arduino 3.5 inch tft lcd paint sketch for sale
I have recently bought a 3.5" TFT LCD (from Ebay) for an Arduino UNO, however I find that it uses nearly all the available UNO pins and in particular most of the analogue pins, 4 of which I was hoping to use as analogue inputs. As I have no intention of using the SD card slot, would it be possible to transfer 4 of the LCD control lines to the pins currently used by the SD card connector?
Arduino library for 8-bit TFT LCDs such as ILI9325, ILI9328, etc - GitHub - adafruit/TFTLCD-Library: Arduino library for 8-bit TFT LCDs such as ILI9325, ILI9328, etc
Adafruit GFX graphics core Arduino library, this is the "core" class that all our other graphics libraries derive from - GitHub - adafruit/Adafruit-GFX-Library: Adafruit GFX graphics core A...
Only US$26.24, buy best geekcreit® uno r3 improved version + 2.8tft lcd touch screen + 2.4tft touch screen display module kit geekcreit for arduino - products that work with official arduino boards sale online store at wholesale price.
In this tutorial, you will learn how to use and set up 2.4″ Touch LCD Shield for Arduino. First, you’ll see some general information about this shield. And after learning how to set the shield up, you’ll see 3 practical projects.
The role of screens in electronic projects is very important. Screens can be of very simple types such as 7 Segment or character LCDs or more advanced models like OLEDs and TFT LCDs.
One of the most important features of this LCD is including a touch panel. If you are about to use the LCD, you need to know the coordinates of the point you touch. To do so, you should upload the following code on your Arduino board and open the serial monitor. Then touch your desired location and write the coordinates displayed on the serial monitor. You can use this coordination in any other project.
To display pictures on this LCD you should save the picture in 24bit BMP colored format and size of 240*320. Then move them to SD card and put the SD card in the LCD shield. we use the following function to display pictures. This function has 3 arguments; the first one stands for the pictures name, and the second and third arguments are for length and width coordinates of the top left corner of the picture.
If you want to display pictures without using an SD card, you can convert it to code and then display it. You can display even several photos sequentially without delay to create an animation. (Check this) But be aware that in this case, Arduino UNO may not be suitable (because of low processor speed). We recommend using the Arduino Mega or Arduino DUE.
TFT LCDs are the most popular color displays – the displays in smartphones, tablets, and laptops are actually the TFT LCDs only. There are TFT LCD shields available for Arduino in a variety of sizes like 1.44″, 1.8″, 2.0″, 2.4″, and 2.8″. Arduino is quite a humble machine whenever it comes to process or control graphics. After all, it is a microcontroller platform, and graphical applications usually require much greater processing resources. Still, Arduino is capable enough to control small display units. TFT LCDs are colorful display screens that can host beautiful user interfaces.
Most of the smaller TFT LCD shields can be controlled using the Adafruit TFT LCD library. There is also a larger TFT LCD shield of 3.5 inches, with an ILI9486 8-bit driver.
The Adafruit library does not support the ILI9486 driver. Actually, the Adafruit library is written to control only TFT displays smaller than 3.5 inches. To control the 3.5 inch TFT LCD touch screen, we need another library. This is MCUFRIEND_kbv. The MCUFRIEND_kbv library is, in fact, even easier to use in comparison to the Adafruit TFT LCD library. This library only requires instantiating a TFT object and even does not require specifying pin connections.
TFT LCDs for ArduinoUser interfaces are an essential part of any embedded application. The user interface enables any interaction with the end-user and makes possible the ultimate use of the device. The user interfaces are hosted using a number of devices like seven-segments, character LCDs, graphical LCDs, and full-color TFT LCDs. Out of all these devices, only full-color TFT displays are capable of hosting sophisticated interfaces. A sophisticated user interface may have many data fields to display or may need to host menus and sub-menus or host interactive graphics. A TFT LCD is an active matrix LCD capable of hosting high-quality images.
