arduino uno 2.4 tft lcd display shield touch panel ili9341 factory
Spice up your Arduino project with a beautiful touchscreen display shield with built in microSD card connection. This TFT display is 2.4" diagonal and colorful (18-bit 262,000 different shades)! 240x320 pixels with individual pixel control. As a bonus, this display has a optional capacitive touch panel and resistive touch panel with controller XPT2046 attached by default.
The shield is fully assembled, tested and ready to go. No wiring, no soldering! Simply plug it in and load up our library - you"ll have it running in under 10 minutes! Works best with any classic Arduino (UNO/Due/Mega 2560).
This display shield has a controller built into it with RAM buffering, so that almost no work is done by the microcontroller. You can connect more sensors, buttons and LEDs.
Of course, we wouldn"t just leave you with a datasheet and a "good luck!" - we"ve written a full open source graphics library at the bottom of this page that can draw pixels, lines, rectangles, circles and text. We also have a touch screen library that detects x,y and z (pressure) and example code to demonstrate all of it. The code is written for Arduino but can be easily ported to your favorite microcontroller!
If you"ve had a lot of Arduino DUEs go through your hands (or if you are just unlucky), chances are you’ve come across at least one that does not start-up properly.The symptom is simple: you power up the Arduino but it doesn’t appear to “boot”. Your code simply doesn"t start running.You might have noticed that resetting the board (by pressing the reset button) causes the board to start-up normally.The fix is simple,here is the solution.
In this Arduino touch screen tutorial we will learn how to use TFT LCD Touch Screen with Arduino. You can watch the following video or read the written tutorial below.
For this tutorial I composed three examples. The first example is distance measurement using ultrasonic sensor. The output from the sensor, or the distance is printed on the screen and using the touch screen we can select the units, either centimeters or inches.
The third example is a game. Actually it’s a replica of the popular Flappy Bird game for smartphones. We can play the game using the push button or even using the touch screen itself.
As an example I am using a 3.2” TFT Touch Screen in a combination with a TFT LCD Arduino Mega Shield. We need a shield because the TFT Touch screen works at 3.3V and the Arduino Mega outputs are 5 V. For the first example I have the HC-SR04 ultrasonic sensor, then for the second example an RGB LED with three resistors and a push button for the game example. Also I had to make a custom made pin header like this, by soldering pin headers and bend on of them so I could insert them in between the Arduino Board and the TFT Shield.
Here’s the circuit schematic. We will use the GND pin, the digital pins from 8 to 13, as well as the pin number 14. As the 5V pins are already used by the TFT Screen I will use the pin number 13 as VCC, by setting it right away high in the setup section of code.
I will use the UTFT and URTouch libraries made by Henning Karlsen. Here I would like to say thanks to him for the incredible work he has done. The libraries enable really easy use of the TFT Screens, and they work with many different TFT screens sizes, shields and controllers. You can download these libraries from his website, RinkyDinkElectronics.com and also find a lot of demo examples and detailed documentation of how to use them.
After we include the libraries we need to create UTFT and URTouch objects. The parameters of these objects depends on the model of the TFT Screen and Shield and these details can be also found in the documentation of the libraries.
Next we need to define the fonts that are coming with the libraries and also define some variables needed for the program. In the setup section we need to initiate the screen and the touch, define the pin modes for the connected sensor, the led and the button, and initially call the drawHomeSreen() custom function, which will draw the home screen of the program.
So now I will explain how we can make the home screen of the program. With the setBackColor() function we need to set the background color of the text, black one in our case. Then we need to set the color to white, set the big font and using the print() function, we will print the string “Arduino TFT Tutorial” at the center of the screen and 10 pixels down the Y – Axis of the screen. Next we will set the color to red and draw the red line below the text. After that we need to set the color back to white, and print the two other strings, “by HowToMechatronics.com” using the small font and “Select Example” using the big font.
Ok next is the RGB LED Control example. If we press the second button, the drawLedControl() custom function will be called only once for drawing the graphic of that example and the setLedColor() custom function will be repeatedly called. In this function we use the touch screen to set the values of the 3 sliders from 0 to 255. With the if statements we confine the area of each slider and get the X value of the slider. So the values of the X coordinate of each slider are from 38 to 310 pixels and we need to map these values into values from 0 to 255 which will be used as a PWM signal for lighting up the LED. If you need more details how the RGB LED works you can check my particular tutorialfor that. The rest of the code in this custom function is for drawing the sliders. Back in the loop section we only have the back button which also turns off the LED when pressed.
