tft display microchip brands

Asia has long dominated the display module TFT LCD manufacturers’ scene. After all, most major display module manufacturers can be found in countries like China, South Korea, Japan, and India.

However, the United States doesn’t fall short of its display module manufacturers. Most American module companies may not be as well-known as their Asian counterparts, but they still produce high-quality display products for both consumers and industrial clients.

In this post, we’ll list down 7 best display module TFT LCD manufacturers in the USA. We’ll see why these companies deserve recognition as top players in the American display module industry.

STONE Technologies is a leading display module TFT LCD manufacturer in the world. The company is based in Beijing, China, and has been in operations since 2010. STONE quickly grew to become one of the most trusted display module manufacturers in 14 years.

Now, let’s move on to the list of the best display module manufacturers in the USA. These companies are your best picks if you need to find a display module TFT LCD manufacturer based in the United States:

Planar Systems is a digital display company headquartered in Hillsboro, Oregon. It specializes in providing digital display solutions such as LCD video walls and large format LCD displays.

Planar’s manufacturing facilities are located in Finland, France, and North America. Specifically, large-format displays are manufactured and assembled in Albi, France.

Another thing that makes Planar successful is its relentless focus on its customers. The company listens to what each customer requires so that they can come up with effective display solutions to address these needs.

What makes Microtips a great display module TFT LCD manufacturer in the USA lies in its close ties with all its customers. It does so by establishing a good rapport with its clients starting from the initial product discussions. Microtips manages to keep this exceptional rapport throughout the entire client relationship by:

Displaytech is an American display module TFT LCD manufacturer headquartered in Carlsbad, California. It was founded in 1989 and is part of several companies under the Seacomp group. The company specializes in manufacturing small to medium-sized LCD modules for various devices across all possible industries.

The company also manufactures embedded TFT devices, interface boards, and LCD development boards. Also, Displaytech offers design services for embedded products, display-based PCB assemblies, and turnkey products.

Displaytech makes it easy for clients to create their own customized LCD modules. There is a feature called Design Your Custom LCD Panel found on their site. Clients simply need to input their specifications such as their desired dimensions, LCD configuration, attributes, connector type, operating and storage temperature, and other pertinent information. Clients can then submit this form to Displaytech to get feedback, suggestions, and quotes.

Clients are assured of high-quality products from Displaytech. This is because of the numerous ISO certifications that the company holds for medical devices, automotive, and quality management. Displaytech also holds RoHS and REACH certifications.

A vast product range, good customization options, and responsive customer service – all these factors make Displaytech among the leading LCD manufacturers in the USA.

Products that Phoenix Display offers include standard, semi-custom, and fully-customized LCD modules. Specifically, these products comprise Phoenix Display’s offerings:

Phoenix Display also integrates the display design to all existing peripheral components, thereby lowering manufacturing costs, improving overall system reliability, and removes unnecessary interconnects.

Clients flock to Phoenix Display because of their decades-long experience in the display manufacturing field. The company also combines its technical expertise with its competitive manufacturing capabilities to produce the best possible LCD products for its clients.

True Vision Displays is an American display module TFT LCD manufacturing company located at Cerritos, California. It specializes in LCD display solutions for special applications in modern industries. Most of their clients come from highly-demanding fields such as aerospace, defense, medical, and financial industries.

The company produces several types of TFT LCD products. Most of them are industrial-grade and comes in various resolution types such as VGA, QVGA, XGA, and SXGA. Clients may also select product enclosures for these modules.

Slow but steady growth has always been True Vision Display’s business strategy. And the company continues to be known globally through its excellent quality display products, robust research and development team, top-of-the-line manufacturing facilities, and straightforward client communication.

All of their display modules can be customized to fit any kind of specifications their clients may require. Display modules also pass through a series of reliability tests before leaving the manufacturing line. As such, LXD’s products can withstand extreme outdoor environments and operates on a wide range of temperature conditions.

Cystalfontz America is a leading supplier and manufacturer of HMI display solutions. The company is located in Spokane Valley, Washington. It has been in the display solutions business since 1998.

Crystalfontz takes pride in its ISO 9001 certification, meaning the company has effective quality control measures in place for all of its products. After all, providing high-quality products to all customers remains the company’s topmost priority. Hence, many clients from small hobbyists to large top-tier American companies partner with Crystalfontz for their display solution needs.

