lcd panel ips vs va made in china

When it comes todisplay technologies such asprojectorsand panels, factors such as resolution and refresh rate are often discussed. But the underlying technology is equally, if not more, important. There are tons of different types of screens, from OLED and LED to TN, VA, and IPS. Learn about the various monitor and television types, from operation to pros and cons!

1)Film layer that polarizes light entering2)glass substrate that dictates the dark shapes when the LCD screen is on3)Liquid crystal layer4)glass substrate that lines up with the horizontal filter5)Horizontal film filter letting light through or blocking it6)Reflective surface transmitting an image to the viewer

The most common form of monitor or TV on the market is LCD or Liquid Crystal Display. As the name suggests, LCDs use liquid crystals that alter the light to generate a specific colour. So some form of backlighting is necessary. Often, it’s LED lighting. But there are multiple forms of backlighting.

LCDs have utilized CCFLs or cold cathode fluorescent lamps. An LCD panel lit with CCFL backlighting benefits from extremely uniform illumination for a pretty even level of brightness across the entire screen. However, this comes at the expense of picture quality. Unlike an LED TV, cold cathode fluorescent lamp LCD monitors lack dimming capabilities. Since the brightness level is even throughout the entire array, a darker portion of scenes might look overly lit or washed out. While that might not be as obvious in a room filled with ambient light, under ideal movie-watching conditions, or in a dark room, it’s noticeable. LED TVs have mostly replaced CCFL.

An LCD panel is transmissive rather than emissive. Composition depends on the specific form of LCD being used, but generally, pixels are made up of subpixel layers that comprise the RGB (red-green-blue) colour spectrum and control the light that passes through. A backlight is needed, and it’s usually LED for modern monitors.

While many newer TVs and monitors are marketed as LED TVs, it’s sort of the same as an LCD TV. Whereas LCD refers to a display type, LED points to the backlighting in liquid crystal display instead. As such, LED TV is a subset of LCD. Rather than CCFLs, LEDs are light-emitting diodes or semiconductor light sources which generate light when a current passes through.

LED TVs boast several different benefits. Physically, LED television tends to be slimmer than CCFL-based LCD panels, and viewing angles are generally better than on non-LED LCD monitors. So if you’re at an angle, the picture remains relatively clear nonetheless. LEDs are also extremely long-lasting as well as more energy-efficient. As such, you can expect a lengthy lifespan and low power draw. Chances are you’ll upgrade to a new telly, or an internal part will go out far before any LEDs cease functioning.

Further segmenting LED TVs down, you’ll find TN panels. A TN display or Twisted Nematic display offers a low-cost solution with low response time and low input lag. TN monitors sport high refresh rates, so 100Hz, 144Hz, or higher. Thus, many monitors marketed toward gamers feature TN technology. Unfortunately, while an affordable, fast panel may sound ideal, TN panels suffer from inferior colour reproduction and horrible viewing angles. A TN panel works so that liquid crystal molecules point at the viewer, and light polarizers are oriented at 90-degree angles.

Like TN, IPS or In-plane Switching displays are a subset of LED panels. IPS monitors tend to boast accurate colour reproduction and great viewing angles. Price is higher than on TN monitors, but in-plane switching TVs generally feature a better picture when compared with twisted nematic sets. Latency and response time can be higher on IPS monitors meaning not all are ideal for gaming.

An IPS display aligns liquid crystals in parallel for lush colours. Polarizing filters have transmission axes aligned in the same direction. Because the electrode alignment differs from TN panels, black levels, viewing angles, and colour accuracy is much better. TN liquid crystals are perpendicular.

A VA or vertical alignment monitor features excellent contrast ratios, colour reproduction, and viewing angles. It’s a type of LED monitor with crystals perpendicular to the polarizers at right angles like TN monitors. Pricing varies, but response time isn’t as high as a TN monitor.

A quantum dot LED TV or QLED is yet another form of LED television. But it’s drastically different from other LED variants. Whereas most LED panels use a white backlight, quantum dot televisions opt for blue lights. In front of these blue LEDs sits a thin layer of quantum dots. These quantum dots in a screen glow at specific wavelengths of colour, either red, green, or blue, therefore comprising the entire RGB (red-green-blue) colour spectrum required to create a colour TV image.

QLED TV sets are thus able to achieve many more local dimming zones than other LED TVs. As opposed to uniform backlighting, local dimming zones can vary backlighting into zones for adjustable lighting to show accurate light and dark scenes. Quantum Dot displays maintain an excellent, bright image with precise colour reproduction.

An OLED or organic light-emitting diode display isn’t another variation of LED. OLEDs use negatively and positively charged ions for illuminating individual pixels. By contrast, LCD/LED TVs use a backlight that can make an unwanted glow. In OLED display, there are several layers, including a substrate, anode, hole injection layer, hole transport layer, an emissive layer, blocking layer, electron transport layer, and cathode. The emissive layer comprised of an electroluminescent layer of film is nestled between an electron-injecting cathode and an electron removal layer, the anode. OLEDs benefit from darker blacks and eschew any unwanted screen glow. Because OLED panels are made up of millions of individual subpixels, the pixels themselves emit light, and it’s, therefore, an emissive display as opposed to a transmissive technology like LCD/LED panels where a backlight is required behind the pixels themselves.

Image quality is top-notch. OLED TVs feature superb local dimming capabilities. The contrast ratio is unrivalled, even by the best of QLEDs, since pixels not used may be turned off. There’s no light bleed, black levels are incredible, excellent screen uniformity, and viewing angles don’t degrade the picture. Unfortunately, this comes at a cost. OLEDs are pricey, and the image isn’t as bright overall when compared to LED panels. For viewing in a darkened room, that’s fine, but ambient lighting isn’t ideal for OLED use.

As you can see, there are tons of different types of displays, each with their advantages and disadvantages. Although many monitors and TVs are referred to by different names like LED, IPS, VA, TN, or QLED, many are variations of LCD panels. However, specific technology such as the colour of backlighting and alignment of pixels dictates the picture quality. OLED is an entirely different form of display that’s not LED. Now that you understand the various types of monitors and televisions on the market, you can select the best TV to fit your needs!

lcd panel ips vs va made in china

Everyday, we look at LCD display, TV, cell phone, monitor. It becomes a necessity in modern society. LCD panel is the most important part of an LCD display. It determines LCD screen"s performance, e.g. brightness, contrast, color and viewing angle. Therefore, picking the right type of LCD panel is critical to your application.

Vertical Alignment (VA): Also referred to as “super vertical alignment” (SVA) and “advanced multi-domain vertical alignment” (AMVA). They all share similar characteristics.

