pcf8574 lcd module quotation

16×2 LCD is an alphanumeric display that can show up to 32 characters on a single screen. You can display more characters by scrolling the texts one by one. We have already seen how to connect LCD Display directly with the Arduino using 4bit and 8bit modes in our previous tutorial. But those two modes will utilize many numbers of GPIO Pins of our Arduino and we would have to end up with less number of pins for other sensors and actuators.

To overcome this problem we use LCD I2C backpack with our LCD. This I2C Backpack uses PCF8574 Remote 8 bit I/O Expander. It translates the data received from the I2C Bus into Parallel data that is needed for the LCD Display.

Inter-integrated Circuit (in short I2C) is a two-wire short distance communication protocol. You can use multiple slave devices in the same two wires with one or more master controllers. You may wonder how does the master identifies which slave does the data to be sent. In I2C the external devices have an I2C address for different external devices like LCD Backpack, OLED Display, etc. By using the address the data is sent to the specific device connected on the same I2C Bus.

There are totally 16 pins in an LCD Display. You can use directly all the pins in 8-bit mode with Arduino or 12 pins using 4-bit mode. In this tutorial, we use the I2C module for LCD and multiplex it into just 4 pins. This pin details might not be useful while using I2C Method but this is the actual pin details of all the pins in LCD Display.

RS – Register select. Specify what we are sending Command or Data. Sets to 0 for Command mode like setCursor, LCD Clear, TurnOFF LCD. Set 1 for data mode like sending Data/Characters.

First, we need to find the address of our I2C LCD Backpack. For that, we will be using I2C Scanner code to display the address in the serial monitor. Upload the following code, then note down the I2C address from the serial monitor.#include

Now the LCD I2C library is installed. We need to define and initialize the library using its associated functions. The steps is as follows. Or you can copy the code given below to print Hello World example.

Set the address that we copied from I2C Scanner code. The address I got is 0x27 so I replaced it to 0x27 in the following lineLiquidCrystal_I2C lcd(0x27, 16, 2);

In the above code, we have created an LCD object for ‘LiquidCrystal_I2C’. So you can use directly use the regular LCD functions to work with I2C like lcd.begin(), lcd.print(“”), etc.

To print a string we use lcd.print() function with string in its parameters. This prints ‘Factory’ string in the 1st row and ‘Forward’ in the 2nd row.

This function sets the cursor on 7th column and 2nd row. Printing the string will gets displayed from this location on LCD.lcd.setCursor(6,1); // Sets cursor column and row position

By Using lcd.blink() function we can make the cursor blinking on LCD. To turn off the blinking cursor we use lcd.noBlink() function.lcd.blink(); //Blinking cursor

Use lcd.cursor() function for printing an underscore symbol. It is also used for notifying users to enter some values.lcd.cursor(); // Prints an underscore symbol

pcf8574 lcd module quotation

This article includes everything you need to know about using acharacter I2C LCD with Arduino. I have included a wiring diagram and many example codes to help you get started.

Once you know how to display text and numbers on the LCD, I suggest you take a look at the articles below. In these tutorials, you will learn how to measure and display sensor data on the LCD.

Each rectangle is made up of a grid of 5×8 pixels. Later in this tutorial, I will show you how you can control the individual pixels to display custom characters on the LCD.

They all use the same HD44780 Hitachi LCD controller, so you can easily swap them. You will only need to change the size specifications in your Arduino code.

The 16×2 and 20×4 datasheets include the dimensions of the LCD and you can find more information about the Hitachi LCD driver in the HD44780 datasheet.

After you have wired up the LCD, you will need to adjust the contrast of the display. On the I2C module, you will find a potentiometer that you can turn with a small screwdriver.

Note that counting starts at 0 and the first argument specifies the column. So lcd.setCursor(2,1) sets the cursor on the third column and the second row.

Next the string ‘Hello World!’ is printed with lcd.print("Hello World!"). Note that you need to place quotation marks (” “) around the text since we are printing a text string.

The example sketch above shows you the basics of displaying text on the LCD. Now we will take a look at the other functions of the LiquidCrystal_I2C library.

This function turns on automatic scrolling of the LCD. This causes each character output to the display to push previous characters over by one space.

I would love to know what projects you plan on building (or have already built) with these LCDs. If you have any questions, suggestions or if you think that things are missing in this tutorial, please leave a comment down below.

pcf8574 lcd module quotation

These modules are currently supplied with a default I2C address of either 0x27 or 0x3F. To determine which version you have check the black I2C adaptor board on the underside of the module. If there a 3 sets of pads labelled A0, A1, & A2 then the default address will be 0x3F. If there are no pads the default address will be 0x27.

pcf8574 lcd module quotation

If you’ve ever tried to connect an LCD display to an Arduino, you might have noticed that it consumes a lot of pins on the Arduino. Even in 4-bit mode, the Arduino still requires a total of seven connections – which is half of the Arduino’s available digital I/O pins.

The solution is to use an I2C LCD display. It consumes only two I/O pins that are not even part of the set of digital I/O pins and can be shared with other I2C devices as well.