We’ve listed the top 7 display module TFT LCD manufacturers in the USA. All these companies may not be as well-known as other Asian manufacturers are, but they are equally competent and can deliver high-quality display products according to the client’s specifications. Contact any of them if you need a US-based manufacturer to service your display solutions needs.

We also briefly touched on STONE Technologies, another excellent LCD module manufacturer based in China. Consider partnering with STONE if you want top-of-the-line smart LCD products and you’re not necessarily looking for a US-based manufacturer. STONE will surely provide the right display solution for your needs anywhere you are on the globe.

tft display microchip brands

Flat-panel displays are thin panels of glass or plastic used for electronically displaying text, images, or video. Liquid crystal displays (LCD), OLED (organic light emitting diode) and microLED displays are not quite the same; since LCD uses a liquid crystal that reacts to an electric current blocking light or allowing it to pass through the panel, whereas OLED/microLED displays consist of electroluminescent organic/inorganic materials that generate light when a current is passed through the material. LCD, OLED and microLED displays are driven using LTPS, IGZO, LTPO, and A-Si TFT transistor technologies as their backplane using ITO to supply current to the transistors and in turn to the liquid crystal or electroluminescent material. Segment and passive OLED and LCD displays do not use a backplane but use indium tin oxide (ITO), a transparent conductive material, to pass current to the electroluminescent material or liquid crystal. In LCDs, there is an even layer of liquid crystal throughout the panel whereas an OLED display has the electroluminescent material only where it is meant to light up. OLEDs, LCDs and microLEDs can be made flexible and transparent, but LCDs require a backlight because they cannot emit light on their own like OLEDs and microLEDs.

Liquid-crystal display (or LCD) is a thin, flat panel used for electronically displaying information such as text, images, and moving pictures. They are usually made of glass but they can also be made out of plastic. Some manufacturers make transparent LCD panels and special sequential color segment LCDs that have higher than usual refresh rates and an RGB backlight. The backlight is synchronized with the display so that the colors will show up as needed. The list of LCD manufacturers:

Organic light emitting diode (or OLED displays) is a thin, flat panel made of glass or plastic used for electronically displaying information such as text, images, and moving pictures. OLED panels can also take the shape of a light panel, where red, green and blue light emitting materials are stacked to create a white light panel. OLED displays can also be made transparent and/or flexible and these transparent panels are available on the market and are widely used in smartphones with under-display optical fingerprint sensors. LCD and OLED displays are available in different shapes, the most prominent of which is a circular display, which is used in smartwatches. The list of OLED display manufacturers:

MicroLED displays is an emerging flat-panel display technology consisting of arrays of microscopic LEDs forming the individual pixel elements. Like OLED, microLED offers infinite contrast ratio, but unlike OLED, microLED is immune to screen burn-in, and consumes less power while having higher light output, as it uses LEDs instead of organic electroluminescent materials, The list of MicroLED display manufacturers:

Sony produces and sells commercial MicroLED displays called CLEDIS (Crystal-LED Integrated Displays, also called Canvas-LED) in small quantities.video walls.

"Samsung Display has halted local Gen-8 LCD lines: sources". THE ELEC, Korea Electronics Industry Media. August 16, 2019. Archived from the original on April 3, 2020. Retrieved December 18, 2019.

"Business Place Information – Global Operation | SAMSUNG DISPLAY". www.samsungdisplay.com. Archived from the original on 2018-03-26. Retrieved 2018-04-01.

"Samsung Display Considering Halting Some LCD Production Lines". 비즈니스코리아 - BusinessKorea. August 16, 2019. Archived from the original on April 5, 2020. Retrieved December 19, 2019.

Herald, The Korea (July 6, 2016). "Samsung Display accelerates transition from LCD to OLED". www.koreaherald.com. Archived from the original on April 1, 2018. Retrieved April 1, 2018.

Byeonghwa, Yeon. "Business Place Information – Global Operation – SAMSUNG DISPLAY". Samsungdisplay.com. Archived from the original on 2018-03-26. Retrieved 2018-04-01.

www.etnews.com (30 June 2017). "Samsung Display to Construct World"s Biggest OLED Plant". Archived from the original on 2019-06-09. Retrieved 2019-06-09.