These names reflect the alignment of crystal molecules inside the LCD, and how they change when they are charged electrically. All liquid crystal displays change the alignment of liquid crystal molecules to work, but the manner in which they do so can drastically affect the image quality and response time. Each panel type has its advantages and disadvantages. The easiest way to choose between them is to decide which attributes are most important to your project. It mainly depends on what you use your LCD display for, and your budget.

TN is the most mature technology in LCD panel manufacturing. When there is no voltage difference between the two transparent electrodes, liquid crystal molecules are twisted 90 degrees, in combination of upper and bottom polarizers, allows light to pass through LCD. As voltage applied, crystal molecules are untwisted and aligned to the same direction, blocking light.

In IPS panel, crystal molecules are parallel to the glass substrates at initial stage, LCD is off. When the in-plane electrodes is charged, crystal molecules are rotated, modifying light"s direction. Which lights up the LCD display.

As its name suggests, VA panel"s liquid crystals are aligned vertically without charged. When a voltage is applied, the molecules tilt and modifying light direction.

So in summary, TN panels twist, IPS panels use a parallel alignment and rotate, while VA panels use a perpendicular alignment and tilt. These difference create LCD display with distinctive performance.

IPS LCD is the clear winner in this aspect. It has 178/178 viewing angle ratings. Which means you can look at IPS LCD display from any angle without the image shifting in color and contrast. VA LCD has pretty wide viewing angle, too. But it has contrast shifts at off-center angles. As for TN LCD, viewing angle is its weakest point.

Most TN LCDs have 6-bits colors. Manufacturers use frame rate control (FRC) to enhance its color performance. For IPS and VA panels, you can still find 6-bits entry level LCD. But most of them are 8-bits. And IPS technology can provide natively 10-bits colors.

Color gamut is another part that VA and IPS panels shine at. The best TN LCD can reach sRGB gamut. VA panels typically start with full sRGB coverage, and get to around 90% DCI-P3 coverage. With IPS LCD panel, you could find the best ones full DCI-P3 and Adobe RGB coverage. That is why you see most professional grade LCD displays use IPS panel.

There is no inherent differences among the three panel technologies, because LCD backlight is the main factor here. However, there is a big gap in terms of contrast ratio. TN LCD panel tends to have the lowest value among the three. IPS LCD screen sits in the middle can reach 1500:1. For VA panel, the best one can exceed 4500:1 easily. VA LCD display provides far darker screen than TN & IPS. That is why they are used in vehicle dashboard.

TN panel does have an advantage when it comes to refresh rate. The panel offers the best refresh rate and response time. This is the reason why most gaming LCD monitors are made of TN panel.

TN LCD provides the best refresh rate and economic solution. If your application requires wide viewing angles and good color presentation, VA panel is probably the choice. While IPS has the best overall visual performance, in general it is more expensive than the other two.

lcd panel ips vs va made in china

When buying a gaming monitor, most consumers are not even aware of the existence of LCD panel technology. LCD display panels have different specs that can have a radical impact on  the user experience. Based on how you plan to use your LCD monitor, you may choose among three main gaming monitor panel types: TN, IPS, and VA.

At first, choosing the right monitor panel may seem tricky. In this article, we will present the pros and cons of each LCD display panel. After finishing reading this post, you will be knowledgeable enough to challenge any sellers and choose the most appropriate gaming monitor for your next playing section.

Let’s begin with the most popular LCD display panel on the market today. TN panels are generally installed in most gaming monitors, especially in those with a high refresh rate.  These kinds of LCD monitors are specially designed for very competitive video games.

One of the advantages of these panels is their relatively lower price compared to their counterparts. Another quality that makes TN panels a top pick is their fast response time. This means that there is a much lower delay between a click of the mouse or a keyboard touch and the command reproduced on the screen. This feature makes the TN panels ideal for those who love action shooters and video games that require very fast reactions. Besides, there are other benefits to having a shorter response time. Overall, there are fewer unpleasant phenomena such as blurring and ghosting. As a result, the final image is much clearer and sharper.

When buying TN panels, you will probably hear the terms ‘black-to-black’ or ‘grey-to-grey’ (GTG). Black-to-black is the standard response time measure. BTB refers to the amount of time it takes a pixel to go from black to white and then back to black. This indicator is considered among the most accurate to evaluate the response time of a device.

On the other hand, many manufacturing companies speak of grey-to-grey. Used to measure gaming monitors’ response time, GTG means how long it takes for the pixel to go from one grey level to the next. However, lighter shades of grey will switch to white much faster than darker shades. GTG response time value will not necessarily be the same for every single pixel. For this reason, they are to be interpreted more as an approximate rather than actual value of that monitor’s actual response time.

Monitors with IPS panels, rely on high colors definition. Looking at this type of LCDs, the quality that stands out the most is the exceptional color accuracy coupled with the wide viewing angles. The wide angularity makes these monitors more suitable for jobs that require a high intensity of colors displayed such as photo and video editing. In gaming, IPS panels are often preferred for RPGs with astonishing visuals.

IPS panels allow you to look at the screen perfectly from any position. These screens do not have the usual problems of changing colors or contrast as with most monitors. Unfortunately, to reach such a high definition of images, the response time must be sacrificed. When compared to TN panels, the response rate is much lower. Technology has undoubtedly updated itself in recent years leading to newest iteration improvements. Besides, most people do not encounter lag problems when playing video games on these screens.

Ultimately, for many casual gamers, image quality is much more important than a couple of milliseconds of delay in the panel’s overall response time. A disadvantage that we have to mention though is the high price. This is one of the critical aspects that turns costumers away from IPS to buying a TN solution.

Finally, there are the VA or Vertical Alignment panels. Much more similar to IPS, there are many types of VA panels, but the ones we will focus on are MVA (Multi-domain Vertical Alignment) panels and AMVA (Advanced MVA) panels.

MVA panels were initially designed to be in the middle between TN and IPS displays, as they offered a better viewing angle than TN screens and a higher contrast ratio and deeper blacks than IPS displays. However, their color accuracy is not as precise as the one of IPS monitors, and they do not have a particularly fast response time.

AMVA panels, on the other hand, focus precisely on a higher color definition. As a matter of fact, they have better color accuracy while preserving ultra-high contrast ratios and deep blacks. Their viewing angle is not as wide as that of IPS panels, and their response time is still a bit slow.

Consequently, monitors with VA panels can be seen as a good compromise among all the market monitors. Their flagship features are the excellent black levels – which is the best in the category of gaming monitors – and their amazing contrast ratio. Moreover, compared to TN panels, they have a better viewing angle and greater color accuracy.

