D13 pin isolated with a MOSFET of which can also be used as an input. Can be connect to Arduino using CAT5 cable.
Arduino Due with onboard Ethernet, software-compatible with Arduino Ethernet shield, D13 pin isolated with a MOSFET of which can also be used as an input.
Uses Arduino Due form factor and largely compatible pin allocation. Runs at 5 V, but can be modified to run at 3.3 V. Triple-core, 32-bit, 200 MHz Aurix processor. 4 MB flash, 550 kB SRAM, 128 kB DataFlash. Optional CIC61508 safety monitor. Arduino IDE supported via add-in, plus Eclipse-based tools with multicore debugger.
MBZ Pro Mega is an Arduino compatible stand-alone board with a prototyping area and built-in Wi-Fi. Featuring a compact design, it helps to shrink Arduino projects and make it permanent.
Embed version of Mega 2560 CH340G/ATmega2560 - compatible with Arduino Mega 2560 board. Built on the Atmel ATmega2560 microcontroller and USB-UART interface chip CH340G.
The board used the chip CH340G as converter UART-USB. When working in the frequency 12 MHz, giving a stable result of data exchange (need install drivers to computer).
Compatible with Arduino shields and Pmod extension cards. ARM Cortex-A9 CPU (max frequency 667 MHz) and FPGA fabric, 512 Mb RAM, 8 Gb eMMC storage, on-board Wi-Fi and Bluetooth, USB 2.0 host.
Special purpose Arduino-compatible boards add additional hardware optimised for a specific application. It is kind of like having an Arduino and a shield on a single board. Some are Shield compatible, others are not.
Adds built-in CAN support through the AT90CAN128 micro processor, dual RJ45 jacks, and optional bus termination. Designed specifically for model railroading applications using the OpenLCB networking protocol, the hardware is sufficiently generic for use with other low-speed CAN networks. OUT OF BUSINESS 17 Dec 2014. All designs supposedly on GitHub, but Io:duino is not present. (https://web.archive.org/web/20160516101800/http://railstars.com/blog/)
This is a minimalist tracked platform based on the Arduino Duemilanove. Has an ATmega328 with Arduino bootloader, a dual H-bridge and additional prototyping space and headers. It is compatible with many shields, though four digital pins are used when operating the motor controller. Has an onboard voltage regulator, additional LEDs, a temperature sensor, and a light sensor. Part of the DFRobotShop Rover kit.
Open source Alternator Regulator suitable for 12 V to 48 V systems with many different battery chemistries (lead-acid, LiFeP04, etc.). Multi stage (3, 4), fully configurable. Features battery voltage and current measurement to assure complete and safe battery charging as well as CAN support for communications with other devices and status output (including "NMEA2000" like messages).
An Arduino-compatible board designed for inertial measurement and inertial navigation of aircraft, cars, and boats. It uses the ATmega128RFA1 and a variety of sensors IMU for various applications.
An Arduino Mega 2560 compatible board designed for auto-piloting and autonomous navigation of multirotor aircraft. Designed to be stacked with sensor bobs and boards with several breakout boards available.
Universal platform for wireless data transmission in the frequency band 868 MHz. The board combines features of Arduino Mini and the radio EZRadioPRO for receiving and transmitting data. With DataFlash.
WIOT is an Open Source, rechargeable, Li-Ion battery powered, Arduino compatible, development board designed around the ATmega32U4 processor and ESP8266 Wi-Fi Module.
FPGA-based drop-in replacement for Arduino UNO R3; offers faster clock rates and overall applications speed, higher-performance through vendor-supplied hardware-specific library functions utilizing FPGA; half of FPGA"s space remains available for further customizations including ones written by end user
iono is a general-purpose industrial controller based on Arduino, suitable for professional use (e.g. industrial automation, building automation). It features wide-range power supply, analog/digital inputs with robust protection circuits, power relays with double-winding latching bistable coils, 0÷10 V analog output, DIN rail case.
These boards are compatible with the Arduino software, but they do not accept standard shields. They have different connectors for power and I/O, such as a series of pins on the underside of the board for use with breadboards for prototyping, or more specific connectors. One of the important choices made by Arduino-compatible board designers is whether or not to include USB circuitry in the board. For many Arduino tasks, the USB circuitry is redundant once the device has been programmed, so that circuitry can be placed in the cable between development PC and board, thus making each instance of the board less expensive, potentially smaller, and more power efficient.
Seeeduino XIAO is the smallest Arduino compatible board in Seeeduino Family. It is an Arduino microcontroller that is embedded with the SAMD21 microchip. The interfaces of Seeeduino XIAO is rich enough in such a tiny Dev. Board as well.
Built around ATmega 2560 @ 16 MHz Massive GPIOs: 70 digital I/Os, 16 analog inputs and 4 UARTs, etc. Small form factor, 30% smaller than Arduino Mega 3.3 V and 5 V dual mode. Can be powered through a battery or through an AC to DC adaptor
A very power efficient breadboard friendly Arduino compatible board with onboard RFM69W/RFM69HW transceiver and a stock speed of 16 MHz @ 3.3 V. You can solder your own antenna or connect an antenna via U.FL connector.