"China"s BOE to have world"s largest TFT-LCD+AMOLED capacity in 2019". ihsmarkit.com. 2017-03-22. Archived from the original on 2019-08-16. Retrieved 2019-08-17.

tft display microchip brands

Displaytech, a SEACOMP division, is a reliable LCD display manufacturer providing displays for many of today"s products. Founded in 1989, Displaytech offers over 25 years of supplying displays. Since then, our LCD product offerings have expanded dramatically as well as our manufacturing capabilities. Our team is highly-experienced in designing, engineering, and manufacturing electronic products that feature an embedded LCD display. The Displaytech brand was acquired by SEACOMP in 2012.

Our customer base ranges from small to large companies including many Tier 1 multinational corporations. Our displays are found in a variety of products such as consumer white-goods, industrial controls, connected home automation, medical devices, and more.

Displaytech is also an Authorized Microchip Design Partner and Graphics Design Partner Specialist. We offer exceptional hardware and software engineering expertise focused on Microchip PIC24 and PIC32 microcontrollers. All of our development tools are built with Microchip compatibility in mind. Displaytech is capable of providing anything from simple technical support to complex product design for LCD based embedded devices.

Purchase Displaytech products by contacting us directly for large volume orders through this website. We also have online distribution channels through Arrow, Digi-Key, Mouser, and RS Components. In addition, we have global distributors and reps that sell our LCD products.

tft display microchip brands

The display used in this project is a 1.8” TFT with 128x160 pixels of resolution. The microcontroller used is the SimpleLink MSP-432P401R from Texas Instruments. The TFT display will be interfaced with the microcontroller via a 4-wire serial connection and programmed using the Energia IDE platform.

In just a few steps the TFT can be wired and programmed to display up to 65K colors and 128x160 pixels of resolution. The display can be powered from the 3.3V output of the TI. Various wiring and interface options are available, from 3-4 wire serial, to 16/18-bit RGB and 8/9/16/18-bit MCU parallel. Additional features of this display are below. As always, check out the data sheet for the specs of this specific display. (datasheet)

First you will need to download the Energia IDE software if you have not already. This IDE was chosen because of the similarities is has to the Arduino IDE. This is beneficial because there is a large variety of open sourced examples that demonstrate the features of this display. An alternative programming IDE is Code Composer Studios, which is also compatible with the TI microcontroller. The IDE is up to preference. We will come back to this after the hardware is setup.

There are only a few connections that need to be made between the display for the 4-wire serial interface. The unused parallel data pins will be pinned to GND. Consult the datasheet for a detailed explanation of each pin assignment and their functions. The 4-wire serial data pins are connected to the TI specific serial inputs for the “Hardware SPI” programming option. While any pins can be used, their location must be defined in the “Software SPI” programming option.

The TI microcontroller has dedicated serial input pins specific to the board. The pin locations can be seen below and are described in the table for how they are connected to the display. These and other hardware pin definitions can be verified on the TI website.

We will need a program for the specific display chip “ILI9163”. For this example, I have created a modified version of a popular Adafruit example that demonstrates the various capabilities of the display. The example can be downloaded from Github here.

You will also need to include Adafruit’s GFX library which can be downloaded here. This is a popular library that contains examples and features for TFT displays that prove to be useful for this application.

You can now test any of these various programs that might be good reference for your specific project. There a lot of good examples in the Adafruit GFX library as a resource to test the various capabilities of the display.

This 1.8” TFT is a good option for displaying 16-bit 65K color images. This is compatible with most microcontrollers as it saves on-board memory. This is beneficial for storing bitmaps on flash memory since the screen is small and the 65K color bitmap image won’t take up all the on-board storage on the TI. This display also has a version with a resistive touch screen. This would be a good option for a digital push button. This may be further discussed in a future application note.

tft display microchip brands

This note will discuss the considerations made when choosing a microcontroller that will work for your display. A few requirements need to be met depending on the display’s features, interface, and size. These can also be determined by the embedded IC in the display. An overview of the considerations when choosing a microcontroller can be seen below. It should be noted that these items are separated for definition but may serve the same purpose and be interconnected in the ecosystem of the controller.

Application and display specific peripheral requirements. I2C, SPI, UART, Parallel, MIPI, LVDS, HDMI etc. Determines pin connections and required architecture of the device.

Flash and RAM memory requirements. Minimum frame buffer memory is dependent on the size andresolution of the display. Location of memory (external or internal) can restrict interface speed and must becompatible with the chosen interface.