On the downsides, despite apparently trying to correct and eliminate the weaknesses of their competitors, VA solutions do not have a color accuracy comparable to that of IPS panels or a response rate higher than TN screens.

To sum it up, for competitive online gamers, we would suggest TN panels. For non-competitive PC games, VA panels will work much better. If you just want to focus on visuals, IPS displays are a better choice. At Aiwa, we are dedicated to providing the best user experience to our customers.

If you are interested in LCD display panels and screens, you need to go any further. Hopefully, this guide was helpful in sharing more useful information for your next purchase. Come to check our solutions or contact us at any time!

lcd panel ips vs va made in china

You may be surprised to know that not all LCD panels are created equal. That’s because there’s more than one type of LCD screen. While their differences are subtle, the type of panel technology significantly impacts its image quality and display performance.

In this post, we’ll compare the three types of LCD panel technologies – IPS vs. TN vs. VA – and the pros and cons of each. Knowing the differences is critical to help you find the best type that fits your needs.

The main difference between them is how they arrange and move the liquid crystal display (LCD) molecules in their panels. This, in turn, has a profound effect on image quality, refresh rate, and other performance factors.

A twisted nematic or TN monitor is the oldest and most common type of LCD still used today. It uses a nematic liquid crystal, meaning it has its molecules arranged in parallel, but not on a level plane. These can twist or untwist themselves when a voltage runs through them, hence the name. This twisting effect either allows or blocks light from passing through, turning screen pixels “on” or “off.”

In-panel switching (IPS) panels work similarly to TN monitors, except that the liquid crystal molecules are parallel to the glass panel of the screen. Instead of twisting like in TN monitors, these molecules rotate when a voltage is applied.

Vertical alignment (VA) displays arrange their LCD molecules vertically, perpendicular to the glass panel. When voltage is present, they tilt themselves instead of twisting or rotating.

Being the oldest LCD technology still in use today, TN monitors undoubtedly have their share of benefits, otherwise they wouldn’t have this much longevity! Comparing TN vs. IPS and VA, TN panels are the cheapest and fastest to manufacture. As a result, they are better for the more budget-conscious user. They’re also the most versatile LCD type and have no real-world limits on size, shape, resolution, and refresh rate.

Comparing IPS vs. TN, the former is a drastic improvement over the latter. IPS panels resolve some of the limitations and problems of TN monitors, specifically color accuracy and issues with viewing angles. However, IPS panels suffer from a phenomenon called “IPS glow,” where you can see the display’s backlight clearly if you view it from the side.

Another significant limitation of IPS panels, particularly for gamers, is that they have the lowest refresh rates of any LCD type. And while the color fidelity is fantastic with IPS vs. VA, the latter has superior contrast ratios over the IPS panels.

The biggest strength of VA panels lies in their excellent contrast ratio. Keep in mind that irrespective of the LCD technology used, a backlight is required; this is typically LED. The LCD’s ability to block this light will determine how well it can reproduce blacks, and it’s in this detail where VA excels. That is, blacks are dark and rich in a VA panel vs. IPS. They also lie somewhere in the middle regarding overall image quality, color reproduction, viewing angle, and refresh rate. Overall, VA is a good compromise between TN and IPS.

A drawback of VA vs. IPS and TN is it exhibits an relatively high response time. As such, VA displays are more prone to motion blur and ghosting if you’re viewing fast-moving visuals on a screen, such as when you’re playing a racing game.

It’s worth noting that there is no universal “right” choice for choosing a type of LCD panel. Which one you pick depends on your budget, your intended use, and your expected outcome.

A TN monitor is best if you’re looking for a low-cost, readily available display for tasks that don’t rely on contrast and color accuracy, such as sending emails or typing a document or spreadsheet. They are also the best choice for competitive gamers who want the best refresh rates and response times to give them an edge in online multiplayer games, despite a technically lower image quality.

With their superior color reproduction, IPS panels are best for graphic designers, film editors, photographers, and other visual design professionals. For them, image quality including contrast and color accuracy are more important than refresh rates. IPS panels are also fantastic for casual gamers who want the best visuals and don’t mind the compromise in refresh rate or response time.

If you’re looking for a solid middle-ground for both graphic and non-graphic work, VA works as a general-purpose monitor. While its high response times are unsuitable for gamers, it’s a technology that’s more than suitable for watching movies or TV shows.

Whichever LCD type you choose, make sure you get the right cable, a Premium High Speed HDMI® Cable, or an Ultra High Speed HDMI® Cable to ensure delivery of all the HDMI 2.1 features. Doing this ensures that you’ll get the best experience on your screen.

lcd panel ips vs va made in china

Many TVs use LCD (Liquid Crystal Display) panels that are lit by LED backlights. There are two popular types of LCD panels: In-Plane Switching (IPS) and Vertical Alignment (VA), and there are two main differences between each type. A VA panel usually has a high contrast ratio and narrow viewing angles. However, an IPS panel has low contrast and wide viewing angles. These are the main differences between each, and for the most part, panel type doesn"t affect other aspects of picture quality, like peak brightness, color gamut, or color accuracy.

For the purposes of this article, we"re going to compare two LED-backlit LCD TVs: the Sony X800H, which has an IPS panel, and the Hisense H9G, which has a VA panel. Due to their different panel types, there are three noticeable differences in picture quality: viewing angles, contrast, and black uniformity, so we"re going to look at each one.

Viewing angle refers to the angle at which you can watch the TV without seeing a noticeable drop in picture quality. IPS TVs are the clear winner here, as the image remains accurate when viewing from the side - you can see the differences in the videos above. This is their main advantage over VA panels. Most VA panel TVs have a noticeable loss in image accuracy when viewing from the side. The narrow viewing angle of VA-type TVs is also problematic when the TV is used as a PC monitor from up close since the edges of the display look washed out.

VA panels are far superior to IPS panels when it comes to this, so if you tend to watch movies in the dark, you likely want to get a TV with a VA panel. Most TVs use VA panels due to this main advantage, and high-end models may have a local dimming feature that further enhances black levels. On the other hand, IPS panels normally have low contrast, so blacks look closer to gray, but you may not notice the difference in contrast in bright environments.

Our black uniformity tests determine how well a TV displays a dark scene with a bright image in the center. Ideally, you want to see a completely black screen with the center cross being the only part that"s lit up, and this is important for people watching movies. No LED TV has perfect uniformity, and unlike viewing angles and contrast, the panel type doesn"t completely determine its black uniformity. However, most VA panels that we"ve tested have good black uniformity, while most IPS panels have sub-par black uniformity. This doesn"t mean that every VA panel TV has good uniformity, as this can change between units, and you can also improve uniformity using the local dimming feature.