BBFuino come with the ATmega328 controller, loaded with Optiboot (Arduino UNO"s bootloader), compatible with Arduino IDE and sample code, design to fit breadboard for prototyping and learning, lower down the cost by taking out the USB to UART IC, so the board has the basic component to operate.
The Crumbuino-Nano is a low-cost module comparable to the Arduino-Nano and can be used as Arduino-Nano in the Arduino-IDE. The Arduino bootloader is preloaded, hence the module is ready-to-use. The documentation shows the pin mapping of Arduino-naming to module pinout.
The Crumbuino-Mega is a low-cost module comparable to the Arduino-Mega 2560 and can be used as Arduino-Mega 2560 in the Arduino-IDE. The Arduino bootloader is preloaded, hence the module is ready-to-use. The documentation shows the pin mapping of Arduino-naming to module pinout.
A compact board with Molex connectors, aimed at environments where vibration could be an issue. DragonFly features the ATmega1280 and have all 86 I/O lines pinned out to connectors.
Freeduino USB Mega 2560, designed in India with Male headers (coming soon with Female Headers). Suitable for use in project, R&D, device and applicationsFreeduino USB Mega 2560 is a cost-effective and 100% pin and software compatible to the popular Arduino Mega 2560. Uses through hole components and has male headers.
Freeduino Lite v2 is a low cost, Freeduino with no USB and serial port. Needs FTDI USB Cable or FTDI Breakout board for programming. Uses through hole components and has male headers.
Freeduino nano designed in India, completely breadboard friendly, elegant and compact design.Freeduino Nano is a low cost Arduino Nano compatible board with mini USB connector using SMD components Freeduino Nano.
The world"s first wireless 3D position, inertia, and orientation beacon. Designed in the San Francisco bay area, this board provides a 10-DoF IMU with on-board ATmega32U4 chip (the same as the Arduino Leonardo).
A combination of an ATmega328P and an I²C based RGB backlit LCD interface (software compatible with the Adafruit RGB LCD shield), along with a USB serial programming interface done as a "backpack" module for the LCD.
The modified Arduino IDE allows the compiled user sketch to be uploaded onto the processor either with or without the proprietary GNSS software. NavSpark has 17 GPIO pins, which include two UARTs, 1 I²C, 1 SPI, 1 PWM, and a trigger. The first UART is usually used by the GNSS software to output NMEA 0183 data, although this can be disabled. This UART communicates over USB through a PL2303 serial converter and the transmit output is also made available on a pin. A 1 pulse per second signal is produced on a dedicated pin when a valid fix has been made.
There is a GPS-only version, a combined GPS/GLONASS version, and a GPS/Beidou version. An adaptor board adds a JST connector for a lithium-ion battery, a charger for the battery, and a microSD card slot connected to the SPI pins.
An Arduino-compatible board that includes a battery backed up real-time clock and a four channel DAC. Most Arduino-compatible boards require an additional shield for these resources.
Sanguino-compatible board that includes a battery backed up real-time clock and a two channel DAC. Sanguino"s feature the ATmega644P, which has additional memory, I/O lines and a second UART.
An Arduino Duemilanove compacted down to a breadboardable device (36 mm x 18 mm) that can be inserted into a standard 600 mil 28-pin socket, with USB capability, ATmega328P, and 6 onboard LEDs.
An Arduino-compatible board designed specifically for driving LEDs. It is generally used to drive an 8x8 RGB LED matrix using row scanning, but it can be used for other things.
A miniature Arduino compatible board with all of the digital and analog I/O pins brought out into a single line of pins (SIP). Available as a kit, intended for use with a solderless breadboard.
SODAQ, an Arduino Compatible Solar Powered sensor board The Raspberry Pi-sized SODAQ board is built for Solar Powered Data Acquisition. It is fitted with a Lipo charge controller and 12 Grove sockets for plug and play prototyping. It runs at 3.3 V and 8 MHz. It also comes with a DS3231 Real Time Clock and 16 Mbit serial flash for data logging. Its "bee" socket can use a range of different modules, like Xbee, RFbee, Bluetoothbee and GPRSbee to make the board communicate. The latest version has the powerful ATmega1284P microcontroller with 128 KB program space and 16 KB RAM and is still Arduino IDE compatible.
Arduino compatible board designed specifically for RF mesh network experiments. It features 10 I/Os, a 10-pin ISP programming connector, a connector for a standard LCD display (in 4 bit mode) and a connector for a 2.4 GHz RF module.
Arduino Mega compatible board designed specifically for robots requiring large numbers of servos. A built in 3 A switchmode power supply allows servos to plug directly into the board. Pin spacing allows making custom shields from standard prototype board.
Teensy++ 2.0 microcontrollerA slightly more powerful version of the Teensy 2.0. It has 46 I/O pins; 8 KB RAM; 128 KB of flash; 10-bit ADC; UART, SPI, I²C, I²S, Touch and other I/O capability.
A very small board based on the Freescale MK20DX128VLH5 CPU. It has 34 I/O pins; 16 KB RAM; 128 KB of flash; 16-bit ADC; 3xUARTs, SPI, I²C, I²S, Touch and other I/O capability. Version 3.0 is not recommended for new designs.
Same form factor as Teensy 3.0.