Communication speed requirements defined by the interface and intended application. Refresh rateis determined on the size of the display and location of memory. This will indicate which processors arecompatible.

A displays embedded IC can offer resources such as internal RAM, clock generators and power control.This can save resources otherwise needed to be provided externally. Check the datasheet of the display’s ICcontroller for device function specifics.

The interface selection is dependent on the intended application of the display. Each display has a different interface or different choices for a connection interface. For smaller displays a 3/4-wire serial interface would be sufficient. For larger display’s with high resolution a faster interface should be chosen. A parallel RGB interface is capable of high-speed data transmission however requires many pin connections. If the intended application for the display is video a MIPI, LVDS or HDMI connection would be a good choice.

The available memory of a microcontroller often becomes a highlighted issue when determining which microcontroller to select. The microcontroller needs a minimum amount of RAM to hold the frame buffer of the display. Even small displays require more RAM than a typical microcontroller possess. To verify that your microcontroller will have enough memory, it is important to calculate the frame buffer.

The minimum RAM required for the frame buffer in this example would then be 768kB. It is important to note that external RAM can be provided for the frame buffer if the microcontroller does not provide it internally. Clocking speed should be verified if using external RAM as the microcontroller cannot access external RAM as quickly. The clock frequency constrained by external RAM sometimes does not meet the minimum requirements of some very high-speed interfaces (ex. DSI-MIPI). Additionally, the display can contain some form of RAM depending on the IC controller inside the display. This can be verified on the specification sheet of the IC.

The speed of the microcontroller is heavily dependent on the interface used in the application. The minimum and maximum of the clock frequency is specified in the datasheet of the display and in the specification sheet of the display’s controller IC. The frame rate is typically around 50-60Hz, which is the median oscillation frequency to refresh the display to maintain an image. The display will often provide an internal high frequency clock that can be initialized to certain frequencies.

It is important to verify in the controller data sheet which resources are provided by the internal IC of the display. Some key information to look for would be: Does the display have sufficient RAM or does this need to be provided? Does the display have an internal oscillator for clock generation for the interface chosen? An additional graphics controller can be used to interface the display with the microcontroller to meet these requirements. Features like these can be utilized to avoid additional cost, space, and memory of your application.

After a brief consideration of intended application and interface of the display you can get some idea of which microcontroller processor and architecture you will need. There are a few different microcontroller processors to choose from. The main choices are ARM, AVR, PIC, and 8051. The difference between them is the bit size of the processor, 8-bit, 16-bit, 32-bit or 64-bit data . The data bit width is the amount of data that can be sent at a time. This determines the speed of data transfer and thus compatible applications and interfaces.

The AVR has an 8-bit processor and is a RISC type microcontroller. This type of processor is compatible with low speed interfaces (SPI, I2C) and smaller displays. A common AVR microcontroller board is the Arduino which has the embedded 8-bit ATMEL RISC processors. These processors are widely popular which provide the benefit of numerous online resources and availability. The Arduino processors (ATmega/SAM3X) are typically available in most microcontroller programming environments. Additionally, Arduino offers 32-bit AVR development boards which function closely to the ARM processors.

The AVR microcontrollers are constrained by the low frequency, internal memory availability and power costs. AVR’s cannot use external program memory but some may allow expansion of external SRAM. These microcontrollers alone would be incompatible for high frequency applications such as video, large displays, or capacitive touch panels.

The ARM microprocessors have a RISC architecture. They offer 32-bit or 64-bit processors and are great options for high speed interfaces (Parallel, LVDS, MIPI, HDMI) and high-resolution displays. Common ARM processors can be found from STMicroelectronics and Raspberry Pi. The most common version of the ARM processors is the “Microcontroller” Arm-M group which include the Cortex-M0 and Cortex-M4 series.

The ARM processors are compatible with most displays and connection interfaces. These microcontrollers have become increasingly popular, so the cost has become comparable between the ARM and the AVR types. These processors provide the speed, but it is recommended to verify the available RAM as these boards vary widely on included features.

The PIC architecture consists of 8, 16, and 32-bit processors developed by Microchip. The PIC 32-bit series of microcontrollers have been geared toward graphical embedded applications and there are a lot of resources online for these devices. There is a huge variety of PIC controllers which make them easily available. These microcontrollers are known for being low cost and are comparable to the ARM processors. The drawback of the PIC controllers is using Microchips programming environment, but this is based on preference.

