pcf8574 lcd module manufacturer

A regular LCD requires a lot of wires (parallel interface) to be connected with a Microcontroller.The Serial LCD  backpack built on PCF8574 IC uses the I2C bus to convert  the parallel interface to a serial one.This needs only2 wires SDA & SCL , apart from the power connections.

The blue preset is to adjust the contrast of the LCD. The black jumper on the left is to enable the Backlight of LCD. The I2C device has a HEX address by which a microcontroller can communicate with it.This is set by the 3 bits A0,A1 ,A2 .If no jumper is present , it is HIGH &  a jumper means LOW. By default all the 3 jumpers are open . ie., A0,A1 A2 all are 1s.

lcd.setBacklightPin(HIGH);  makes the P3 pin go High, which turns on the NPN transistor.This provides GND to the LED pin of LCD As the other LED pin is already connected to Vcc through the jumper , the LCD backlight glows.

pcf8574 lcd module manufacturer

I2C Adapter Board fits right on the back of standard LC character display modules with 1 x Hitachi HD44780 or compatible display controller. The on-board PCF8574 or PCF8574A 8-bit I/O expander encodes the signals for the 4 data bits, the read/write select, register select, the enable signal, and the backlight-ON signal.

pcf8574 lcd module manufacturer

This module is ideally suited to interfacing with an LCD display in your project. It is compatible with the common 1602 and 2004 LCD modules with which it can be directly soldered onto. While drastically reducing the number of required connections the unit also features a potentiometer to control the contrast of the connected display.

pcf8574 lcd module manufacturer

This PCF8574 based module is a versatile I/O port expansion module. It is basically a I2C based port enpansion module which can convert any 8 bit data from I2C serial to 8-bit parallel. LCD if used with this module will require only 2 GPIO lines that will save a lot of hardware resources.

pcf8574 lcd module manufacturer

These modules are currently supplied with a default I2C address of either 0x27 or 0x3F. To determine which version you have check the black I2C adaptor board on the underside of the module. If there a 3 sets of pads labelled A0, A1, & A2 then the default address will be 0x3F. If there are no pads the default address will be 0x27.

pcf8574 lcd module manufacturer

Using LCD modules with your Arduino is popular, however the amount of wiring requires time and patience to wire it up correctly – and also uses a lot of digital output pins. That’s why we love these serial backpack modules – they’re fitted to the back of your LCD module and allows connection to your Arduino (or other development board) with only four wires – power, GND, data and clock.

The backpack can also be used with 20 x 4 LCDs. The key is that your LCD must have the interface pads in a single row of sixteen, so it matches the pins on the backpack – for example:

Now let’s get started. First you need to solder the backpack to your LCD module. While your soldering iron is warming up, check that the backpack pins are straight and fit in the LCD module, for example:

Once you’ve finished trimming the header pins, get four male to female jumper wires and connect the LCD module to your Arduino as shown in the following image and table. Then connect your Arduino to the computer via USB:

The next step is to download and install the Arduino I2C LCD library for use with the backpack. First of all, rename the “LiquidCrystal” library folder in your Arduino libraries folder. We do this just to keep it as a backup.

Now restart the Arduino IDE if it was already running – or open it now. To test the module we have a demonstration sketch prepared, simply copy and upload the following sketch:

As opposed to using the LCD module without the backpack, there’s a few extra lines of code to include in your sketches. To review these, open the example sketch mentioned earlier.

You will need the libraries as shown in lines 3, 4 and 5 – and initialise the module as shown in line 7. Note that the default I2C bus address is 0x27 – and the first parameter in the LiquidCrystal_I2C function.

Finally the three lines used in void setup() are also required to initialise the LCD. If you’re using a 20×4 LCD module, change the parameters in the lcd.begin()function.

From this point you can use all the standard LiquidCrystal functions such as lcd.setCursor() to move the cursor and lcd.write() to display text or variables as normal. The backlight can also be turned on and off with lcd.setBacklight(HIGH) or lcd.setBacklight(LOW).

If you want to use more than one module, or have another device on the I2C bus with address 0x27 then you’ll need to change the address used on the module. There are eight options to choose from, and these are selected by soldering over one or more of the following spots:

There are eight possible combinations, and these are described in Table 4 of the PCF8574 data sheet which can be downloaded from the NXP website. If you’re unsure about the bus address used by the module, simply connect it to your Arduino as described earlier and run the I2C scanner sketch from the Arduino playground.

pcf8574 lcd module manufacturer

If you’ve ever tried to connect an LCD display to an Arduino, you might have noticed that it consumes a lot of pins on the Arduino. Even in 4-bit mode, the Arduino still requires a total of seven connections – which is half of the Arduino’s available digital I/O pins.

The solution is to use an I2C LCD display. It consumes only two I/O pins that are not even part of the set of digital I/O pins and can be shared with other I2C devices as well.

True to their name, these LCDs are ideal for displaying only text/characters. A 16×2 character LCD, for example, has an LED backlight and can display 32 ASCII characters in two rows of 16 characters each.

