1.8 color tft lcd st7735r for sale
This lovely little display breakout is the best way to add a small, colorful and bright display to any project. Since the display uses 4-wire SPI to communicate and has its own pixel-addressable frame buffer, it can be used with every kind of microcontroller. Even a very small one with low memory and few pins available!
The 1.8" display has 128x160 color pixels. Unlike the low cost "Nokia 6110" and similar LCD displays, which are CSTN type and thus have poor color and slow refresh, this display is a true TFT! The TFT driver (ST7735R) can display full 18-bit color (262,144 shades!). And the LCD will always come with the same driver chip so there"s no worries that your code will not work from one to the other.
The breakout has the TFT display soldered on (it uses a delicate flex-circuit connector) as well as a ultra-low-dropout 3.3V regulator and a 3/5V level shifter so you can use it with 3.3V or 5V power and logic. We also had a little space so we placed a microSD card holder so you can easily load full color bitmaps from a FAT16/FAT32 formatted microSD card. The microSD card is not included, but you can pick one up here.
The 1.8″ display has 128×160 color pixels. Unlike the low cost “Nokia 6110” and similar LCD displays, which are CSTN type and thus have poor color and slow refresh, this display is a true TFT! The TFT driver (ST7735R) can display full 18-bit color (262,144 shades!). And the LCD will always come with the same driver chip so there’s no worries that your code will not work from one to the other.
The breakout has the TFT display soldered on (it uses a delicate flex-circuit connector) as well as a ultra-low-dropout 3.3V regulator and a 3/5V level shifter so you can use it with 3.3V or 5V power and logic, which allows you to use the display with virtually any microcontroller. There’s also a microSD card holder so you can easily load full color bitmaps from a FAT16/FAT32 formatted microSD card. The microSD card is not included.
This lovely little display breakout is the best way to add a small, colorful and bright display to any project. Since the display uses 4-wire SPI to communicate and has its own pixel-addressable frame buffer, it can be used with every kind of microcontroller. Even a very small one with low memory and few pins available!
The 1.8" display has 128x160 color pixels. Unlike the low cost "Nokia 6110" and similar LCD displays, which are CSTN type and thus have poor color and slow refresh, this display is a true TFT! The TFT driver (ST7735R) can display full 18-bit color (262,144 shades!). And the LCD will always come with the same driver chip so there"s no worries that your code will not work from one to the other.
The breakout has the TFT display soldered on (it uses a delicate flex-circuit connector) as well as a ultra-low-dropout 3.3V regulator and a 3/5V level shifter so you can use it with 3.3V or 5V power and logic. We also had a little space so we placed a microSD card holder so you can easily load full color bitmaps from a FAT16/FAT32 formatted microSD card. The microSD card is not included, but you can pick one up here.
In this guide we’re going to show you how you can use the 1.8 TFT display with the Arduino. You’ll learn how to wire the display, write text, draw shapes and display images on the screen.
The 1.8 TFT is a colorful display with 128 x 160 color pixels. The display can load images from an SD card – it has an SD card slot at the back. The following figure shows the screen front and back view.
This module uses SPI communication – see the wiring below . To control the display we’ll use the TFT library, which is already included with Arduino IDE 1.0.5 and later.
The TFT display communicates with the Arduino via SPI communication, so you need to include the SPI library on your code. We also use the TFT library to write and draw on the display.
The 1.8 TFT display can load images from the SD card. To read from the SD card you use the SD library, already included in the Arduino IDE software. Follow the next steps to display an image on the display:
In this guide we’ve shown you how to use the 1.8 TFT display with the Arduino: display text, draw shapes and display images. You can easily add a nice visual interface to your projects using this display.
With the grand plan of putting one of these straight onto a new PCB design, I got a couple LCD breakout boards off ebay, this one to be precise: https://www.ebay.com/itm/LCD-Display-module-1-8-inch-1-8-TFT-ST7735S-128x160-51-AVR-STM32-ARM-8-16-bit/112016021626 and tore down one that arrived broken (see attached).
Adafruit 1.8" Color TFT Shield w/microSD and Joystickis the best way to add a small, colorful and bright display to any project.Adafruittook the popular 1.8" TFT breakout board and remixed it into an Arduino shield complete with microSD card slot and a 5-way joystick navigation!
Adafruit 1.8" Color TFT Shield w/microSD and Joystick has the TFT display soldered on as well as a ultra-low-dropout 3.3V regulator and a 3/5V level shifter so it’s safe to use with 5V Arduinos. There is also some space left over, so a microSD card holder and a 5-way navigation switch are added. Note that the microSD card is not included.
If you just want to display text, shapes, lines, pixels, etc., the shield uses pins 13, 11, 10 and 8. If you"d like to add the navigation switch, it uses Analog 3. For the microSD card, you"ll also give up Digital 12 and 4. This shield works best with the Arduino UNO and compatibles. You can use it with the Mega but it won"t be as fast since it would be using software rather than hardware SPI for both the TFT and SD card, so it"s not recommended.
Adafruit 1.8" Color TFT Shield w/microSD and Joystick comes as a fully assembled and tested shield with the display, microSD card holder and nav switch with knob as well as a stick of 0.1” header. To finish up and use, you will need to solder on the header onto the shield PCB, a quick 10 minute task.
This is a single-chip controller/driver for 262K-color, graphic type TFT-LCD. It consists of 396 source line and 162 gate line driving circuits. This chip is capable of connecting directly to an external microprocessor, and accepts Serial Peripheral Interface (SPI), 8-bit/9-bit/16-bit/18-bit parallel interface.