LCDs function by having liquid crystals in little groups to form the pixels. These crystals react and change position when charged with electricity and, depending on their position, they allow a certain color of light to pass through.

IPS displays have their crystals aligned horizontally at all times. When charged, they turn to allow light through. VA displays have their crystals aligned vertically. When charged, they move to a horizontal position, allowing light through. When current isn"t sent through them, however, their vertical alignment blocks light far more efficiently, creating better blacks and giving better contrast.

There"s also another type of IPS panel, called Plane-to-Line Switching (PLS), which can be seen with the Sony X800H. This panel type was designed by Samsung and technically performs the same as an IPS panel. When you compare the pixels visually, IPS panels look like chevrons, VA looks like very straight rectangles, and PLS looks like round-edged capsules. You can learn more about pixels here.

The way the pixels are laid out can also affect text clarity. Many IPS panels, like the ones on the Sony X800H or the LG SK9000, use RGB sub-pixel layouts, while many VA panels have a BGR layout, like on the Hisense H9G. The sub-pixel layout doesn"t directly affect picture quality unless you"re using it as a PC monitor. Some applications may expect an RGB layout, so if you have a BGR sub-pixel layout, text may not look clear. You may need to increase the text scaling to read it properly, but this issue isn"t common with an RGB layout. You can learn more about it here.

TV manufacturers have come up with ways to improve LED TVs to increase picture quality. There are competing technologies, like OLED, which also present their own unique characteristics.

Unlike LED TVs, OLEDs don"t use a backlight and instead have self-emitting pixels. This allows the pixels to individually turn on and off, resulting in perfect blacks. This means that they also have perfect black uniformity as there"s no blooming around bright objects like on some LED TVs. They also have wide viewing angles, sometimes even wider than some IPS panels, so OLEDs are a good choice for wide seating arrangements.

However, the one major downside to OLEDs compared to LEDs is their risk of permanent burn-in. This could be problematic if you constantly watch content with static elements, like the news, or if you use it as a PC monitor. We don"t expect it to be an issue for people who watch varied content, but if you"re truly worried about it, LED TVs appear to be immune to burn-in.

Samsung released quantum dot TVs in 2015, which they later labeled as QLED in 2017. These TVs include a quantum dot layer between the LED backlights and the LCD panel to achieve a wider color gamut. Other companies like Vizio and TCL also use this quantum dot technology on their TVs. Adding this extra quantum dot layer doesn"t change the characteristics of the panel type; the VA panel on the TCL 6 Series/S635 2020 QLED still has a high contrast ratio and narrow viewing angles. Although most QLED TVs use VA panels, you can easily use an IPS panel as well.

Manufacturers have tried different techniques to improve the viewing angles on VA panels over the years, aiming to produce a perfect LCD panel with both wide viewing angles and high contrast. While they have yet to achieve that goal, a few TVs have hit the market that try to combine the best of both panel types. The first TVs with this viewing angle technology came out in 2018, and only a few high-end models like the Samsung Q90/Q90T QLED and the Sony X950H had this technology in 2020. These TVs are a bit unique, delivering noticeably better viewing angles than their pure VA counterparts, but still worse than true IPS panels. This comes at the expense of a lower contrast ratio, as these TVs have worse native contrast than most VA panels, but they"re still better than IPS panels. Combined with their local dimming features, they still produce deep blacks.

Between IPS and VA panels, neither technology is inherently superior to the other as they both serve different purposes. In general, IPS TVs have wide viewing angles suitable for when you want to watch the big game or your favorite show in a large seating arrangement. They"re also beneficial for use as a PC monitor since the edges remain accurate if you sit up close. However, VA panels are a better choice for watching content in dark rooms, as their improved contrast allows them to display deep blacks. Choosing between the two is a series of trade-offs and qualities, so choosing the best TV for your needs depends on your usage.

lcd panel ips vs va made in china

In order to understand this problem, we first need to know the panel type of LCD. At present, the LCD panels are mainly divided into three categories, which are TN, VA and IPS.

TN panel, full name Twisted Nematic (twist nematic), because the production cost is relatively low, so it is the first popular panel in LCD. The advantage of TN panel is that the response time of GTG panel is very fast, and the gray scale response time of GTG is often up to 1ms, which is the lowest among all LCD panels, so many e-sports / game monitors use TN panel.

However, the shortcomings of the TN panel are also obvious, such as less output gray scale, white color, small visual angle and so on. 1080p is the most common resolution in the TN panel, and there are also some 27-inch QHD panels, and the latest panel can do 28-inch UHD. At present, the main manufacturers of TN panels are Samsung display (Samsung Display), LG, Youda Optoelectronics, Qunchuang Optoelectronics, China Picture Tube and so on.

Let"s talk about the VA panel. VA panel full name Vertical Alignment (vertical arrangement), its advantage lies in the contrast, VA panel is the highest contrast of all LCD panels, usually can reach 3000 VA 1, while the contrast of TN, IPS is only about 1000 VA 1, the intuitive feeling of high contrast is that black looks purer and the picture is more layered.

The gray scale response time of VA panel is faster than that of IPS, and some of them even reach the same 1ms as TN, while the visual angle of TN is much better than that of TN, which is consistent with the visual angle of IPS panel, and there is no light leakage problem of VA panel.

Finally, let"s talk about the IPS panel. IPS full name In-Plane Switching (plane conversion), its advantage is that the color performance is relatively good, and the visual angle is also relatively wide, horizontal and vertical visual angle can reach 178°, but the contrast is not as good as VA panel, and the problem of light leakage is also more prominent.

From the above carding, it is not difficult to see that each panel has its own advantages, but also some inherent shortcomings. For example, TN panel is better than fast response time, but the color and visual angle is not good; VA panel contrast is high, but there are still some differences in response time and color; IPS color is good, but there are long response time and light leakage problems.

So which panel to choose depends on the specific requirements, you can"t simply think that IPS must be better than VA, or VA must be better than TN. For example, heavy players of FPS games who value response time can choose the display of TN panel, designers who value visual angle and have certain requirements for color can choose the display of IPS panel, and friends who like to watch some high-contrast and more powerful pictures can choose the display of VA panel.

lcd panel ips vs va made in china

Because OLED TVs are newer and generally more expensive, the average buyer is looking at LED/LCD TVs right now. And although there are several features and specifications to consider while shopping—the brand name, HDR compatibility, and refresh rate, just to name a few—there’s one important hardware spec that isn’t widely advertised: LCD panel type.