In order the code to work and compile you will have to include an addition “.c” file in the same directory with the Arduino sketch. This file is for the third game example and it’s a bitmap of the bird. For more details how this part of the code work you can check my particular tutorial. Here you can download that file:
C 1024×600 HDMI interface For Raspberry Pi/BB BLACK/PC/Various Systems with Bicolor Case Makibes 7 inch Capacitive Touch Screen LCD , 1080 for Raspberry Pi 3 2 Model B Rpi B B Zero W TFT LCD Display Monitor Movie Play Arcade Game HDMI Audio Input with Touch Pen QC35C Case 1920 Quimat 3.5 Inch Touch Screen A A , 4 Inch TFT LCD Display Shield Touch Panel ILI9341 240X320 for Arduino UNO MEGA: Business, Industry & Science, HiLetgo® 2, 320 TFT LCD Module Touch Screen Display Module ILI9341 HX8347 Controller for Arduino UNO R3 Mega2560 Multicolor JIUY 2.8 Inch 240
The 2.4 ” tft lcd touch screen shield for Arduino can be used in a number of applications. However many of the shields available on the market are cloned versions which usually give many hobbyists hard time to use because they do not work properly with the common libraries for running TFT displays.
If you try uploading any of the examples in the Adafruit_GFX library for example the “graphicstest”, the lcd will just give a white screen. Nothing is displayed on the screen!
This problem is mainly due to using a newer version of the Adafruit GFX library. The 1.5.4 release of the Adafruit_GFX library broke compatibility with the Adafruit_TFTLCD library. So you have to roll back to Adafruit_GFX 1.5.3:
Another problem you may encounter with this tft lcd shield is the poor fuctioning of the touch screen. You may find the stylus pen is not well aligned with the content you are writing on the screen.
This is due to a bug in the TouchScreen library therefore you need to locate this library by following the path to where all the libraries for your Arduino IDE are stored.
First change it to return TSPoint(1023-x, 1023-y, z). Save the changes and then compile your code again and upload to check if the touch fuction is fine.
You can keep on adjusting the values of before x and y until you get an ideal point that works best for your tft lcd. Mine worked fine with return TSPoint(x, 1105-y, z)
Due to the limited processing power of the microprocessor in the Arduino, we need to store images in bmp format and they should be 320×240 pixels sizes.
In most of the Arduino projects, it would be extremely delighted to have a display through which we can monitor the vitals of our project. 2.5 Inch TFT LCD Touch Screen for Arduino display module designed specifically for Arduino UNO, and also supports working on Arduino 2560 MEGA MCU Board. This module adds a touch up to your Arduino project with a beautiful large touchscreen display shield with a built-in microSD card connection.
This 2.5 Inch TFT LCD is a colour active matrix TFT liquid crystal display with a resistive touch screen. The TFT display provides a resolution of 240×320 pixels with individual pixel control, thus providing a better display. It offers more resolution than a black and white 128×64 display. This 2.5 Inch TFT LCD Screen display has an ILI9341 controller IC which supports MCU Interface. A 4-wire XPT2046 resistive touchscreen is attached to the display, so we can detect finger presses anywhere on the screen.
The ILI9341 is a 262,144 colour single-chip SOC driver for the TFT liquid crystal display. It provides a resolution of 240RGB 320 Dots, comprising a 720 channel source driver, a 320 channel gate driver, 172800 bytes GRAM for graphic display data of 240 RGB x 320 dots, and a power supply circuit. These ILI9341 Chip can operate at an interface voltage of 1.65v to 3.3v. And an incorporated voltage follower circuit is used to generate voltage levels for driving an LCD.
Moreover, It supports the FBCP software driver, allowing it to configure software resolution, and set up dual-display. These display modules are mounted with high-quality immersion gold surface plating. This Touch Screen Module shield with Micro SD slot especially for UNO and MEGA, driven by ILI9341 Single Chip Driver. The shield connects ILI9341’s data pins 0-7 to Arduino digital pins 2-8 (allowing parallel communication, not SPI). And ILI’s RESET goes to pin to Arduino analogue pin A4.CS (chip select) to A3. RS (CD command/data) to A2. WR and RD to A1 and A0.