The Intel MCS-51, more commonly known as the 8051 microcontrollers have a CISC architecture and an 8-bit processor. These processors differ in architecture from the previous and are programmed using a combination of C and assembly languages. The program memory is read only and does not have an on-board ISP. A special programming device is needed to rewrite the EEPROM or flash memory. These processors are typically small, low cost and low powered. This can make them favorable for battery powered devices. These processors are commonly used to initialize TFT displays and are combined with a graphics controller to provide the required resources such as RAM and clock frequency.

Development environments and online resources become considerably valuable when creating an application for your display. A brand new or uncommon microcontroller will have very few resources for reference. Even knowledgeable engineers can find frustrations with the manufacturers programming environments. There are many microcontroller choices that will support your display with similar and overlapping features. Choosing a microcontroller with an available FAQ, application notes or is accessible on a familiar programming platform can save a lot of time.

tft display microchip brands

Shenzhen SLS Industrial Co.,Ltd, established in 2016, is a professional LCD manufacturer and solution provider from China. Our products range includes TFT LCD, embedded graphics display, special strip display and industrial capacitive touch panel. In 2016, we started to design and produce LCD displays and capacitive touch panel, and developed our own brand PANASYS.

And In 2021, we now have 3 full-auto COG bonding line that can support produce LCD displays from 0.9’’ to 17.6’’. Also we have our independent developed intelligent displays series, FTDI Series, Industrial Linux Systems and HDMI Adapter Board Series.

tft display microchip brands

This library is a professional graphical stack library to build Graphical User Interfaces (GUIs) with any STM32, any LCD/TFT display and any LCD/TFT controller, taking advantage of STM32 hardware accelerations whenever possible.

The STemWin Library is a comprehensive solution that comes with a rich feature set, such as JPG, GIF and PNG decoding, many widgets (checkboxes, buttons…) and a VNC server enabling the remote display of local displays, as well as professional development tools, such as GUIBuilder to create GUIs with a simple drag and drop.

tft display microchip brands

3D Motion Click is a compact add-on board providing a fully integrated inertial measurement solution. This board features Microchip’s MM7150, a 9-axis sensor fusion motion module. The MM7150 is a complete self-contained solution comprising a 3-axis accelerometer, a gyroscope, a magnetometer, and an SSC7150 motion coprocessor. The motion coprocessor has...

4x4 RGB click is a matrix of 16 "intelligent" RGB elements, forming a 4x4 display screen. These LED elements feature internal logic, which allows them to communicate directly with the MCU. These intelligent LEDs are meant to be cascaded: the elements communicate by a single line with the host MCU and they feature a signal reshaping section, so the data...

6LoWPAN clicker is a compact development board with a mikroBUS™ socket for Click boards™ connectivity. It carries Microchip’s PIC32MX470F512H - 120 MHz/150 DMIPS, MIPS32® M4K® core microcontroller. And CA-8210 2.4GHz ISM band transceiver, which allows you to add wireless communication to your project.

ADC 2 Click is a compact add-on board with a high-performance data converter. This board features the MCP3551, a 22-bit precision ΔΣ analog-to-digital converter with SPI compatible interface (read-only) from Microchip. The MCP3551 has fully differential analog input making it compatible with a wide variety of industrial or process control applications,...

ADC 3 Click is a compact add-on board with a high-performance data converter. This board features the MCP3428, a 16-bit ΔΣ analog-to-digital converter with differential inputs and I2C compatible interface from Microchip. The MCP3428 performs conversions at rates of 15, 60, or 240 samples per second, depending on user-controllable configuration bit...

ADC 9 Click is 8th channel analog to digital converter expansion board, for projects where you have demand for multi channel ADC conversion such as microcontrollers with small number or none analog inputs. This Click board is based on MCP3564 a 24-bit Delta-Sigma Analog-to-Digital Converter with programmable data rate of up to 153.6 ksps from Microchip....

ATA6571 Click is a compact add-on board that contains a transceiver designed for high-speed CAN applications. This board features the ATA6571, a standalone high-speed CAN FD transceiver that interfaces a CAN protocol controller and the physical two-wire CAN bus from Microchip. It offers several operating modes with diagnostic and fail-safe features that...