LED/LCD TVs are so called because of the two things that make up their displays: an LED (Light Emitting Diode) backlight and an LCD (Liquid Crystal Display) panel for that backlight to shine through. LED backlights vary between a variety of implementations, but modern LCDs generally come in one of two panel technologies: IPS (In-Plane Switching) and VA (Vertical Alignment).

Unlike other hardware specifications (which are usually listed on the side of a TV box or on the manufacturer’s website), information about a TV’s LCD panel type is a bit more inside baseball. But panel type has a far greater impact on a TV’s performance than you might expect—it affects contrast, color, and viewing angle as well.

Individual pixels in an LCD display are made up of liquid crystals activated by voltage. How the display arranges its crystals is part of what sets IPS panels apart from VA panels.

IPS (In-Plane Switching) panels are a common display type for both the best computer monitors and TVs. Without getting too far down the rabbit hole, let’s talk a little about how IPS panels distinguish themselves from other types.

Every non-OLED TV on the market today is an LCD TV powered by LED lighting. Individual pixels in an LCD display are made up of liquid crystals activated by voltage—this is what produces color. An IPS panel aligns its crystals horizontally, parallel to the glass substrate.

IPS technology was developed in part to improve the color and wide viewing angle performance of a display. There"s also a range of variations under the IPS umbrella, including ADS, S-IPS, H-IPS, e-IPS, P-IPS, and PLS (Plane-to-Line Switching). But, while they all differ marginally from one another in operation, their core functionality (as compared to VA panels) is the same.

VA (Vertical Alignment) panels represent another common display type, used for both computer monitors and TVs, but especially for the latter where they greatly outnumber their IPS counterparts. Most LED/LCD TVs you"ll find on the market use a VA panel. While IPS panels align their liquid crystals horizontally, VA panels align them—you guessed it—vertically. They run perpendicular to the glass substrate rather than parallel to it. When met with voltage, the crystals tilt, letting light through and producing color.

This positioning changes how the liquid crystals behave. Without any voltage, the liquid crystals in a VA panel do not tilt, which is a better outcome if your goal is to block light and create image depth. Like with IPS, VA panels also come in a few varieties: PVA, S-PVA, and MVA, though again, their core functionality (as compared to IPS panels) is the same.

TN (Twisted Nematic) is an older LCD display type. They"re still relatively common display types for computer monitors—thanks to their lightning fast response times and excellent handling of motion blur. TN panels aren"t typically used in TV production anymore, though.

The cornerstone of picture quality, contrast ratio refers to the range between a display’s darkest black levels and brightest highlights. Because VA-style panels excel at producing deep, dark black levels, this is arguably their biggest strength. VA panels almost always feature deeper black levels than their IPS counterparts, and this goes a long way in creating a detail-rich picture. An IPS panel can mitigate this by serving up an exceptionally bright image to offset relatively shallow black levels.

A TV’s total viewing angle describes how much a viewer can move away from an ideal, head-on viewing position before the contrast and color of the picture begins to deteriorate. Due to the positioning of their liquid crystals, IPS panels excel in this department; they typically offer significantly more viewing flexibility than TVs with VA-style panels. In other words, IPS panels are more reliable for group viewings (or any situation where a viewer might need to sit at an off-angle).

While impressive color production is possible on both display types, IPS panels tend to offer wider colors, given the nature of their hardware. While a wider range of colors tends to spell better color accuracy, the advent of additional TV technologies like quantum-dot color have evened the playing field considerably. In other words, you’re far more likely to notice the benefits of an IPS TV’s wider viewing angle than you are to notice its tendency for wider color.

Here’s the final takeaway: IPS panels are significantly better than VA panels when it comes to viewing angle and somewhat better than VA panels when it comes to color. VA panels, however, almost always offer deeper black levels and better overall contrast. And because they block light better, TVs and monitors using VA panels tend to have better backlight uniformity regardless of LED backlight type.

Unfortunately, not only is it rare to find a TV’s panel type listed on a manufacturer’s website, but it’s increasingly rare for a brand to reveal a TV’s panel type at all—even when we contact brands directly for information. The reason for this caginess has everything to do with marketing; it’s better to keep shoppers focused on the bells, whistles, and impressive performance specs of a TV rather than its potential shortcomings.

To add to the confusion, it’s common for different sizes of the same TV series to mix and match display types; you might find that the 55-inch version of a TV features a VA-style display while the 75-inch model uses IPS.

Fortunately, it’s relatively easy to determine panel type if you have the proper equipment and you know what to look for. Certain test results and viewing characteristics act as tell-tale signs. This is why my colleagues and I make a point of discussing panel type in just about every TV review we publish, and why you should make a point of reading reviews before making a purchase.

Panel type is not the end-all-be-all for LED/LCD TVs. Many other factors, most of them related to the style and intensity of the LED backlight, can have a major impact on factors like contrast, viewing angle, and color intensity. Ultimately, you need to see a TV in person (and ideally in the space it’s going to live in) to get the best idea of how well it creates an image. But by knowing the core differences of IPS vs VA LCD panels, you can at least make some good guesses before you buy.

Unlike the best gaming monitors, IPS and VA TV panels are on an even playing field. TVs with both technologies are capable of high refresh rates of 120Hz, or occasionally 240Hz (although it usually comes at a premium).

If you focus on single-player gaming, or your multiplayer gaming happens online, the excellent contrast of VA is the way to go. The most gaming benefits you’ll see will come from extra features like Variable Refresh Rate (VRR), Auto Low Latency Mode (ALLM), or cloud game capabilities.

If you’re buying a large screen and intend to host movie nights with friends and family, a TV with an IPS-style panel is far more accommodating thanks to its superior viewing angle. Just be aware that certain content—particularly dark content—won’t pop as much on account of the panel’s shallower black levels.

On the other hand, if you want the best possible picture overall, we recommend investing in a TV with a VA-style panel. They’re not always ideal candidates for group viewings, but the vast majority of the best non-OLED TVs you can buy feature this display type.

lcd panel ips vs va made in china

Panel type names are based on the molecule arrangement on a liquid crystal display - LCD monitor - and the changes that occur upon voltage application. LCD monitors - see also LED vs LCD review - adjust the molecule positioning to function, though the way the changes occur immensely impacts your response time and image quality.

While it is the oldest panel technology, a TN panel still has some advantages over the newer VA and IPS panel technologies (see QLED and IPS). For one, they are the cheapest and suitable if you want budget-friendly options . If the extent of color reproduction or better viewing angles is not essential, a TN screen might suit you.

Moreover, TN panels have the least input lag of about one millisecond. A TN computer can operate at fast refresh rates reaching 240 Hz (see 1440p - 240Hz monitors review). For this reason, they are ideal for competitive players seeking gaming monitors (check out the best monitors for Xbox One X and Xbox Series X) that enable them to take advantage of each second. The Benefits of a good monitor for gaming are shown also in our review of monitors for League of Legends.