Arduino operates at low frequency. That is why it is not possible to render high-definition images or videos with Arduino. However, Arduino can control a small TFT display screen rendering graphically enriched data and commands. By interfacing a TFT LCD touch screen with Arduino, it is possible to render interactive graphics, menus, charts, graphs, and user panels.
Some of the popular full-color TFT LCDs available for Arduino include 3.5″ 480×320 display, 2.8″ 400×200 display, 2.4″ 320×240 display and 1.8″ 220×176 display. A TFT screen of appropriate size and resolution can be selected as per a given application.
If the user interface has only graphical data and commands, Atmega328 Arduino boards can control the display. If the user interface is a large program hosting several menus and/or submenus, Arduino Mega2560 should be preferred to control the TFT display. If the user interface needs to host high-resolution images and motions, ARM core Arduino boards like the DUE should be used to control the TFT display.
MCUFRIEND_kbv libraryAdafruit TFT LCD library supports only small TFT displays. For large TFT display shields like 3.5-inch, 3.6-inch, 3.95-inch, including 2.4-inch and 2.8-inch TFT LCDs, MCUFRIEND_kbv library is useful. This library has been designed to control 28-pin TFT LCD shields for Arduino UNO. It also works with Arduino Mega2560. Apart from UNO and Mega2560, the library also supports LEONARDO, DUE, ZERO, and M0-PRO. It also runs on NUCLEO-F103 and TEENSY3.2 with Sparkfun Adapter. The Mcufriend-style shields tend to have a resistive TouchScreen on A1, 7, A2, 6 but are not always in the same direction rotation. The MCUFRIEND_kbv library can be included in an Arduino sketch from the library manager.
The 3.5-inch TFT LCD shield needs to be plugged atop the Arduino board. The Mcufriend-style shields are designed to fit into all the above-mentioned Arduino boards. The shields have a TFT touch screen that can display colorful images and interfaces and a micro SD card reader to save images and other data. A 3.5-inch TFT LCD touch screen has the following pin diagram.
This is a 3.5” IPS capacitive Touchscreen Display. The module, with a resolution of 480x320, adopts ILI9488 as driver IC and SPI (4-line) communication mode. The board integrates touch chip GT911, employing I2C communication to realize multiple touchpoints controlling. The module also integrates an SD card slot allowing you to easily read the full-color bitmap. There are two modes of wiring supplied, normal pin header wiring and GDI. The latter one requires to work with a main controller board with a GDI interface (e.g. FireBeetle-M0). You can use it with only one FPC line plugging in, which reduces the complexity of the wiring. Furthermore, it features high resolution, wide viewing angle, and simple wiring, which can be used in all sorts of display applications, such as, IoT controlling device, game console, desktop event notifier, touch interface, etc.
In this Arduino touch screen tutorial we will learn how to use TFT LCD Touch Screen with Arduino. You can watch the following video or read the written tutorial below.
For this tutorial I composed three examples. The first example is distance measurement using ultrasonic sensor. The output from the sensor, or the distance is printed on the screen and using the touch screen we can select the units, either centimeters or inches.
As an example I am using a 3.2” TFT Touch Screen in a combination with a TFT LCD Arduino Mega Shield. We need a shield because the TFT Touch screen works at 3.3V and the Arduino Mega outputs are 5 V. For the first example I have the HC-SR04 ultrasonic sensor, then for the second example an RGB LED with three resistors and a push button for the game example. Also I had to make a custom made pin header like this, by soldering pin headers and bend on of them so I could insert them in between the Arduino Board and the TFT Shield.
Here’s the circuit schematic. We will use the GND pin, the digital pins from 8 to 13, as well as the pin number 14. As the 5V pins are already used by the TFT Screen I will use the pin number 13 as VCC, by setting it right away high in the setup section of code.
I will use the UTFT and URTouch libraries made by Henning Karlsen. Here I would like to say thanks to him for the incredible work he has done. The libraries enable really easy use of the TFT Screens, and they work with many different TFT screens sizes, shields and controllers. You can download these libraries from his website, RinkyDinkElectronics.com and also find a lot of demo examples and detailed documentation of how to use them.