Since the screen is particularly prone to damage, we have reinforced the packaging, please rest assured that the screen will not be broken during transportation 2.4" TFT LCD Display Shield Touch Panel ILI9341 240X320 for Arduino UNO MEGA Features: 2.4" diagonal LCD TFT Touch Panel display Bright, 4 white-LED backlight, on by default but you can connect the transistor to a digital pin for backlight control Colorful, 18-bit 262,000 different shades 4-wire resistive touchscreen 8 bit digital interface, plus 4 control lines Uses digital pins 5-13 and analog 0-3. That means you can use digital pins 2, 3 and analog 4 and 5. Pin 12 is available if not using the micro SD 5V compatible, use with 3.3V or 5V logic For Arduino UNO R3 MEGA2560 Package included: 1*2.4" TFT LCD Display Shield Touch Panel ILI9341 240X320 for Arduino UNO MEGA
Ever wanted to know how to make a simple drawing program on a LCD display, or are you curious about programming touch screens? Well, in this tutorial, we will be covering on how do you program a touchscreen display using the 2.4″ Touchscreen LCD sheild with Arduino Uno, which open up many possible applications which includes making a user friendly touch interface for making purchases, a simple touch-screen base remote control, and many more.
Hooking up the 2.4″ TFT LCD Touchscreen shield is realatively easy, since it is a Arduino shield. Just plug in the whole screen into the Arduino Uno, just note where the pins are located and connect the shield accordingly. There will be 2 parts in this tutoria, the first where you will test the functionality of the screen, and the next where you test the touch functionality of the screen.
For the graphics test of the 2.4″ screen, I used the sample sketch provided by the Adafruit TFTLCD library. The library can be downloaded here or here. (NOTE: You have to have the Adafruit GFX library installed before this library is installed, as the TFTLCD library uses the Adafruit GFX library for graphics. The library can be downloaded at https://github.com/adafruit/Adafruit-GFX-Library) A great thanks to Adafruit for their libraries.
Try uploading the example ‘graphictest’ sketch of the TFTLCD library. The screen should then be running the graphics test as shown above. If the screen displays nothing or displays only static, you may want to follow the steps taken below.
The modification I made in the example sketch is that I hard coded the LCD Driver, as for my case, the Arduino was unable to detect the LCD driver (and only produced noise on the screen).
Therefore, I set identifier variable as 0x9341 (located at line 60), which means that the shield is actually using a IL9341 LCD driver. Below are some useful links that may help if you encounter any difficulties:
This is the hardcoded sketch. Please upload the ‘graphictest’ example sketch of the TFTLCD library. If there is static or no display, you may need to modify the ‘identifier’ variable depending on which LCD driver you are using. Below is a sample code of the LCD Driver hard coded.// IMPORTANT: Adafruit_TFTLCD LIBRARY MUST BE SPECIFICALLY
Open & upload the ‘tftpaint’ example sketch from the TFTLCD library. (You may want to calibrate the screen first before using it. To do so, visit this post where I written a calibration code which can be used in this example. However, please note that certain parameters have to be changed for the calibration sketch to work with this 2.4″ screen.)
If the sketch does not run properly, you may want to do the following modifications. For my case, I need to modify a few parts, which includes:Hardcoding the LCD Driver
ER-TFTM024-3 is 2.4"tft lcd touch shield qvga 320x240 dots,ili9341 controller,available for touch panel controller,sd card slot,font chip,flash,serial+parallel.Souce from EastRising/buydisplay.com
Her last project was something that is controllable throu arduino mega and the 3.5" TFT LCD Shield and she wanted a case for it. Since there is no case for this combination out there, I simply created one by myself in blender. :-)
I needed an accurate model of the 2.8" TFT shield for the Arduino. ...It was a bit of a challenge as these are not manufactured to the tightest tolerances so I added some standard deviation to the model so that it should fit most use cases.- Pinheader...
This is a case for the Wemos D1 Mini (https://wiki.wemos.cc/products:d1:d1_mini) plus its TFT 2.4 Touch Shield (https://wiki.wemos.cc/products:d1_mini_shields:tft_2.4_shield). This was intended for landscape mode, but I only have a demo working in...
This is a sipmple box/case for Arduino Uno and 2.4"" TFT Lcd Touch Screen. There are 2 kind of cases: closed or with open grooves for refrigeration. Originally made for a mini - meteo station, it can be customizable with FreeCad file. ...It was made...
... holes on the case. "lcd hinge" is for behind the lcd. "base hinge" fits into the duo case pins and takes the lcd hinge shaft My hinge snapped when I tried to jam the shaft into it, blue pvc pipe glue visible on assembled photos.. ...does the job.
A small mountable holder for a fasttech LCD module. Mounting pins are a little tight but can be snapped off if not needed. Mount holes are designed for assorted leg or spacer designs. Holes are 5mm dia, 34mm apart and hole centre 5.5mm from edge if...