Nevertheless, TN display technology has notable disadvantages starting with the small viewing angles on the perpendicular axis. The changing of your TN computer"s colors is common when seated at extreme angles.

TN screens also have poor color reproduction. Most TN displays cannot function at 24-bit true color, so they depend on interpolation for accurate shade simulation. This performance can lead to color banding and lower contrast ratios than VA and IPS panel technologies.

TN panels also have a relatively lower color gamut. Only high-end TN monitors display wide color ranges. Many lack a wide-gamut and therefore are unideal for color grading, web design, photo and video editing, or other usages demanding color accuracy.

With their much wider viewing angles compared to TN screens, IPS panels allow you to sit at extreme angles while getting accurate color displays. Those characteristics are also the reason why IPS displays are good for touchscreens in tablets and portable monitors suh as this ZenScreen Touch monitor from Asus or this from Elecrow, an open hardware facilitation company based in China. Unlike a TN screen, you"ll hardly notice a color shift when looking at the screen from an unideal perspective.

IPS panels also have excellent performance in black reproduction, vital in eliminating the washed-out displays typical on TN panels. Regardless, IPS monitors don"t have as high contrast ratios as VA panels.

While TN panels dominate in terms of the refresh rate, IPS panels are now available that support refresh rates even over 240 Hz. For instance, the ASUS TUF VG259QM 24.5-Inch has a 280 Hz refresh rate and features an IPS monitor (see also this 23.8-inch monitor from HP).

TN displays previously had lower lagging than any other panel type, but IPS displays are now at per. LG launched their Nano IPS UltraGear screens boasting of the fastest response times on IPS at one millisecond. Moreover, Samsung"s quantum dot technologies, which will be covered in another post, are more energy-efficient and offer enhanced color accuracy over IPS, as well.

Despite measuring up, you"ll still spend more to get an IPS screen with a one millisecond response time than a similar-rated TN monitor. If you want to benefit from IPS technology at a budget cost, expect an LCD panel at approximately four milliseconds. Dell S2318HN here has gone a step further though, combining IPS and LED - see also "What is OLED?" - technology for some great results.

Another notable demerit dominant in IPS panels is the IPS glow. If this phenomenon occurs, your screen"s backlight shines and blurs your view when sitting at extreme viewing angles. While not the biggest issue, it is something to consider if you like sitting on the side. On the other hand, these types of monitors are thin and lightweight (see "Auzai"s portable monitor", or this Desklab monitor), as well as energy-efficient. Speaking of portability, ASUS mb168b monitor and AOC e1659fwu are also easy to carry and offer good quality at an affordable price.

VA panels form a middle ground between IPS and TN monitors. They have the highest contrast ratios, making them a go-to option for TV manufacturers. While an IPS screen can have 1000:1, comparable VA alternatives may reach up to 3000:1 or 6000:1 contrast ratios.

A VA monitor won"t offer you as good of a performance as an IPS screen in viewing angles (see Lenovo Thinkvision m14). Depending on your sitting arrangement, you may experience some brightness, though not as glaring as the IPS glow.

VA panels feature slower response times than TN and IPS monitors at their best performance. While some VA monitors refresh at up to 240 Hz, they tend to have latency that can cause motion blur and ghosting.

As a result, if you are in a VS vs IPS monitor dilemma, it is wise to refrain from VA displays for competitive gaming, and go for top gamers" choice displays like in these monitors for CS: GO or these monitors for racing games.

Compared to TN panels, VA screens provide better color reproduction, often supporting full sRGB spectrum even on budget options (see the best monitors under $200 review).

Because of their attributes, VA panels are suitable for general use. However, these panels tend to perform lower in most specs apart from the contrast ratio. VA monitors are pretty excellent in single-player action, flight simulations, or casual gaming.

Media professionals prefer IPS panels to VA panels, given their wider color gamut, though professionals like music producers require different features in their monitors.

lcd panel ips vs va made in china

Flat-panel displays are thin panels of glass or plastic used for electronically displaying text, images, or video. Liquid crystal displays (LCD), OLED (organic light emitting diode) and microLED displays are not quite the same; since LCD uses a liquid crystal that reacts to an electric current blocking light or allowing it to pass through the panel, whereas OLED/microLED displays consist of electroluminescent organic/inorganic materials that generate light when a current is passed through the material. LCD, OLED and microLED displays are driven using LTPS, IGZO, LTPO, and A-Si TFT transistor technologies as their backplane using ITO to supply current to the transistors and in turn to the liquid crystal or electroluminescent material. Segment and passive OLED and LCD displays do not use a backplane but use indium tin oxide (ITO), a transparent conductive material, to pass current to the electroluminescent material or liquid crystal. In LCDs, there is an even layer of liquid crystal throughout the panel whereas an OLED display has the electroluminescent material only where it is meant to light up. OLEDs, LCDs and microLEDs can be made flexible and transparent, but LCDs require a backlight because they cannot emit light on their own like OLEDs and microLEDs.

Liquid-crystal display (or LCD) is a thin, flat panel used for electronically displaying information such as text, images, and moving pictures. They are usually made of glass but they can also be made out of plastic. Some manufacturers make transparent LCD panels and special sequential color segment LCDs that have higher than usual refresh rates and an RGB backlight. The backlight is synchronized with the display so that the colors will show up as needed. The list of LCD manufacturers:

Organic light emitting diode (or OLED displays) is a thin, flat panel made of glass or plastic used for electronically displaying information such as text, images, and moving pictures. OLED panels can also take the shape of a light panel, where red, green and blue light emitting materials are stacked to create a white light panel. OLED displays can also be made transparent and/or flexible and these transparent panels are available on the market and are widely used in smartphones with under-display optical fingerprint sensors. LCD and OLED displays are available in different shapes, the most prominent of which is a circular display, which is used in smartwatches. The list of OLED display manufacturers:

MicroLED displays is an emerging flat-panel display technology consisting of arrays of microscopic LEDs forming the individual pixel elements. Like OLED, microLED offers infinite contrast ratio, but unlike OLED, microLED is immune to screen burn-in, and consumes less power while having higher light output, as it uses LEDs instead of organic electroluminescent materials, The list of MicroLED display manufacturers:

Sony produces and sells commercial MicroLED displays called CLEDIS (Crystal-LED Integrated Displays, also called Canvas-LED) in small quantities.video walls.