After we include the libraries we need to create UTFT and URTouch objects. The parameters of these objects depends on the model of the TFT Screen and Shield and these details can be also found in the documentation of the libraries.
So now I will explain how we can make the home screen of the program. With the setBackColor() function we need to set the background color of the text, black one in our case. Then we need to set the color to white, set the big font and using the print() function, we will print the string “Arduino TFT Tutorial” at the center of the screen and 10 pixels down the Y – Axis of the screen. Next we will set the color to red and draw the red line below the text. After that we need to set the color back to white, and print the two other strings, “by HowToMechatronics.com” using the small font and “Select Example” using the big font.
Here’s that function which uses the ultrasonic sensor to calculate the distance and print the values with SevenSegNum font in green color, either in centimeters or inches. If you need more details how the ultrasonic sensor works you can check my particular tutorialfor that. Back in the loop section we can see what happens when we press the select unit buttons as well as the back button.
In order the code to work and compile you will have to include an addition “.c” file in the same directory with the Arduino sketch. This file is for the third game example and it’s a bitmap of the bird. For more details how this part of the code work you can check my particular tutorial. Here you can download that file:
The desire to develop a simulated analog display went hand in hand with the desire to have a test bench, that is, a compact device including an Arduino, a display and connectors to plug in all sorts of external sensors.
Here I discuss the construction of a ‘test bench’ powered by an Arduino Nano, and equipped with a versatile 3.5 inch 320×480 pixel color TFT display. In this example the test bench is used to measure ambient room temperature with a Dallas DS18B20 sensor while relative humidity is simultaneously measured with a DHT11 sensor. The temperature is displayed numeriaclly and in a simulated analog fashion while the relative humidity is displayed only digitally. Construction of the bench is such that four digital pins on the Nano remain available for data sensing or for output. In addition, the A5 pin on the Nano is available for analogous sensing.
In previous papers I described the construction and wiring of a board powered by an Arduino Nano and equipped with a 3.5 inch 320×480 color TFT display for visual output of readings of scores of Dallas DS18B20 temperature sensors and DHT11 relative humidity sensors. One prototype and two ‘production’ versions of these devices were constructed. After commission they started to provide valuable data concerning the environmental situation inside and outside my home.
However successful, these devices were built to suit specific purposes, that is, monitoring input-output temperatures in floor heating loops and measuring temperatures of photovoltaic energy inverters in the attic. Their application is very satisfactory. Although the sensors of these devices can be unplugged and the devices used for test bench purposes, the unplugging, replugging and reprogramming appear to be quite cumbersome. It became desirable to construct a general purpose test bench device. This device should be fitted with a TFT display with sufficient pixel resolution. The luxury of having a TFT display available is partly offset because these displays ‘consume’ the majority of the available pins of an Arduino device. Nevertheless several pins remain available for input- or output purposes. As a TFT shield completely covers all pin headers on an Arduino Uno board these free pins should be made easily accessible in some way
A characteristic of the human brain is that we often find gauges and analog readings more pleasant and easier to interpret than readings on digital displays. Why not simulate an analog display on our Arduino? A matter of nostalgia, perhaps. Let’s construct an Arduino test bench with exposed free pins and with a simulated analog display!
The display (figure 1) is a combined 3.5 inch TFT display-memory card reader shield with the typical pin arrangement that nicely fits the female pin headers of an Arduino Uno microcontroller board. Of the 28 pins on the display’s pin headers, 16 need to be wired to the Arduino: the 5V, 3V3, GND pins and the pins marked ‘LCD_nn’. Because the shield requires specific pins on the Arduino to function properly, only a few pins on the Arduino remain free for experimentation purposes: pin A5 and pins D10 through D13.