At the heart of the adapter is an 8-bit I/O expander chip – PCF8574. This chip converts the I2C data from an Arduino into the parallel data required for an LCD display.

If you are using multiple devices on the same I2C bus, you may need to set a different I2C address for the LCD adapter so that it does not conflict with another I2C device.

An important point here is that several companies manufacture the same PCF8574 chip, Texas Instruments and NXP Semiconductors, to name a few. And the I2C address of your LCD depends on the chip manufacturer.

So your LCD probably has a default I2C address 0x27Hex or 0x3FHex. However it is recommended that you find out the actual I2C address of the LCD before using it.

Connecting an I2C LCD is much easier than connecting a standard LCD. You only need to connect 4 pins instead of 12. Start by connecting the VCC pin to the 5V output on the Arduino and GND to ground.

After wiring up the LCD you’ll need to adjust the contrast of the display. On the I2C module you will find a potentiometer that you can rotate with a small screwdriver.

Plug in the Arduino’s USB connector to power the LCD. You will see the backlight lit up. Now as you turn the knob on the potentiometer, you will start to see the first row of rectangles. If that happens, Congratulations! Your LCD is working fine.

To drive an I2C LCD you must first install a library called LiquidCrystal_I2C. This library is an enhanced version of the LiquidCrystal library that comes with your Arduino IDE.

The I2C address of your LCD depends on the manufacturer, as mentioned earlier. If your LCD has a Texas Instruments’ PCF8574 chip, its default I2C address is 0x27Hex. If your LCD has NXP Semiconductors’ PCF8574 chip, its default I2C address is 0x3FHex.

So your LCD probably has I2C address 0x27Hex or 0x3FHex. However it is recommended that you find out the actual I2C address of the LCD before using it. Luckily there’s an easy way to do this, thanks to the Nick Gammon.

But, before you proceed to upload the sketch, you need to make a small change to make it work for you. You must pass the I2C address of your LCD and the dimensions of the display to the constructor of the LiquidCrystal_I2C class. If you are using a 16×2 character LCD, pass the 16 and 2; If you’re using a 20×4 LCD, pass 20 and 4. You got the point!

In ‘setup’ we call three functions. The first function is init(). It initializes the LCD object. The second function is clear(). This clears the LCD screen and moves the cursor to the top left corner. And third, the backlight() function turns on the LCD backlight.

After that we set the cursor position to the third column of the first row by calling the function lcd.setCursor(2, 0). The cursor position specifies the location where you want the new text to be displayed on the LCD. The upper left corner is assumed to be col=0, row=0.

There are some useful functions you can use with LiquidCrystal_I2C objects. Some of them are listed below:lcd.home() function is used to position the cursor in the upper-left of the LCD without clearing the display.

lcd.scrollDisplayRight() function scrolls the contents of the display one space to the right. If you want the text to scroll continuously, you have to use this function inside a for loop.

lcd.scrollDisplayLeft() function scrolls the contents of the display one space to the left. Similar to above function, use this inside a for loop for continuous scrolling.

If you find the characters on the display dull and boring, you can create your own custom characters (glyphs) and symbols for your LCD. They are extremely useful when you want to display a character that is not part of the standard ASCII character set.

CGROM is used to store all permanent fonts that are displayed using their ASCII codes. For example, if we send 0x41 to the LCD, the letter ‘A’ will be printed on the display.

CGRAM is another memory used to store user defined characters. This RAM is limited to 64 bytes. For a 5×8 pixel based LCD, only 8 user-defined characters can be stored in CGRAM. And for 5×10 pixel based LCD only 4 user-defined characters can be stored.

After the library is included and the LCD object is created, custom character arrays are defined. The array consists of 8 bytes, each byte representing a row of a 5×8 LED matrix. In this sketch, eight custom characters have been created.

pcf8574 lcd module manufacturer

This is another great IIC/I2C/TWI/SPI Serial Interface. As the pin resources of Arduino controller is limited, your project may be not able to use normal LCD shield after connected with a certain quantity of sensors or SD card. However, with this I2C interface module, you will be able to realize data display via only 2 wires. If you already has I2C devices in your project, this LCD module actually cost no more resources at all. It is fantastic for Arduino based project.

pcf8574 lcd module manufacturer

This is a RoHS compliant I2C Serial LCD Daughter board that can be connected to a standard 16×2 or 20×4 Character Display Module that supports 4-bit mode. All Character Modules sold on our site support 4-bit mode, and nearly all commercially available 16×2 and 20×4 line character modules support it too.

This board has a PCF8574 I2C chip that converts I2C serial data to parallel data for the LCD display. There are many examples on the internet for using this board with Arduino. Do a search for “Arduino LCD PCF8574“. The I2C address is 0x3F by default, but this can be changed via 3 solder jumpers provided on the board. This allows up to 3 LCD displays to be controlled via a single I2C bus (giving each one it’s own address)