LCDs are made in a glass substrate. For OLED, the substrate can also be plastic. The size of the substrates are specified in generations, with each generation using a larger substrate. For example, a 4th generation substrate is larger in size than a 3rd generation substrate. A larger substrate allows for more panels to be cut from a single substrate, or for larger panels to be made, akin to increasing wafer sizes in the semiconductor industry.

Cantwell, John; Hayashi, Takabumi (January 4, 2019). Paradigm Shift in Technologies and Innovation Systems. Springer Nature. ISBN 9789813293502 – via Google Books.

"Samsung Display has halted local Gen-8 LCD lines: sources". THE ELEC, Korea Electronics Industry Media. August 16, 2019. Archived from the original on April 3, 2020. Retrieved December 18, 2019.

"TCL to Build World"s Largest Gen 11 LCD Panel Factory". www.businesswire.com. May 19, 2016. Archived from the original on April 2, 2018. Retrieved April 1, 2018.

"Panel Manufacturers Start to Operate Their New 8th Generation LCD Lines". 대한민국 IT포털의 중심! 이티뉴스. June 19, 2017. Archived from the original on June 30, 2019. Retrieved June 30, 2019.

"TCL"s Panel Manufacturer CSOT Commences Production of High Generation Panel Modules". www.businesswire.com. June 14, 2018. Archived from the original on June 30, 2019. Retrieved June 30, 2019.

"Samsung Display Considering Halting Some LCD Production Lines". 비즈니스코리아 - BusinessKorea. August 16, 2019. Archived from the original on April 5, 2020. Retrieved December 19, 2019.

Herald, The Korea (July 6, 2016). "Samsung Display accelerates transition from LCD to OLED". www.koreaherald.com. Archived from the original on April 1, 2018. Retrieved April 1, 2018.

"China"s BOE to have world"s largest TFT-LCD+AMOLED capacity in 2019". ihsmarkit.com. 2017-03-22. Archived from the original on 2019-08-16. Retrieved 2019-08-17.

lcd panel ips vs va made in china

There’s an almost overwhelming amount of options in the display market: OLED, MicroLED, and TN panel types just to name a few. But if you’re looking for a gaming monitor or simply don’t want to drain your bank account on a display, IPS and VA are generally the best choices. In-plane switching (or IPS) is an LCD-based technology that is used in just about every kind of display, whereas Vertical Alignment (or VA) is a more niche LCD technology used in gaming monitors, gaming TVs, and wide displays.

Although IPS is much more popular than VA and is often seen as the more premium option, both panel types have strengths and weaknesses that you should consider before you buy.

IPS panels have traditionally been used for making displays that have high color accuracy and large coverage of wide color gamuts like DCI-P3 or Adobe sRGB. Not only do IPS displays usually look good, but they also look good from wider angles, so you don’t need to look exactly head on at an IPS monitor to get accurate colors.

Color accuracy and coverage can be good on VA displays (even at wide angles), but colors across VA displays aren’t always uniform. Depending on the viewing angle and the distance between the viewer and the display, the center of VA monitors often have more gamma than the edges of the screen, making colors less accurate.

Although IPS is generally better than VA when it comes to color accuracy and coverage, VA panels have perfectly fine color accuracy and coverage for the vast majority of users. Only professional photo and video editors could really be disappointed with a VA monitor that only covers 90% of the DCI-P3 color space, which is actually a very good amount of coverage for gamers and content consumers.

Contrast ratio is a metric that measures how dark the color black is depicted on a display, measured as a ratio of x:1. The higher x is, the better. Although IPS is very good with color accuracy in general, it really struggles with making the color black, and even the best IPS monitors and TVs can only show a very dark grey rather than true black. Most IPS monitors are rated at a 1000:1 contrast ratio, which isn’t terrible but isn’t great either. Some monitors can get up to around 2000:1 however.

Despite VA’s general color accuracy issues, it’s actually amazing at depicting black as truly black. Even the worst VA displays can easily muster a 2000:1 contrast ratio, and some can even achieve higher than 5000:1. In fact, VA is second only to OLED when it comes to contrast ratio, and OLED actually delivers perfect contrast ratios of ∞:1. Because of this, a VA display can look better than an IPS counterpart in darker scenes.

Some displays can boost contrast ratio by using local dimming and HDR. By using a more complex backlight with multiple LEDs that can be turned on or off, local dimming helps IPS and VA displays look even darker when it matters. On the other end of the spectrum, HDR boosts brightness for colors that need it. With these two factors combined, some displays can boost the contrast ratio significantly. However, these features aren’t going to make an IPS display’s contrast ratio as good as the average VA display’s, and poorly implemented local dimming can backfire by creating more visual problems than it solves.

Response time is the amount of time it takes to fully refresh the display and show a new image. This is an area where both IPS and VA struggle, but nowadays very good IPS displays have overcome traditional issues with response times, and VA displays have not shown the same amount of progress. There is no standard that display manufacturers adhere to when it comes to measuring response time, but according to BenQ, which makes both IPS and VA monitors and TVs, IPS has a response time of 1-2ms whereas VA can only achieve 4-5ms. The specific values here aren’t important because this is a best-case scenario. What’s really important is that VA is much slower.

Very high response times can result in very animated scenes looking blurry and smeared. This issue is called ghosting, and it’s particularly annoying for discerning gamers playing fast-paced games like Counter-Strike: Global Offensive. Both IPS and VA displays have solutions and workarounds to avoid ghosting, the most important being overdrive. Overdrive that’s too aggressive can cause reverse ghosting, which is when the display tries to change a pixel’s color so quickly that it accidentally overshoots and ends up with the wrong color for a few frames. Ghosting and reverse ghosting both cause smearing, so if overdrive is too weak or too strong, the end result is similar: It looks bad.

Although the best IPS panels beat the best VA panels when it comes to response time, there are plenty of IPS displays that have very bad response times. It’s also worth noting that response time only needs to be equal to the refresh rate of the monitor for there to be no smearing. On a 60Hz display, for instance, it takes 16.66ms to show a new image, so a response time of 1ms doesn’t really do much. Response time matters much more at higher refresh rates, and even at 144Hz a response time of around 7ms is sufficient to avoid ghosting.

IPS is capable of significantly higher refresh rates than VA. IPS is capable of hitting 500Hz while VA caps out at 240Hz. However, the vast majority of VA displays are only capable of 144Hz or 165Hz; there are only a few VA monitors that can do 240Hz. For those wanting extremely high refresh rates, IPS is the clear winner.

Even if VA was capable of 360Hz however, it probably wouldn’t be very good because of its weakness in response times. A 360Hz display refreshes every 2.7ms, which is well below what VA is generally capable of.