As I favor the use of an Arduino Nano because of its small footprint and economy, and also because a TFT shield by design renders free pins of an Arduino Uno hardly accessible, I needed to create pin-to-pin wiring between the display and the Nano. While this can be achieved by simple soldering there is a more elegant way of connecting display and Nano: the pin-and-socket plugin approach.
Here, I used a 80×120 mm soldering board on which I soldered two rows of female pin headers together forming a socket that receives the display shield’s pin headers. This socket construction is neat and it enables quick replacement of a display with another one. A small challenge here was that the pin headers J2, J3 and J4 on the TFT shield (visible in figure 1) seamlessly match the hole pattern in the soldering board while pin header J1 misaligns with the soldering board’s holes. This problem was solved by milling a rectangular cut in the soldering board that exactly matched the position and dimensions of the J1 pin header on the TFT display. The female ‘socket-J1’ pin header on the soldering board was positioned on the board above the cutout, and glued to four braces: ‘support’ female pin headers soldered to the board, flanking the cutout.
Once the positions of the ‘socket’ female pin headers on the soldering board had been figured out, those accepting J2, J3 and J4 soldered into their final position and the J1 socket glued in place, the wiring could be installed. Figure 2 shows the wiring scheme. In order to free pins on the Nano the SD slot functionality on the TFT shield was not used.
figure 2. Schematic wiring of the components of the test bench. All parts seen from the back of the soldering board. 16 pins of the TFT display shield need to be connected with pins on the Nano. The SD card slot is not used.
figure 4. Actual wiring with the actual positioning of the components of the test bench. The front contains the Nano, the TFT screen, the 5V/GND connectors (painted red and black, respectively) and the data pin header (painted white for convenience). Labels were glued on the board.
figure 5. Board attached with two nuts onto the lid of a tape cassette box. A spacer keeps the back of the board a few millimeters away from the plastic lid. This protects the wiring from mechanical damage. Tape cassette box boxes can be applied as cheap and handy stands for Arduino projects; they are made of extruded acrylic and can be worked on with tools – carefully.
Once the test bench was ready I had a versatile test device at hand to perform Arduino experiments. In front of to the test bench a breadboard was placed that held a Dallas DS18B20 temperature sensor and a DHT11 temperature / relative humidity sensor. Temperature sensing with a Dallas DS18B20 is more accurate than with a DHT11.
As the analog meter is simulated in software I looked around and found at Instructables.com in the Arduino section a very nice contribution by Bodmer, named “Arduino sketch for a retro analogue meter graphic on a modern TFT display”. The core of Bodmer’s sketch forms a backbone display subroutine of the sketch that powers the TFT.
I successfully exchanged the 3.5 inch display with a 3.95 inch 320×480 color TFT display (featuring a ILI9488 controller) and with a 2.8 inch 240×320 color TFT display (ILI9341). These displays have two features in common. First, their pin header layouts are the same as that of the 3.5 inch display and second, they contain an ILI controller chip that is supported by David Prentice’s mcufriend_kbv library (available at the Arduino forum). The controller in the present 3.5′ TFT display is an ILI9481.
The goals of the present project were successfully achieved: constructing a test bench with an Arduino Nano powered ‘engine’ with a small footprint, displaying the measured values of several sensors in a simulated analog fashion on a color TFT display. The test bench is used to test sensors in various rooms, let’s say a hot water pipe in the attic whose temperature I want to monitor, or simply the air temperature in the shed. In these ‘remote’ locations the test bench is powered by a USB power bank. The analogous readings are pleasant for the eye.
Some example sketches for a 2.8 TFT Shield touch screen: A numeric keypad, a basic paint program, an image viewer and a calculator. The shield comes with an SDcard slot. The image viewer reads images from an sdcard
To test the card, use the sketch sd_test.ino (part of zip-file) or SdInfo from the SdFat library examples (File > Examples > SdFat). It also displays the card type.
On your computer, copy the images from Arduino\libraries\Adafruit_TFTLCD\bitmaps to the card. Eject the card and insert it into the slot of the TFT Display module.