True to their name, these LCDs are ideal for displaying only text/characters. A 16×2 character LCD, for example, has an LED backlight and can display 32 ASCII characters in two rows of 16 characters each.

At the heart of the adapter is an 8-bit I/O expander chip – PCF8574. This chip converts the I2C data from an Arduino into the parallel data required for an LCD display.

If you are using multiple devices on the same I2C bus, you may need to set a different I2C address for the LCD adapter so that it does not conflict with another I2C device.

An important point here is that several companies manufacture the same PCF8574 chip, Texas Instruments and NXP Semiconductors, to name a few. And the I2C address of your LCD depends on the chip manufacturer.

So your LCD probably has a default I2C address 0x27Hex or 0x3FHex. However it is recommended that you find out the actual I2C address of the LCD before using it.

Connecting an I2C LCD is much easier than connecting a standard LCD. You only need to connect 4 pins instead of 12. Start by connecting the VCC pin to the 5V output on the Arduino and GND to ground.

After wiring up the LCD you’ll need to adjust the contrast of the display. On the I2C module you will find a potentiometer that you can rotate with a small screwdriver.

Plug in the Arduino’s USB connector to power the LCD. You will see the backlight lit up. Now as you turn the knob on the potentiometer, you will start to see the first row of rectangles. If that happens, Congratulations! Your LCD is working fine.

To drive an I2C LCD you must first install a library called LiquidCrystal_I2C. This library is an enhanced version of the LiquidCrystal library that comes with your Arduino IDE.

The I2C address of your LCD depends on the manufacturer, as mentioned earlier. If your LCD has a Texas Instruments’ PCF8574 chip, its default I2C address is 0x27Hex. If your LCD has NXP Semiconductors’ PCF8574 chip, its default I2C address is 0x3FHex.

So your LCD probably has I2C address 0x27Hex or 0x3FHex. However it is recommended that you find out the actual I2C address of the LCD before using it. Luckily there’s an easy way to do this, thanks to the Nick Gammon.

But, before you proceed to upload the sketch, you need to make a small change to make it work for you. You must pass the I2C address of your LCD and the dimensions of the display to the constructor of the LiquidCrystal_I2C class. If you are using a 16×2 character LCD, pass the 16 and 2; If you’re using a 20×4 LCD, pass 20 and 4. You got the point!

In ‘setup’ we call three functions. The first function is init(). It initializes the LCD object. The second function is clear(). This clears the LCD screen and moves the cursor to the top left corner. And third, the backlight() function turns on the LCD backlight.

After that we set the cursor position to the third column of the first row by calling the function lcd.setCursor(2, 0). The cursor position specifies the location where you want the new text to be displayed on the LCD. The upper left corner is assumed to be col=0, row=0.

There are some useful functions you can use with LiquidCrystal_I2C objects. Some of them are listed below:lcd.home() function is used to position the cursor in the upper-left of the LCD without clearing the display.

lcd.scrollDisplayRight() function scrolls the contents of the display one space to the right. If you want the text to scroll continuously, you have to use this function inside a for loop.

lcd.scrollDisplayLeft() function scrolls the contents of the display one space to the left. Similar to above function, use this inside a for loop for continuous scrolling.

If you find the characters on the display dull and boring, you can create your own custom characters (glyphs) and symbols for your LCD. They are extremely useful when you want to display a character that is not part of the standard ASCII character set.

CGROM is used to store all permanent fonts that are displayed using their ASCII codes. For example, if we send 0x41 to the LCD, the letter ‘A’ will be printed on the display.

CGRAM is another memory used to store user defined characters. This RAM is limited to 64 bytes. For a 5×8 pixel based LCD, only 8 user-defined characters can be stored in CGRAM. And for 5×10 pixel based LCD only 4 user-defined characters can be stored.

After the library is included and the LCD object is created, custom character arrays are defined. The array consists of 8 bytes, each byte representing a row of a 5×8 LED matrix. In this sketch, eight custom characters have been created.

pcf8574 lcd module quotation

@Lucas_Vieira You are trying the wrong module, since you have a display with i2c backpack. Please copy the files esp8266_i2c_lcd.py and lcd_api.py to you device. Then you can test it with the following code. which is more or less the content of the file esp8266_i2c_lcd_test.py. Do not get confused about the esp8266 prefix. For this application, both board behave similar. Connect the I2C with:

pcf8574 lcd module quotation

I bought a Raspberry Pi 3 B +, plus an HD44780 2004 LCD display (4x20) and other small parts. But after I soldered my LCD to the I2C interface, GND to ground; VCC to 5V; SDA to SDA (GPIO 2); Connected SCL to SCL (GPIO 3), adjusted the contrast and wrote a small script via C #, nothing appeared on the display.

pcf8574 lcd module quotation

PCF8574 IO Expansion Board I2C-Bus Evaluation Development Module is port extender module for arduino, raspberry pi and other development boards. its I2C interface, I / O expansion module, two I / O scalability 8 I / O up to 8 simultaneous use, the PCF8574 expanded to 64 I / O and its typical application are I / O resource shortage MCU I / O expansion.