While IPS displays are usually a safe recommendation for most people, sometimes there are very good reasons to buy VA monitors and TVs. VA has found its home in midrange gaming monitors, gaming TVs, and ultrawide displays, and many of the best gaming monitors use VA. If you’re shopping outside of these categories, however, you probably won’t have to worry about choosing between IPS and VA because VA is not very often used elsewhere.

If you do have the choice between VA and IPS, you’re going to have to evaluate what you prefer in a display, and you should definitely read some monitor reviews just to make sure if VA or IPS is going to deliver what you want in your next display purchase. After all, even an IPS display can have bad color accuracy or bad response time, so don’t assume IPS means quality and that VA means budget.

lcd panel ips vs va made in china

Display technology has been evolving for more than a century and continues to drive innovations in the electronic device market. IPS technology was developed in the 90s to solve color and viewing angle issues.

IPS display panels deliver the best colors and viewing angles compared to other popular display planes, including VA (vertical alignment) and TN (twisted nematic).

LCDs (liquid crystal displays). IPS changes the behavior of an LCD’s liquid crystals to produce a sharper, more accurate picture. This technique allows IPS displays to deliver a higher quality viewing experience than other screen types like TN or VA.

IPS acts on the liquid crystals inside an LCD, so when voltage is applied, the crystals rotate parallel (or in-plane), allowing light to pass through them easily. By reducing the amount of interference in the light being produced by the display, the final image on the screen will be much clearer.

One of the leading advantages that IPS offer is its ability to deliver wide angles while preserving colors and contrast. This means you can view an IPS screen from nearly any angle and get an accurate representation of the image on-screen.

IPS display screens and monitors offer the best quality in different environments (direct sunlight, low light, indoors, or outdoors) compared to TNs or VAs.

IPS LCDs require about 15% more power than a standard TN LCD. OLED displays require much less power than IPS types due to the fact that they don’t require a backlight. The LCD IPS technology is not the ideal solution if you need an energy-efficient display. You’re better off choosing an OLED or TN TFT for a low-power solution.

Because of the newer and more advanced technology found in IPS displays, they’re more expensive to manufacture. For a more cost-effective solution, a TN LCD would be a better choice.

IPS displays provide a huge boost to viewing angles and color reproduction, but they don’t have the same contrast capabilities as some other competing display types. OLED displays are able to deliver true black by shutting off their active pixels completely, resulting in much higher contrast than IPS displays. If you’re looking for maximum contrast in your display, you’re better off with an OLED display.

Because of in-plane switching’s ability to boost viewing angles and retain color accuracy, it allows LCDs to compete with the high contrast images found on OLED displays.

If you don’t require the highest refresh rates and don’t mind slightly higher power consumption, then an IPS display will greatly benefit your project.

lcd panel ips vs va made in china

{"backgroundColor":"#e6f4fa","sideMsg":{"t_id":"","language":{"en_us":"","en":""},"id":""},"data":[{"bannerInfo":{"t_id":"Page91e4a96b-ecfb-470d-9b65-6bc739fba6bb","language":{"en_us":"%3Cp%3ESave%20up%20to%20%7BsavingPercent%7D%20during%20the%20End%20of%20Year%20Clearance%20Sale.%20Earn%203%25-9%25%20in%20rewards%20when%20you%20join%20MyLenovo%20Rewards%20for%20free.%26nbsp%3B%3Ca%20href%3D%22%2Fd%2Fdeals%2Fclearance-sale%2F%3FIPromoID%3DLEN944203%22%20target%3D%22_self%22%20textvalue%3D%22Shop%20Now%20%26gt%3B%22%3E%3Cstrong%3EShop%20Now%20%26gt%3B%3C%2Fstrong%3E%3C%2Fa%3E%3C%2Fp%3E","en":""},"id":"Page91e4a96b-ecfb-470d-9b65-6bc739fba6bb"}},{"bannerInfo":{"t_id":"Page25162510-223c-435d-a9ea-de34f3819770","language":{"en_us":"%3Cp%3EFree%20expedited%20delivery%2C%20no%20minimum%20purchase%20required.%20Receive%20Holiday%20%0ADelivery%20on%20most%20in%20stock%20products.%20Shop%20by%2012%2F21%20at%2011%3A59%20PM%20ET.%3C%2Fp%3E","en":""},"id":"Page25162510-223c-435d-a9ea-de34f3819770"}},{"bannerInfo":{"t_id":"Page0cb68592-cc11-4f80-a885-14830e5e1cf9","language":{"en_us":"%3Cp%3ENeed%20it%20today%3F%20Buy%20online%2C%20pick%20up%20select%20products%20at%20Best%20Buy.%26nbsp%3B%3Ca%20href%3D%22about%3Ablank%22%20rel%3D%22noopener%20noreferrer%22%20target%3D%22_blank%22%3E%3C%2Fa%3E%3Ca%20href%3D%22%2Fd%2Fbopis%2F%3FIPromoID%3DLEN775727%22%20target%3D%22_self%22%3E%3Cstrong%3EShop%20Pick%20Up%20%26gt%3B%3C%2Fstrong%3E%3C%2Fa%3E%3C%2Fp%3E","en":""},"id":"Page0cb68592-cc11-4f80-a885-14830e5e1cf9"}},{"bannerInfo":{"t_id":"Page77201339-3630-46e1-ab56-fb8712872e4e","language":{"en_us":"%3Cp%3EBad%20credit%20or%20no%20credit%3F%20No%20problem!%20Katapult%20offers%20a%20simple%20lease%20to%20own%20payment%20option%20to%20help%20get%20what%20you%20need.%20%3Ca%20href%3D%22%2Flandingpage%2Flenovo-financing-options%2F%3FIPromoID%3DLEN771093%22%20target%3D%22_self%22%3E%3Cstrong%3ESee%20if%20you%20Prequalify%20%26gt%3B%3C%2Fstrong%3E%3C%2Fa%3E%3C%2Fp%3E","en":""},"id":"Page77201339-3630-46e1-ab56-fb8712872e4e"}},{"bannerInfo":{"t_id":"Pagecda45b63-3f94-43f2-a8e8-112fde33385d","language":{"en_us":"%3Cp%3ECross%20those%20names%20off%20your%20list%20with%20accessories%20and%20electronics%20under%20%24100.%26nbsp%3B%3Ca%20href%3D%22%2Fd%2Faccessories-under-50%2F%3FIPromoID%3DLEN331958%22%20target%3D%22_self%22%3E%3Cstrong%3EShop%20Gifts%20%26gt%3B%3C%2Fstrong%3E%3C%2Fa%3E%3C%2Fp%3E","en":""},"id":"Pagecda45b63-3f94-43f2-a8e8-112fde33385d"}}],"autoRun":true}